CN101653014B - 耳机 - Google Patents

耳机 Download PDF

Info

Publication number
CN101653014B
CN101653014B CN200880009214.8A CN200880009214A CN101653014B CN 101653014 B CN101653014 B CN 101653014B CN 200880009214 A CN200880009214 A CN 200880009214A CN 101653014 B CN101653014 B CN 101653014B
Authority
CN
China
Prior art keywords
signal
earphone
microphone
unit
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200880009214.8A
Other languages
English (en)
Other versions
CN101653014A (zh
Inventor
于尔根·佩西格
比约恩·沃尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sennheiser Electronic GmbH and Co KG
Original Assignee
Sennheiser Electronic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sennheiser Electronic GmbH and Co KG filed Critical Sennheiser Electronic GmbH and Co KG
Publication of CN101653014A publication Critical patent/CN101653014A/zh
Application granted granted Critical
Publication of CN101653014B publication Critical patent/CN101653014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17861Methods, e.g. algorithms; Devices using additional means for damping sound, e.g. using sound absorbing panels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17885General system configurations additionally using a desired external signal, e.g. pass-through audio such as music or speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3016Control strategies, e.g. energy minimization or intensity measurements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3053Speeding up computation or convergence, or decreasing the computational load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Headphones And Earphones (AREA)

Abstract

