CN101688769B - 预拉伸监测方法 - Google Patents

预拉伸监测方法 Download PDF

Info

Publication number
CN101688769B
CN101688769B CN2008800231329A CN200880023132A CN101688769B CN 101688769 B CN101688769 B CN 101688769B CN 2008800231329 A CN2008800231329 A CN 2008800231329A CN 200880023132 A CN200880023132 A CN 200880023132A CN 101688769 B CN101688769 B CN 101688769B
Authority
CN
China
Prior art keywords
pattern
distance
strain
image
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800231329A
Other languages
English (en)
Other versions
CN101688769A (zh
Inventor
奥利·塔克曼
乔纳斯·尼尔萨加德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tension Cam Systems Inc
Original Assignee
GLOBULARCODER AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GLOBULARCODER AB filed Critical GLOBULARCODER AB
Publication of CN101688769A publication Critical patent/CN101688769A/zh
Application granted granted Critical
Publication of CN101688769B publication Critical patent/CN101688769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/02Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/12Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed
    • G01L5/243Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed using washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating

Abstract

本发明涉及一种张力监测系统,该系统包括:-至少一个照相机,用于采集感兴趣物体上的至少一种图案的至少一个图像,其中该图案包括多个点,每个点以这样的方式排列在物体上,即随着物体的移动而移动;-计算设备;其中计算设备利用图像分析算法对采集的图像进行分析,该图像分析算法用对比检测方法确定点的几何中心,从而检测每个图案点的位置,测定至少两个图案部分之间的距离,并用物体机械松弛时两个图案部分之间的距离作为参考值计算物体内产生的张力。

Description

预拉伸监测方法
技术领域
本发明涉及一种传感器方法,尤其涉及一种张力监测系统,用基于视觉图像的方法监测材料的机械预拉伸。
技术背景
在测量对材料施加的力所产生的应变所使用的传统技术中,例如测量扭矩或线应变的应用,将传感器固定在需要测量的材料上,然后在传感器和调节及分析电子器件之间建立电耦合。这种方法存在缺点,例如需要电耦合随着时间的推移能够始终保持合适的性能,例如应用中存在的问题包括旋转部分形成了感兴趣的对象,而调节和分析电子器件却静止不动。这种情况的一个典型例子是用应变仪利用电阻技术测量旋转轴的扭矩,这里用滑环连接传感器和电子器件;由于接触面会产生磨损,随着时间的推移,滑环的质量会逐渐下降。同时,应变仪也相当昂贵,这就限制了其应用于某些测试测量中,特别不适合作为常规装备使用。应变传感器可以用于检测由于机械力所施加在材料上的张力。
为了这个目的,已经研发出了很多不同的技术以提高仪器的质量和/或分辨率。利用不用形式的磁耦合的传感器系统,利用电容耦合的传感器系统和基于视觉图像的传感器系统已经被开发出来了。每种技术都有它自身的缺点,分别表现为易受外源或错误的干扰,分辨率降低,成本增加以及可靠性降低。
例如,基于视觉图像的方法经常伴随有低分辨率和/或要求复杂昂贵的光学和机械装置。然而,基于视觉图像方法的一个优点是在非固定性应用中使用更加容易,例如图像采集设备不需要永久性地固定在与需要测量物体相关的位置上,而是可以移走,随后(及时)放回再进行测量。
JP1131406提供了一种这样的方法,其中图像采集设备检测莫尔条纹图并从条纹之间的距离来测定应变。然而,这一技术需要高质量的光学器件并且只能用于测量某个时间点在一个方向上的应变。
WO9414029中提到了另一个例子,其中公开了一种对三维图案分量进行应变分析的测量系统。该系统利用CMM用照像机对感兴趣的对象上形成的图案进行测量。这是一种昂贵的并且是机械复杂的方法,需要对图案进行校准,并且分辨率低。
另一种技术方案是FR2823849,利用基于视觉图像的方法测量物体的形变和应变。
FR2835603公开了一种基于视觉图像的方法,用于测量物体的位移和/或形变。然而,这篇文献没有提及应变的测量。
WO 2007/073272公开了一种用于确定物体位置的设备、方法和系统,尤其公开了一种基于视觉图像的方法,其利用一种包含绝对位置数据的图案。
本发明的目标是解决这些问题中的至少一个。
发明内容
本发明有很多个方面,其中第一个方面涉及一种张力监测系统,包括:
-一个物体,是紧固装置的一部分,将第一个物体相对于第二个物体固定,在所述物体的表面提供至少一种图案,该图案包括多个图案部分,各图案部分之间互相间隔一定距离排列,距离范围以能在一预定的范围和分辨率内检测到张力为宜,其中图案部分包括多个点,每个点在物体上固定排列;
-至少一个照像机(4,33,33’,701),用于采集物体(2,22,31,707)上的至少一种图案(3,23,32,32’,704)的至少一个图像;
-计算设备(500),用于接收来自至少一个照像机的图像信息;
其中,计算设备用图像分析算法对采集的图像进行分析,图像分析算法用对比检测方法确定点的几何中心,从而检测每个图案点的位置,测定至少两个图案部分之间的距离,并用物体机械松弛时两个图案部分之间的距离作为参考值计算物体内产生的张力。
图案可进一步包括信息点。
信息点可以包括物体上的相对位置、与至少一个相邻点的距离和校准信息中至少一个的相关信息。
计算设备可以进一步设置为获取照相机和物体之间距离的相关信息。
计算设备可以设置为对距离对应变计算的影响进行校正。
本发明的另一个方面是一种应变检测设备,包括:
至少一个照相机,用于采集感兴趣物体上的至少一个图案的至少一个图像,其中图案包括多个点,每个点以这样的方式排列在物体上,即随着物体的移动而移动;
计算设备;
其中计算设备利用算法对采集的图像进行分析,所述算法用对比检测方法确定点的几何中心,从而检测每个图案点的位置,测定至少两个图案点间的距离,并用无应变时的两个图案点间的距离作为参考值计算物体内产生的应变。
图案可进一步包括信息点。
信息点可以包括物体上的相对位置、与至少一个相邻点的距离和校准信息中至少一个的相关信息。
计算设备可以进一步设置为获取照相机和物体之间距离的相关信息。
计算设备可以设置为对距离对应变计算的影响进行校正。
本发明的另一个方面提供了一种检测物体内应变的方法,包括以下步骤:
用机器在物体上提供一种对照变化的图案;
采集该图案的至少一个图像;
对图案进行分析;
确定图案点的几何中心;
测量至少两个图案点之间的距离;
利用参考值计算无应变状态下两个图案点之间的距离;
计算物体内的应变,应变为测量得到的距离和计算得到的距离的函数。
本发明的另一个方面提供了一种计算机程序,其存储在计算机可读存储器上并在处理设备上运行,用于检测物体内的应变,包括用于以下方面的指令集:
用直接或间接连接到处理设备上的照相机采集图案的至少一个图像;
对图案进行分析;
确定图案点的几何中心;
测量至少两个图案点之间的距离;
利用参考值计算无应变状态下两个图案点之间的距离;
计算物体内的应变,应变为测量得到的距离和计算得到的距离的函数;
显示计算得到的应变。
本发明的另一个方面提供了一种监测物体内应变的系统,包括:
一个物体;
对照变化的图案,处于物体表面上;
照相机,用于采集图案的图像;
计算设备,与照相机相连;
其中计算设备利用算法对采集的图像进行分析,该算法用对比检测方法确定点的几何中心,从而检测每个图案点的位置,测定至少两个图案点之间的距离并计算物体内产生的应变。