本发明涉及一种耳机,其具有:用于容纳电声转换器的第一壳体(LK,AK,IK)和用于容纳电声再现转换器(L)的第二壳体(RK,AK,IK),用于记录外部声音的至少一个外部麦克风(M1),用于记录在用户耳朵与第一和/或第二壳体(LK,RK,AK,IK)之间的区域中的声音的至少一个内部麦克风(M2)。此外,该耳机具有数字有源噪音补偿单元(ANR),用于基于通过所述至少一个外部麦克风和所述至少一个内部麦克风记录的声音来进行有源噪音补偿。噪音补偿单元(ANR)具有分析单元(AU),用于分析由外部麦克风和内部麦克风记录的声音以及用于确定所记录的声音的信号类型。此外,噪音补偿单元具有多个信号处理单元(SVE1-SVEn),这些信号处理单元分别构建用于针对信号类型来进行有源噪音补偿。分析单元(AU)选择信号处理单元(SVE1-SVEn)的至少之一用于基于对所记录的声音进行的分析来进行噪音补偿。

Description

耳机
本发明涉及一种耳机。
在头戴式设备或者听说配件中以及在头戴式耳机中使用有源噪音补偿或者“有源噪音降低”ANR已经被充分公开。在此,对有源噪音补偿的调节并未被最大地设计来避免例如反馈噪声,而该反馈噪声此外在耳机与头部不良的或者变化的声学耦合的情况下会出现。
通过将有源噪音补偿在头戴式耳机中的应用中引入数字信号处理,可在噪音补偿单元中实现用于匹配滤波器参数的自适应算法。在此,有源噪音补偿单元可以具有反馈(FB)信号引导路径以及前馈(FF)信号引导路径。在此,对于反馈路径通常使用IMC结构(内模控制结构),以便实现前馈部分FF和反馈部分FB无相互作用的协作。由此,在实验室条件下在人造头部上可以得到可实现的有源衰减的非常好的值。然而在实际用户头部上,该结构证明是部分有问题的。
图1示出了根据现有技术的耳机的原理性构造。耳机具有包围耳朵的罩K,其带有外部和内部麦克风M1和M2以及有源噪音补偿单元ANR1。有源噪音补偿单元ANR1具有作为调节单元的自适应前馈调节器FFF(Z)和滤波适配单元FAE用于适配前馈调节器的滤波器参数。在此,前馈FF和反馈FB噪音降低与IMC(干扰估计)组合。
内部麦克风的信号e(k)或者uMik,i(k)是相对声音(Gegenschall)与干扰d(k)或者的叠加。干扰d(k)在此设为使得其表征外部干扰噪音的部分,在关断调节扬声器W的情况下该干扰噪音出现在内部麦克风的信号中。
调节回路随后借助关断的FB调节器来描述。数学模型或者F^Str(z)形成了次级段S(z)或者FStr(k),它们的传输特性由相对于内部麦克风的信号e(k)或者uMik,i(k)的滤波器WFF(z)(FFF(z))的输出yFF(k)而得到。用于放大以及AD/DA转换所需的元件在此并未示出并且在它们的作用方面在次级段S(z)中予以考虑。自适应FF调节器WFF(z)设计为FIR(有限脉冲响应)滤波器并且根据已知的滤波最小均方(FxLMS)方法来匹配。在该方法中,首先必须从外部麦克风的信号x(k)或者uMik,a(k)中通过次级段的模型来计算信号x’(k),该信号随后在WFF(z)的参数匹配中根据方程
w → FF ( k + 1 ) = w → FF ( k ) + μe ( k ) x ‾ ′ ( k ) - - - ( 1 )
其中 x ‾ ′ ( k ) = [ x ′ ( k ) x ′ ( k - 1 ) . . . x ′ ( k - L + 1 ) ] 2 - - - ( 2 )
来处理。在此,μ是匹配步骤,而L是滤波器长度。在FF路径与FB路径组合的情况下,FF部分yFF(k)通过FB回路。从FF调节器来看,一般地得到失真的次级段,其对应于闭合的FB调节回路的传输特性。
根据图1,前馈FF调节器耦合到IMC-FB路径(带有干扰估计)上。为了估计干扰,与次级段平行的y(k)也针对段的模型给出。在的响应和所测量的内部麦克风的信号e(k)之间的差给出了对干扰d(k)的估计FB调节器RFBd(z)或者FFB(z)于是由产生了相对信号,该信号引起在内部麦克风上对干扰和补偿信号的所希望的消除。在或F^Str(z)与S(z)或者FStr(z)良好一致的情况下,与d(k)或者也良好地一致,使得yFBd(k)实际上仅仅在干扰d(k)中取其起点。FB调节器由此并不对FF调节量yFF(k)作出反应,这最后导致FB路径并不改变从yFF(k)至e(k)的传输特性。由此,能够实现无相互作用的FF/FB组合。