进而,本发明可以实现为一种在紧固装置中使用的垫圈,包括一种弹性材料,在其表面上有由多个点组成的图案,具有对照性的变化,以适合于确定每个图案点的几何中心,其中所述的图案受到垫圈内产生的应变。
本发明的一个优点是可以在几个方向上同时测量应变。用同一个检测设备可获得多个地点的测量值,从而得到几何应变剖面图。而且,也可以获得其它参数的测量值,如不同类型的应变(线性、弯曲、扭矩以及线性应用中的扭矩)和物体相对于检测设备的位置。
人们可以获得物体上的图案所编码的有关物体身份和/或校准数据的信息。
附图说明
下面,参照所附附图中所示的具体实施方案,以非限制性的方式对本发明进行更加详细的描述,其中:
图1示意性地描述了根据本发明第一个实施方案的应变传感器系统;
图2示意性地描述了根据本发明第二个实施方案的应变传感器系统;
图3A示意性地描述了根据本发明的扭矩传感器;
图3B示意性地表示图3A的部分侧视图;
图4示意性地描述了根据本发明的方法;
图5示意性地描述了根据本发明的测量设备;
图6示意性地描述了本发明使用的图案节点的细节;
图7示意性地描述了根据本发明的镜头装置;和
图8示意性地描述了本发明的另一个实施方案。
具体实施方式
参照图1,图1描述了根据本发明的应变传感器或张力监测系统1,其中附图标记2表示一个物体,应变(图1中箭头6表示应变的主要方向)是由于某些机械过程而引起的,这种应变是我们感兴趣测量的。在物体上提供有图案3,该图案包括多个节点并且可选择性地包括位置点/信息点。图案将在下文进行更加详细地讨论。图像采集设备(例如照相机)4检测到图案后,将与图案相关的信号传给分析设备,进行图像分析。分析设备可以与照相机4一起合并到同一个传感器系统包装5内。分析设备优选使用一种质心算法或者一种确定图案部分几何中心的算法来确定每个单独的图案部分的位置。通过这样的分析,可以确定物体上的图案的位置,如果图案是唯一编码的,物体也可以被认别,并且部分图案的机械位置相对于该图案的其它部分可以定位,即如果已知部分图案在无应变时的机械位置,就可以测定在图案部分之间物体中所产生的应变。
本发明应用的几个例子将在下文予以描述。
在第一个应用中,物体受到系统中一些力所加载的静态张力或半静态张力,导致材料发生应变,对应变/张力进行测量。例如,用于与另一物体固定的螺栓和螺母,当螺母投入使用时,受到应变。可以在螺母、螺栓头上或者在螺母或螺栓头与另一物体(该物体用螺栓和螺母固定)之间所插入的分离垫圈上测量这种应变/张力。应当理解的是,当一个物体与另一个物体固定在一起时,如果螺栓螺纹配合地拧入被固定物体上的螺纹接受部分,那么可以省去螺母。例如,假设要将一个车轮紧固到汽车上,经常从车轮的一侧将多个螺栓放入车轮的接受孔进行固定,而在车轮的另一侧有多个带螺纹的接受结构,当螺栓拧入这些接受结构时锁住螺栓。在螺栓和车轮之间可以放置垫圈,在拧紧操作过程中产生的应变也会传递到垫圈上。可以用测试设备检查应变当前的状态,从而使驾驶者确信每个固定车轮的螺栓都已经拧紧了并安装合适了。另外一个例子同样另人感兴趣,就是固定发动机的气缸盖,我们所感兴趣的是使气缸盖相对于发动机组得到均衡且对称地紧固。
一些技术面涉及每个固定结构的螺栓必须安装紧,螺栓必须保持一定的紧度(即固定结构中的应变达到某种水平)。这些技术面涉及压力容器、诸如石油工业中与石油钻塔相关的大型轴承、建筑工地上的大型起重机结构等等。在这些地方,如果一个或几个螺栓出现故障,就会发生错综复杂的事故。例如在石油工业中有安全保障方面的要求,需要检查轴承结构中的每个螺栓。类似的,在核能生产工业中对于压力容器也需要这样做。因此,需要获得一种快速可靠的装置,用于测量螺栓中的应变。
图2显示了上面所述实施例的一种变体的侧视图:螺杆/螺栓27具有螺纹部分28,螺纹部分28与物体29的螺纹部分(没有显示)相匹配。垫圈22包括图案23,垫圈22安装在螺杆头20和物体29之间。螺杆和物体可以看成一个紧固装置21。带有分析设备(如与图1相关的描述所讨论的)和包装5的照相机4用于采集图案的图像。在本实施方案中,带有图案的垫圈和带有包装的照相机可以看作一个传感器系统21。当螺杆/螺栓固定到物体上时,螺杆和垫圈产生了张力。这种张力导致垫圈的几何尺寸改变,这会依次对图案各部分的相对位置产生影响。例如,如果图案包括多个点,这些点中心之间的距离会发生变化。这种距离变化可以用上面所讨论的质心算法进行检测,然后就可以测定所加载的张力。
用螺杆/螺栓紧固物体可以如本领域熟练技术人员所理解的通过利用扭矩转动螺杆(例如用扳手)或者利用螺栓张紧器(如hydrocam张紧器)来实现。螺栓头和物体中间加一个垫圈,用手拧紧螺栓,将其紧固到物体上,此时螺栓张紧器开始工作向螺栓施加拉力。当施加拉力时,螺栓被拉长,垫圈略微变松。朝着物体的方向转动垫圈(垫圈是内螺纹,其螺纹与螺杆的螺纹相匹配),使垫圈紧固到物体表面上,之后释放掉拉力,从而提供预拉伸。应当注意的是,垫圈不需要有螺纹但应能适用于施加拉力的过程;因此垫圈需要有一个开口部分,以便将垫圈推入到螺杆头的下面。通常,在螺栓张紧器中使用的螺栓包括一个带销螺栓装置,其与一个螺母拧到垫圈上拧紧;不过也可以使用其它利用垫圈的技术方案。
应当注意的是,在本发明另一个实施方案中,垫圈可以以合适的方式与螺母合并,只要在拉伸过程中施加的力能够通过螺母的垫圈部分传递即可。图8为螺母/垫圈合并的例子。螺栓头也可以与垫圈合并(没有显示)。图8将在后面进行更为详细的讨论。
对于垫圈和/或包含垫圈的螺栓这类应用,本发明优选应用于相关尺寸为M10或更大的系统,例如M16和M20等等。但本发明不限于此范围。本发明仍可应用于较小尺寸的系统。而且,本发明不限于米制结构,而是可应用于任何系统:所提到的米制M20仅仅是为了说明尺寸而举的一个例子。
从上文可以看到,可以对承重的结构提供检测,这些结构可以是物体的一部分,如螺栓或合并的垫圈/螺杆方案,也可以直接对物体如滚柱/滚珠轴承组件的承重部位提供检测;当把轴承安装到轴上时,可以用卷曲方法固定轴承,于是轴承的内圈(或外圈)受力,预拉伸该系统。
照相机/分析装置可以永久性的与垫圈同时提供或者作为一个场地模块提供,间歇式地用于紧固装置21张力的场地检查。例如,进行检查的用户可以配备一个探针(包括照相机、分析设备和显示装置用于显示检测到的张力值),在他巡回检查需要检查的设备时随身携带。用户靠近设备进行测试,将探针伸到一个固定架(没有显示)内,该固定架的位置与图案相关,以提供一个刚性的接受架,这样当探针移走后再放回时多次测量值会有很好的再现性。
固定架或引导架能够使探针放在与图案相距一固定距离位置上,这样不同次测量之间的距离就不会改变(因为照相机与图案之间的距离会引起测量误差);在采集的图像中图案各点间的距离作为照相机与图案之间的距离与加载的张力的函数而变化。
可以使用合适的照相机镜头组来进一步减小误差。镜头装置(如图7所示)可以包括这样一种方案,其中一个镜头702处于与照相机701相对的位置和一个镜头703放置在与图案704相对的位置。这种镜头装置提供了这样一种技术方案:平行光束705从图案到照相机以这样一种方式传递,即使检测系统基本上与照相机和图案之间的距离705无关(因为第一个镜头702与照相机701之间的距离706是固定的,并且第二个镜头703与图案704之间的距离708也是固定的。)可替代的是,不再提供固定架,而是使传感系统依赖于所述的镜头系统。
另外或者作为补充的是,通过利用这样一个事实:拉伸所产生的应变主要集中在某个方向上并且主要在一个方向上对图案中各点间的距离产生影响,而在另一方向上各点间的距离或多或少地未受影响,或者通过分析部分图案不同点之间的关系,图像分析就可以用图案本身作为参考值以测定照相机和图案之间的距离。因此,通过测定在未受影响方向上各点间的距离,可以推导出照相机到图案的距离,这是因为图案无应变时各点间的距离是已知的。而另一个方案则通过一些其它的测量方法如使用机械装置(如螺旋千分尺或类似的长度测量装置)或者光学测量装置(如激光设备)来测定距离。
为了进一步提高应变传感器的灵敏度和分辨率,可以使用温度传感器来处理温度对系统和物体的影响。
另外,可以围绕着垫圈的周边对多个位置点进行测量并取测量的平均值,从而解决了垫圈相对于螺杆/物体不平衡的问题。对多个位置点的测量也可提供周边一圈张力的有关信息,以确定垫圈/螺杆的任何特定部分是否有任何形式的破损。
垫圈优选由这样的材料制成,其机械性能适合产生一定范围的应变并且其性能长期稳定,能使用相当长的时间。优选使用尺寸适合的金属材料,例如不锈钢、铝、铁、铜、黄铜、钛等等。垫圈上可以提供一层氧化还原涂层或者一些其它合适的物理保护。
图案可以通过电镀、激光诱导、机械诱导等直接与垫圈合并,或者图案也可提供在一层单独的膜上,膜与垫圈相配(例如印在塑料金属膜上的图案,这层膜粘在垫圈上)。
通过测量图案的角变形,也可以测量垫圈或螺杆上的扭矩。
图案可选择性地提供在螺杆头一侧位置靠近物体,在这里在一定条件下可以产生应变。
图3示例性地说明了一个扭矩测量的例子(扭矩计)。轴31上有两组图案32,32’,它们之间间隔一段距离。照相机33,33’(可选择性地带有分析装置,如电子器件和/或计算设备)对准每组图案以测定一组图案相对于另一组图案的位置。如果轴受到扭矩,两组图案相互之间将会有一个角度的偏移。如果两个照相机能够及时同步,可以测定这个角度差并推导出轴31上的扭矩。在一种可替代的实施方案中,如果采集到图像足够大,大到足以容纳两组图案,那么使用一个单独的照相机也是可以的。在另一个实施方案中,用一个照相机采集一组图案的图像:如果扭矩足够大或者要求的灵敏度、分辨率和/或测量设备的范围允许,一组图案中的点与另一组之间互相偏转,从而指示出扭矩的大小。同步可以在照相机系统之间的通信连接装置34中方便地进行。应当注意的是,照相机不限于检测可见光,而是可以设置成检测电磁波谱中的一些其它部分:紫外光谱或红外光谱部分。
扭矩计30可放置在一个单独的箱体36内,可以包括一个或多个照相机33,33’,用于传递测量值的接口37和用于支撑轴31的轴承35,35’。轴31可以与扭矩计30同时提供或由用户自己提供。当与扭矩计同时提供时,轴31可配备与另一个轴连接的装置(例如根据应用,在一端或两端有某种类型的花键联接),从而安装到一个组件现有的部分上,此时扭矩计可以适用。然而,扭矩计也可以滑到轴上,绕着现有的轴应用安装,此时轴上已经准备有合适的图案。
图像分析可以在照相机里进行或者在单独的计算设备里(没有显示)进行。
在对测量扭矩感兴趣的应用中,根据要求的分辨率可以方便地使用多个照相机。进一步,本发明提供了一种方案,可给出有关系统测量对象的额外信息:如要测量扭矩的物体的位置或者物体的转动速度。利用多个照相机,系统可以提供轴在x,y,z方向上相对于照相机平移的信息。多个照相机优选安装时相互之间存在一定的角度差,如图3B所示,照相机33和33’相差大约45度围绕着轴31安装。角度可以在0到360度的范围内。