次级段S(z)的特性特别是可以随着耳机在实际的头部上变化的配合紧密度(Sitzungsdichtheit)而强烈波动。在带有干扰估计的调节器中,在来自模型和来自实际的段的信号之间的偏差由FB调节器放大并且又被馈送到FB回路中,这会容易导致不稳定的总体特性。为了在任何情况下防止这种情况,调节器RFBd(z)必须被非常“小心地”设计,这最终导致温和的补偿结果。
由此,本发明的任务是设计一种耳机,其能够实现改进的有源噪音补偿。
该任务通过根据权利要求1的耳机来解决。
由此,设计了一种耳机,其带有用于容纳电声转换器的第一壳体、用于容纳电声再现转换器的第二壳体、用于记录外部声音的至少一个外部麦克风和用于记录在用户耳朵与耳机或者第一和/或第二壳体之间的区域中的声音的至少一个内部麦克风。此外,耳机具有数字有源噪音补偿单元,用于基于通过所述至少一个外部麦克风和所述至少一个内部麦克风记录的声音来进行有源噪音补偿。噪音补偿单元具有分析单元,用于分析由外部麦克风和内部麦克风记录的声音以及用于确定所记录的声音的信号类型。此外,噪音补偿单元具有多个信号处理单元,这些信号处理单元分别被构建为用于针对信号类型来进行有源噪音补偿。分析单元选择信号处理单元中的至少之一用于基于对所记录的声音进行的分析来进行噪音补偿。
此外,本发明还涉及一种耳机,其带有具有第一壳体的第一侧和/或具有第二壳体的第二侧,这些壳体分别用于容纳电声再现转换器。此外,该耳机在耳机的第一和/或第二壳体上具有至少一个外部麦克风用于记录外部声音。此外,该耳机在耳机的第一和/或第二壳体上具有至少一个内部麦克风用于记录在用户耳朵与第一和/或第二壳体之间的区域中的声音。此外,该耳机具有有源噪音补偿单元,用于基于通过所述至少一个外部麦克风和通过所述至少一个内部麦克风记录的声音来进行有源噪音补偿。有源噪音补偿单元被构建为用于基于通过第一侧上的外部麦克风、通过第一侧上的内部麦克风以及通过第二侧上的外部麦克风所记录的声音来进行对于耳机的第一侧的有源噪音补偿。相应地适用于耳机的第二侧的有源噪音补偿。
本发明同样涉及一种用于在耳机上进行有源噪音补偿的方法,该耳机具有用于容纳电声转换器的第一壳体和用于容纳电声转换器的第二壳体、用于记录外部声音的外部麦克风和用于记录在用户耳朵与第一或第二壳体之间的区域中的声音的内部麦克风。有源噪音补偿基于通过外部麦克风和通过内部麦克风记录的声音来进行。由外部麦克风和内部麦克风记录的声音被分析并且确定所记录的声音的信号类型。此外,分别设计了多个信号处理单元用于针对信号类型进行噪音补偿。信号处理单元中的至少之一基于对所记录的声音进行的分析来选择。
本发明涉及的思想是,设计一种带有数字自适应干扰音抑制系统的耳机,该干扰音抑制系统可以借助自适应滤波器来将干扰音补偿与通过耳机的位置预先给定的音响效果匹配。由此,在耳机位置变化的情况下也能够实现ANR系统的最佳功能。特别是在使用眼镜时或者当耳机位置的紧密性由于运动或者由于变化大的头部形状而改变时,这证明是特别有利的。
本发明的其他扩展方案是从属权利要求的主题。
本发明的实施例和优点在下面参照附图进一步描述。
图1示出了根据现有技术的耳机的原理性结构,
图2示出了根据第一实施例的耳机的原理性结构,
图3示出了根据第二实施例的耳机的原理性结构,
图4示出了根据第三实施例的耳机的调节器的框图,
图5示出了根据第四实施例的耳机的原理性结构,
图6示出了根据第五实施例的过程预测产生的视图,以及
图7示出了根据第五实施例的耳机的调节器的框图。
图2示出了根据第一实施例的耳机的原理性结构。耳机在此具有壳体,该壳体带有外罩AK、可选地带有内罩IK、调节扬声器或者电声再现转换器W、外部麦克风M1和内部麦克风M2。外部麦克风M1的信号SM1被转发给第一放大和A/D转换单元VAD1,该单元将信号放大并且将信号SM1进行A/D转换,并且输出数字信号UMik,a(k)。内部麦克风M2的信号SM2被转发给第二放大和A/D转换单元VAD2并且作为数字信号UMik,i(k)输出。第一和第二放大和A/D转换单元的输出信号被输出给分析单元AU,其分析该信号,以便能够将信号与相应的信号类型关联。耳机具有噪音补偿单元ANR用于进行有源噪音补偿或者“有源噪音降低”ANR。有源噪音补偿单元ANR具有分析单元AU以及多个信号处理单元SVE1-SVEn,它们分别被构建为用于针对确定的信号类型进行有源噪音补偿。借助通过分析单元AU进行的对输出信号uMik,a(k)、uMik,i(k)的信号分析,选择或者激活信号处理单元SVE1-SVEn。此外,分析单元AU可以计算权重G,信号处理单元SVE1-SVEn的相应输出信号与该权重加权。信号处理单元SVE1-SVEn的被加权的输出信号相加并且形成调节量y(k),其被输送给放大和D/A转换单元VDA,该单元输出针对调节扬声器W的调节量SL。