图4说明了在应用中测量物体中应变的方法,在这里间歇性地测量应变,例如偶尔使用场地探针并在各次测量之间移走探针。
41.给物体在某个位置提供一种图案,在这个位置上产生的拉伸将会提供应变。
42.使物体受到拉伸。
43.在物体遭受应变后和/或施加拉伸的过程中,利用上面所讨论的应变检测设备,获取图案的一个或多个图像,测量初始应变。对图像进行分析,可选择性地存储部分图案的位置。但应当注意的是,当图案是以各部分图案之间已知的距离构成的时候,就检测应变来说没必要存储这种信息,但无论如何这种信息也是令人感兴趣的,因为它可以显示出所产生的应变随着时间变化而发生的变化。
44.移走探针。
45.经过某个合适的时间间隔,将探针放回再对图案测量一次,看看是否有任何改变并记录应变值。
本发明中的一部分涉及对照相机采集的图像进行分析。分析优选通过计算设备如微处理器、FPGA(现场可编程门阵列),ASIC(专用集成电路),PC或类似设备中的软件完成。图5中所示的例子为这种计算设备500与处理器501和用于存储软件、结果和/或中间值的存储器502。存储器可以包括易失性存储器或非易失性存储器或这些的结合。存储器可以是RAM、EPROM、EEPROM、Flash、硬盘、记忆棒或本领域熟练技术人员所理解的类似存储单元中的至少一种。
计算设备可进一步包括传感器接口503和通信接口504。传感器接口设置为与照相机进行通信,也可以进一步设置为接收来自其它感兴趣的传感器的信号以从它们那里获取数据。这些传感器例如可以包括温度、湿度、磁场和/或电场、速度、转动速度或类似的。通信接口可以设置为通过通信协议(例如使用IP的以太网,RS232,RS485,I2C,CAN bus,GPIB,HPIB,VXI,PXI,ISA,Firewire,USB,IDE,各种版本的PCI,各种版本的SCSI和VME)与其它设备连接,从而交换数据并控制信号。用户可以与PC的计算设备500进行通信,例如从设备500处获取读数并将设备500设置为测量;设定测量范围,灵敏度,定时等本领域熟练技术人员所理解的特征。计算设备可以是为了在本发明的各种应用中使用而特别安排的单独设备,或者计算设备也可以是一些其它设备如PDA或移动电话的一部分。
计算设备500也可以包括一个直接的用户界面装置,利用一个用户界面定位在设备上,例如连接到计算设备上的触摸面板或按钮和/或本领域熟练技术人员所理解的其它类似的机械界面设备。
计算设备500也可以设置为与中央服务器进行通信,以便上传数据和/或接收为物体测量所用的校准数据。
图案节点可以包括任何合适的形状,以便数字化检测该形状的几何中心,但优选包括圆600,圆600具有未填充的中心部分(如图6所示),即图案点有一个填充环,包围着未填充的中心区。使用具有这些特征的图案节点的好处是确定位置所使用的算法有四个对照移动区域可以测量(在图6中箭头601表示分析方向):一个是602,正从圆外进入填充环区;一个是603,正处在填充区并且正要进入未填充的中心部分;一个是604,在与初始检测相对的一侧正要从未填充的中心部分进入填充环;一个是605,正处在填充环,部分在圆形图案部分的外面。不过应当理解的是,其它几何形状也可以使用;具有填充或未填充的中心部分:例如正方形、三角形或任何其它形状。根据本发明用于何种类型的应用,可以在一个或几个分析方向上进行确定几何中心的分析。
另外,也可以为图案提供关于每个图案节点定位的信息点。该信息可以被编码成一组信息点:例如,一组图案可以包括多个相同或不同特征的点(或它们的组合)以及彼此的相对位置(而且这组信息点中缺少的点也可以看作是信息点)。信息点可以提供该节点相对于其它节点定位的相关信息(例如给出了获得每个节点的绝对位置的可能性,或者提供关于无应变状态下相邻节点之间距离的信息(不需要在中央服务器或在本地存储这样的数值)或者其它感兴趣的校准信息(例如图案应用在物体上的任何非线性影响,照相机的影响,应变的影响:例如,如果产生的应变在所有方向上都是非线性的等相关信息))。
提供这种与校准相关的信息点的过程可以是:首先在物体上提供多个节点,测量每个相邻节点间的距离,并给信息点提供物体的这一信息。
图8描述了一种可替代的实施方案,其中螺母800配备一个组合螺母头801和一个垫圈部分804,组合螺母头801用于接受一个紧固用的工具,而垫圈部分804带有图案802。应变通过垫圈部分传递,因此可以用图案802来检测应变。
本发明可以在许多特定的应用中适用,例如:
1.测量电动机轴上的扭矩(传感器可以合并到电动机箱内)。
2.与轴承联合,例如在轴承箱内。
3.对预应变的螺栓进行测量,如在不同时间点和/或时间间隔测定螺栓的应变。
4.测量方向盘轴上的扭矩,用在电动转向应用中。
5.测量桥梁、建筑物、水坝、密封垫、铁轨(铁路上的)、风力碾磨机以及部分车辆局部的应变。
6.测量紧固元件在诸如大型起重机等应用中所受的张力。
7.在实验室环境中使用的测试钻塔,例如应变实验,用于测定材料的抗张强度等等。
应当注意的是,“包括”一词不排除除了所列出的那些之外还存在着其它的元件或步骤,一个元件前的“一个”一词不排除有多个这样的元件存在。应当进一步注意的是,任何附图标记都不会对权利要求的范围起限定作用,一些“装置”、“单元”或“设备”可以用相同项目的硬件替代,本发明至少部分可以用硬件或软件来实现。
上面所提及的和所描述的实施方案仅以实施例的方式给出,不应当对本发明有任何限制。如下面专利权利要求所描述的,在本发明范围内的其它方案、用途、目的和功能对于本发明的熟练技术人员来说应当是很明显的。

Claims (7)

1.一种张力监测系统,包括:
-一个物体(2,22,31,707),是紧固装置的一部分,将第一个物体相对于第二个物体固定,在所述物体的表面提供至少一种图案,该图案包括多个图案部分,各图案部分之间互相间隔一定距离排列,距离范围以能在一预定的范围和分辨率内检测到张力为宜,其中图案部分包括多个点,每个点在物体上固定排列;
-至少一个照像机(4,33,33’,701),用于采集物体(2,22,31,707)上的至少一种图案(3,23,32,32’,704)的至少一个图像;
-计算设备(500),用于接收来自至少一个照像机的图像信息;
其中,计算设备用图像分析算法对采集的图像进行分析,图像分析算法用对比检测方法确定点的几何中心,从而检测每个图案点的位置,测定至少两个图案部分之间的距离,并用物体机械松弛时两个图案部分之间的距离作为参考值计算受到静态或半静态张力作用的物体内产生的张力。
2.根据权利要求1的系统,其中计算设备进一步设置为获取照相机和物体之间距离的相关信息。
3.根据权利要求2的系统,其中计算设备设置为对距离对应变计算的影响进行校正。
4.根据权利要求1的系统,其中照相机相对于物体是可活动的。
5.一种垫圈,用作如权利要求1所述的紧固装置中的物体。
6.一种检测物体内机械张力的方法,包括如下步骤:
-提供对照变化的图案,该图案固定在物体上,而物体为紧固装置的一部分;
-用图像采集设备采集该图案的至少一个图像;
-用图像分析方法对图案进行分析,以确定图案部分的几何中心;
-测定图像采集设备与图案之间的距离;
-利用图像分析和测定的图像采集设备与图案之间的距离,测定至少两个图案部分之间的距离;
-利用参考值获得在无拉伸状态下两个图案部分之间的距离;
-计算物体内的张力,张力为测定的距离和获得的距离的函数。
7.根据权利要求6的方法,进一步包括在物体上的不同位置采集图像的步骤。
CN2008800231329A 2007-07-03 2008-07-03 预拉伸监测方法 Active CN101688769B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE0701628 2007-07-03
SE0701628-0 2007-07-03
SE07016280 2007-07-03
PCT/SE2008/050829 WO2009005468A1 (en) 2007-07-03 2008-07-03 Pre tension monitoring solution