外部麦克风M1用于检测外部声音。内部麦克风M2用于检测在耳朵入口附近的声音,即由此检测佩带者耳朵处的声音。有源噪音补偿单元ANR基于外部麦克风M1和内部麦克风M2的被放大和A/D转换的信号来产生用于驱动调节扬声器W的调节量。有源噪音补偿的一个目的是,通过调节量y(k)的调节来将信号uMik,i(k)、即在耳朵入口处的声压最小化。
分析单元AU分析外部麦克风M1和内部麦克风M2的信号,以便检测其中包含的信号类型。随后,激活信号处理单元SVE1-SVEn中的一些,它们分别被构建为用于以最佳的方式处理确定的信号类型,以便进行最佳的噪音补偿。
由此,可以借助分析单元AU来对不同的干扰噪声场景作出反应,并且可以基于干扰噪声的短时信号结构或者长时信号结构以不同的噪音补偿信号处理策略来补偿干扰噪声。这样,第一信号处理单元SVE1例如可以被构建为用于处理周期信号,而第二信号处理单元SVE2可以处理随机信号,以便能够实现相应的噪音补偿。第一信号处理单元例如可以补偿周期性出现的干扰,其方式是可以预测将来的干扰过程并且可以在补偿时考虑该预测。而第二信号处理单元SVE2仅仅分析直至当前时刻的信号的过程,以便产生补偿信号。
通过针对多种信号类型设计相应的信号处理单元SVE1-SVEn(这些信号处理单元针对恰好是该信号类型的特定处理而设计),可以得到最优的噪音补偿。然而在此重要的是,分析单元AU识别出不同的信号类型(例如宽带的、噪声式的、脉冲式的、周期性的等等),并且激励信号处理单元SVE1-SVEn中的相应单元。不同的信号处理单元特别是被构建为用于进行不同的噪音补偿算法。在此,不同的信号处理单元可以并行地或者串行地工作。不同信号处理单元的激励通过分析单元基于所检测的输入信号的信号类型来进行。分析单元AU也可以并行地激励信号处理单元中的多个,并且设置相应的输出信号的相应权重。
在信号处理单元SVE1-SVEn中被处理的算法是非线性的并且时变的。然而为了避免耦合的信号处理单元之间的相互作用,分析单元AU被构建为用于执行这些相互作用(例如当总干扰噪声降低比单个干扰噪声降低小得多时),并且必要时在干扰情况下影响各个信号处理单元的协作。为此,有源噪音补偿单元的输出信号y(k)被反馈到分析单元AU。
图3示出了根据第二实施例的耳机的原理性结构。如在第一实施例中那样,耳机具有壳体、调节扬声器或者电声再现转换器W、外部麦克风M1和内部麦克风M2。外部麦克风M1和内部麦克风M2的信号SM1、SM2通过第一放大和A/D转换单元和第二放大和A/D转换单元VAD1、VAD2(未示出)放大和A/D转换。根据第二实施例的有源噪声补偿的调节基于自适应宽带前馈/反馈组合。耳机具有静态内部调节回路SIR,该回路包括调节段FStr(z)和反馈路径FFB(z)。对此所需的调节段通过传输特性FStr(z)(输入信号:y(k)和输出信号uMik,i(k))来限定。此外,存在前馈路径以及反馈路径。前馈路径具有滤波器FFF(z),其由外部麦克风M1的放大的和A/D转换的信号uMik,a(k)提供调节量的成分yFF(k)。反馈路径具有另一滤波器FFB(z),其由内部麦克风M2的放大的和A/D转换的信号提供用于调节量的成分yFB(k)。在此,从调节量的成分yFF(k)减去反馈路径的调节量的成分yFB(k),以便得到总调节量y(k)。