Publications (2)

Publication Number Publication Date
CN101688769A CN101688769A (zh) 2010-03-31
CN101688769B true CN101688769B (zh) 2012-08-29

Family

ID=40226339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800231329A Active CN101688769B (zh) 2007-07-03 2008-07-03 预拉伸监测方法

Country Status (5)

Country Link
US (1) US8391561B2 (zh)
EP (1) EP2162699B1 (zh)
CN (1) CN101688769B (zh)
RU (1) RU2467284C2 (zh)
WO (1) WO2009005468A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8596134B2 (en) * 2011-09-21 2013-12-03 King Fahd University Of Petroleum And Minerals Bolt tension monitoring system
FR2981452B1 (fr) * 2011-10-14 2013-12-20 Lorraine Inst Nat Polytech Dispositif de determination du comportement mecanique local d'une eprouvette de materiau
CN102565072B (zh) * 2011-12-30 2013-12-18 重庆大学 拉伸铝合金板表面裂纹立体视觉在线检测方法
CN103398667B (zh) * 2013-08-06 2015-11-04 温州大学 一种基于光学原理的平面变形快捷测量装置及方法
JP6163410B2 (ja) * 2013-11-18 2017-07-12 ボッシュ株式会社 歪み測定センサ及び軸力測定装置
CN106537087A (zh) 2014-07-28 2017-03-22 伊利诺斯工具制品有限公司 实时视频引伸计
DE102014223670A1 (de) * 2014-11-20 2016-05-25 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Bestimmung einer mechanischen Vorspannung eines Moduls
US9429485B1 (en) * 2015-03-12 2016-08-30 The United States Of America As Represented By The Secretary Of The Navy Bolt shear force sensor
DE102015206613A1 (de) * 2015-04-14 2016-10-20 Aktiebolaget Skf Optische Verformungsmessung von Lagern
US9953408B2 (en) * 2015-11-16 2018-04-24 General Electric Company Methods for monitoring components
CN105865665B (zh) * 2016-03-28 2019-01-29 北京理工大学 一种扩口式管接头的预紧力测量方法及装置
US9719900B1 (en) * 2016-04-26 2017-08-01 Northrop Grumman Systems Corporation Strain-gauged washer for measuring bolt preload
US9964134B1 (en) * 2016-05-03 2018-05-08 Bao Tran Smart IOT sensor having an elongated stress sensor
CN106525315B (zh) * 2016-12-01 2019-07-12 合肥国轩高科动力能源有限公司 一种螺栓紧固状态的检测方法
WO2018103805A1 (en) * 2016-12-09 2018-06-14 Vestas Wind Systems A/S Pre-tensioning of bolts
CN106595497A (zh) * 2017-01-23 2017-04-26 中车建设工程有限公司 建筑物表面裂缝实时监测预警系统及其预警方法
CN107505073B (zh) * 2017-08-10 2020-04-17 成都楠迪科技有限公司 便携式智能扭力测试系统及测试流程
KR101890383B1 (ko) 2017-08-10 2018-08-21 (주)바이브록 정전용량 측정을 이용한 체결부 풀림 통합관리 시스템
EP3483577B1 (en) 2017-11-13 2021-07-28 TensionCam Systems AB System and method for determining tension of a non-living object
KR102070993B1 (ko) * 2018-04-18 2020-01-29 공주대학교 산학협력단 볼트 축력 측정장치 및 방법
EP3705862B1 (en) * 2019-03-05 2023-07-05 Infineon Technologies AG Method and device for monitoring a dicing tape tension
CN112631453B (zh) * 2020-09-16 2024-01-26 安徽鸿程光电有限公司 一种触控装置
JP7419216B2 (ja) 2020-11-19 2024-01-22 株式会社日立製作所 締結部材の状態解析システム及び状態解析方法
JP7405788B2 (ja) 2021-03-26 2023-12-26 株式会社日立製作所 ボルト軸力検査方法及びボルト軸力検査装置
CN115096202B (zh) * 2022-08-26 2022-11-15 苏州华智诚精工科技有限公司 一种圆柱面待测体形变缺陷的检测方法
FR3140424A1 (fr) * 2022-09-29 2024-04-05 Electricite De France Dispositif et procédé de surveillance de l’état de serrage d’un organe de liaison

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726907A (en) * 1995-07-31 1998-03-10 Southwest Research Institute Biaxial non-contacting strain measurement using machine vision
FR2823849A1 (fr) * 2001-04-23 2002-10-25 Lorraine Inst Nat Polytech Dispositif de caracterisation optique du comportement mecanique local d'une structure pouvant presenter des deformations finies non homogenes
FR2835603A1 (fr) * 2002-02-01 2003-08-08 Holo 3 Procede et dispositif de mesure optique du deplacement et/ou de la deformation d'un objet dans au moins une direction

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB748969A (en) * 1953-03-19 1956-05-16 Wingfoot Corp Washers for use in measuring the tension in mine-roof supporting bolts
US3133468A (en) * 1961-03-21 1964-05-19 James D Cumming Tension indicating device
US3718066A (en) * 1970-12-28 1973-02-27 Iit Res Inst Tension indicating fastener
US3823639A (en) * 1972-11-24 1974-07-16 Iit Res Inst Tension indicating fastener
US4322193A (en) * 1980-06-09 1982-03-30 Stahl Keith E Tension gauge
US4805461A (en) * 1987-10-02 1989-02-21 Washington State University Research Foundation, Inc. Transducer and systems for high speed measurement of shock loads
US5216622A (en) * 1990-04-27 1993-06-01 Sps Technologies, Inc. Ultrasonic drive/sense circuitry for automated fastener tightening
BE1006447A3 (nl) * 1992-12-10 1994-08-30 Ocas N V Onderzoekscentrum Voo Meetsysteem geschikt voor een vervormingsanalyse van driedimensionale werkstukken.
US5728944A (en) * 1996-01-17 1998-03-17 The United States Of America As Represented By The Secretary Of The Navy Photoelastic stress sensor
DE19715556B4 (de) * 1997-04-15 2012-05-10 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Anordnung eines Sensorgehäuses an einer Wand
US5945665A (en) * 1997-05-09 1999-08-31 Cidra Corporation Bolt, stud or fastener having an embedded fiber optic Bragg Grating sensor for sensing tensioning strain
JPH1131406A (ja) 1997-07-08 1999-02-02 Iwasaki Electric Co Ltd 埋込型誘導灯
US7467556B2 (en) * 2001-01-29 2008-12-23 Innovation Plus, Llc Thread forming fasteners for ultrasonic load measurement and control
ATE553305T1 (de) * 2001-01-29 2012-04-15 Innovation Plus L L C Lastanzeigeglied mit identifizierungsmarkierung
US6829944B1 (en) * 2001-10-09 2004-12-14 Stuart M. Gleman Bolt tension gauging system
US7024938B2 (en) * 2001-10-09 2006-04-11 Gleman Stuart M Bolt tension gauging system
US20060225484A1 (en) * 2001-10-09 2006-10-12 Gleman Stuart M Bolt tension gauging system
SE0103752L (sv) * 2001-11-13 2003-05-14 Sandvik Ab Roterbart verktyg för spånavskiljande bearbetning jämte skärdel härtill
DE102005000610B3 (de) * 2005-01-03 2006-09-21 Kamax-Werke Rudolf Kellermann Gmbh & Co. Kg Verfahren und Vorrichtung zum Bestimmen der Durchbiegung eines Verbindungselements
US7277021B2 (en) * 2005-01-11 2007-10-02 Wisconsin Alumni Research Foundation Device and method for alerting a runner when a new pair of running shoes is needed
TWI431263B (zh) * 2005-03-28 2014-03-21 Shibaura Mechatronics Corp 應變矽晶圓表面檢查方法及檢查裝置
US7293466B2 (en) * 2005-07-19 2007-11-13 Hitachi, Ltd. Bolt with function of measuring strain
JP5314428B2 (ja) * 2005-12-23 2013-10-16 ジーコデール システムズ アクチボラゲット 測位用パターン
US7377181B2 (en) * 2006-03-10 2008-05-27 Northrop Grumman Corporation In-situ large area optical strain measurement using an encoded dot pattern
US20080176077A1 (en) * 2007-01-23 2008-07-24 The Gillette Company Pattern transferable to skin for optical measurements during shaving
CN101581614B (zh) * 2008-05-12 2012-06-20 鸿富锦精密工业(深圳)有限公司 扭力计承载治具以及扭力测试装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726907A (en) * 1995-07-31 1998-03-10 Southwest Research Institute Biaxial non-contacting strain measurement using machine vision
FR2823849A1 (fr) * 2001-04-23 2002-10-25 Lorraine Inst Nat Polytech Dispositif de caracterisation optique du comportement mecanique local d'une structure pouvant presenter des deformations finies non homogenes
FR2835603A1 (fr) * 2002-02-01 2003-08-08 Holo 3 Procede et dispositif de mesure optique du deplacement et/ou de la deformation d'un objet dans au moins une direction

Also Published As

Publication number Publication date
RU2010103461A (ru) 2011-08-10
US20100208940A1 (en) 2010-08-19
WO2009005468A1 (en) 2009-01-08
RU2467284C2 (ru) 2012-11-20
EP2162699A4 (en) 2011-11-02
CN101688769A (zh) 2010-03-31
EP2162699B1 (en) 2018-08-22
US8391561B2 (en) 2013-03-05
EP2162699A1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
CN101688769B (zh) 预拉伸监测方法
Das et al. A review of some advanced sensors used for health diagnosis of civil engineering structures
US9435702B2 (en) Method and apparatus for optical strain sensing
CN105588669B (zh) 一种轴销式三向测力传感器
US8525979B2 (en) Monitoring device for detecting stress strain and method for using same
US8970845B1 (en) In-situ three-dimensional shape rendering from strain values obtained through optical fiber sensors
Bartilson et al. Target-less computer vision for traffic signal structure vibration studies
US7424832B1 (en) Cable tensiometer for aircraft
CN102498368A (zh) 包括光学应变仪的远程位移传感器的装置及其系统
Huang et al. Real-time monitoring of clamping force of a bolted joint by use of automatic digital image correlation
Loupos et al. Structural health monitoring fiber optic sensors
Ji A computer vision-based approach for structural displacement measurement
RU2749641C1 (ru) Универсальный инерциальный волоконно-оптический акселерометр
Ferreira et al. Shape sensing monitoring system based on fiber-optic strain measurements: laboratory tests
Boccardi et al. The added value of infrared thermography in the measurement of temperature-stress coupled effects
EP3483577B1 (en) System and method for determining tension of a non-living object
Ji et al. A novel image-based approach for structural displacement measurement
CN110849358A (zh) 一种阵列天线相位中心的测量装置、测量方法及安装方法
Kishida et al. Monitoring of tunnel shape using distributed optical fiber sensing techniques
CN113253169A (zh) 一种磁共振安全的旋转编码器及旋转角度检测方法
US20160356660A1 (en) Method and Apparatus for a Structural Monitoring Device Adapted To Be Locatable Within a Tubular Structure
Xie et al. Non-destructive detection of high-strength wind turbine bolt looseness using digital image correlation
Varyshchuk et al. Algorithm for automated diagnosis of object technical state with multimode fiber sensor
Zhan‐feng et al. Strain monitoring of railway bridges using optic fiber sensors
KR100697055B1 (ko) 장대광변형 센서를 사용하여 얻어진 평균변형률을 이용한구조물의 안전성 평가방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200708

Address after: Gothenburg

Patentee after: Tension Cam Systems Inc

Address before: Moenlik, Sweden

Patentee before: GCODER SYSTEMS AB

TR01 Transfer of patent right