在前馈路径中的滤波器FFF(z)优选构建为自适应FIR(有限脉冲响应)滤波器。优选的是,在此滤波器参数与当前的情况匹配。这例如可以通过分析外部声音uMik,a(k)和内部声音uMik,i(k)基于优化算法来实现。前馈滤波器的滤波器参数的适配优选在滤波器适配单元FAE中进行。在此,可以在每个采样步骤中对前馈滤波器FFF(z)的参数进行修改。滤波器适配单元具有外部声音uMik,a(k)和内部声音uMik,i(k)作为输入量,并且输出用于前馈滤波器FFF(z)的滤波器参数值。为此,滤波器适配单元FAE具有模型单元ME,在该模型单元中存储有调节段FStr(z)的数学模型F^Str*(z)。根据图1的现有技术的内部调节回路具有次级段S(z)或FStr(z)、次级段的模型F^Str(z)和反馈调节器FFB1(z)并且由此在内部调节回路中进行调节段的估计,而在根据第二实施例的调节器中省去了内部调节回路中的段的估计。为此,存储在模型单元ME1中的调节段的数学模型与新的内部调节回路匹配。在模型单元ME中基于该匹配的数学模型和输入量(外部声音uMik,a(k))形成输出信号uMik,a’(k)。此外,滤波器适配单元FAE具有用于执行LMS(最小均方)方法的单元LMS,其被构建为用于将模型单元的输出信号的旧值与内部声音uMik,i(k)的当前值关联,以便计算前馈滤波器的新参数值。
存储在模型单元ME1中的数学模型对应于以下等式:
F^Str*(z)=FStr(z)/(1+FStr(z)*FFB1(z))
通过在图3中示出的有源噪音补偿单元可以保证没有调节段的模型直接位于信号路径中。仅仅在滤波器适配单元中设置了匹配的模型用于滤波器参数的适配。由此,设计了带有调节段和反馈路径的调节回路。通过该构型,调节器的稳定性分析比在根据图1的调节器情况下更为简单。
存储在模型单元ME中的数学模型考虑了反馈路径FFB(z),使得能够实现自适应的前馈路径与反馈路径的组合而无需对干扰进行容易出错的估计。反馈滤波器FFB(z)根据图3并非自适应地构建。
对此可替选地,针对反馈滤波器FFB(z)可以预先确定有限数目的不同参数组,这些参数组分别针对传输段的确定区域而匹配或者构建。在工作期间,基于传输段的特性在这些参数组之间切换。在模型单元ME中可以针对这些参数组中的每个来确定和存储数学模型。
图4示出了根据第三实施例的调节器。根据第三实施例的调节器基于根据图3的调节器。在此,滤波器适配单元FAE还具有两个高通滤波器HP。在图4中所示的调节器特别是用于频率选择性的适配。在信号UMik,i(k)在滤波器适配单元中经历优化算法之前,在高通滤波器HP中进行高通滤波,使得例如由于头部运动而形成的低频被滤除。然而为了维持通过滤波器适配单元FAE执行的对前馈滤波器FFF(z)的参数的适配,将另一高通HP设置在LMS单元之前。两个高通HP为此相同地构建。
通过根据图4的调节器,滤波器适配由此可以针对所希望的频率范围来构建。替代高通滤波器,也可以设置另一滤波器例如带通滤波器,以便针对适配设计确定的频率范围。借助图4中所示的调节器可以补偿对ANR的负面影响,这些负面影响是由于耳机佩戴者头部和耳机之间的运动而出现的。
由于运动而出现的、在头部和耳机之间的加速会引起耳机内部中的压力波动,这些压力波动典型地具有在大约15Hz以下的低频。尽管这些频率不能被听见,然而它们形成高的幅度并且可以被内部麦克风作为声学信号的部分而检测到。在用于前馈滤波器的适配算法中,通常希望内部声音uMik,i(k)的能量最小。然而由于低频会具有高的幅度,所以内部声音uMik,i(k)的能量含量会很大程度上由低频的压力波动确定。因此,适配算法尝试将前馈滤波器FFF(z)匹配,使得补偿由于运动而引起的信号。然而与此不同,前馈滤波器的输出信号yFF(k)仅仅通过过滤外部麦克风的信号uMik,a(k)来产生。然而,由于运动而形成的压力波动首先出现在耳机的内部,使得外部麦克风的信号并不具有该部分并且不能实现在前馈路径中的补偿。
在图4中示出的调节器同样可以使用在头戴式设备或者听说配件中,其中可以馈入有用信号u音频输入(k)。该信号例如可以是通信信号。有用信号被直接加到用于激励扬声器W的调节量y(k)上,使得所希望的有用信号可以通过转换器再现。为了防止有用信号被认为是干扰而被相应地抑制,该有用信号被并行地施加到带有传输段的数学模型的第二模型单元ME2上并且从内部声音uMik,i(k)中减去信号的所计算出的有用部分。
然而当在传输段与实际传输段的模型之间出现偏差时(例如由于头部和耳机之间的运动),则该偏差可以通过有源噪音补偿而解释为干扰。然而因为有源噪音补偿基于存储在第二模型单元中的调节段的模型F^Str(z),所以有用信号的传输特性与数学模型匹配。这导致耳机的变化的位置由于存在有源噪音补偿而比没有有源噪音补偿时更少地被用户觉察。
为了避免由于有源噪音补偿导致扬声器的过驱动(Uebersteuerung),在内部调节回路的反馈路径中设置了减低单元RE。减低单元RE在此构建为使得其通常具有值1。然而当反馈路径的信号yFB(k)达到过驱动边界时,则将减低单元的值减小,使得降低了反馈部分的放大。由此,减小了有源噪音补偿的作用,而没有将过驱动噪声输送给扬声器。减低单元RE此外优选具有可调节的时间常数,由此当不存在另外的过驱动危险时减低单元的因子又可以接近值1。
除此之外或者可替选地,滤波器适配单元FAE也可以被匹配,因为信号uMik,a(k)的匹配导致前馈滤波器的参数增大。因此,LMS单元LMS1设置有所谓的“泄漏”因子。当不存在扬声器过驱动的危险时,“泄漏”因子为1。在根据图4的LMS单元LMS1中,参数的目前的值在每个采样步骤中在修改部分与其相加之前都与“泄漏”因子相乘。当调节量上的前馈路径的成分yFF(k)接近过驱动边界时,“泄漏”因子减小。通过与减小的“泄漏”因子相乘,将FIR参数朝着零的方向减小,使得yFF(k)的幅度不超过过驱动边界。与在减低单元RE中类似地,可以针对“泄漏”因子设计可调节的时间常数,使得当不存在过驱动危险时“泄漏”因子接近因子1。
图5示出了根据第四实施例的耳机的原理性结构。在此,耳机具有壳体,该壳体带有左罩LK和右罩RK。此外,设置了外部麦克风M1L、M1R和内部麦克风M2L、M2R以及两个转换器W。在左罩上的外部麦克风M1L的信号uMik,aL(k)和在右罩上的外部麦克风M1R的信号被输送给调节装置的左边和右边支路。然而在图5中为了表示的目的仅仅示出了用于左边耳机的补偿。对于右边耳机的补偿与此类似地进行。
由此,调节量yFF(k)由左部分yFFL(k)(来自左边的外部麦克风)和右部分yFFR(k)(来自右边的外部麦克风)组成。两个滤波器FFFL(z)和FFFR(z)构建为自适应FIR滤波器。滤波器FFFL(z)考虑信号uMik,aL(k)和uMik,i(k),即左边的外部麦克风的信号和左边的内部麦克风的信号。在滤波器FFFR(z)的情况下,右边的外部麦克风M1R的信号被以左边的内部麦克风M2L的信号uMik,i L(k)来处理。通过这种组合,可以实现改进的补偿结果。当简单的前馈处理不能实现所希望的目的时,这特别有效,因为例如在相对侧的超声波检查时出现的那样,当信号已经到达内部麦克风时,信号才抵达耳机的外部麦克风。此外,这具有的优点是,在第二侧即相对侧上所使用的外部麦克风比在第一侧即自身侧上的麦克风更早地检测到干扰信号,使得增大了反应时间。
除了在图5中所示的构型之外同样可以设置前馈路径。
图6示出了根据第五实施例的过程预测产生的视图。如果要在具有占主导的周期性信号例如发电机噪声、马达噪音、涡轮机噪声的应用领域中进行有源噪音补偿,则当在声学上将延迟一个周期的信号反相地加到原始声音时可以特别有效地降低噪音。然而为了能够产生该延迟的信号,需要精确地识别占主导的周期性信号。这例如在图1中所示的分析单元中实现。在此,例如可以确定周期长度,以便随后由外部麦克风上的信号的以前周期来产生平均的分布u平均(k)。当干扰声音例如包含长度为100个采样步的周期性信号时,新的信号由100个值组成,其中这100个值中的每个都是所测量的采样值的平均值,这些采样值是在100、200或者300等等之前被测量的。在图6中所示的信号u平均(k)由此是包括所有谐波的干扰信号的周期性成分。在此要指出的是,附加地存在的随机部分通过平均而被去除。由此,信号u平均(k)说明了干扰信号的将来变化。
根据第五实施例的过程预测例如可以在根据第一实施例的信号处理单元之一中实施。
图7示出了用于根据第五实施例的周期性信号的调节器的框图。调节器具有分析和平均单元AM、信号产生单元SE以及滤波器FPer(z)。循环持续的信号u平均(k)用作滤波器FPer(z)的输入信号,以便构建针对周期性成分的相对信号yper(k)。随后,相对信号yper(k)与调节量的另外的部分叠加。
通过图7中所示的信号处理,滤波器FPer(z)可以使用已知输入信号的将来值,使得该滤波器可以在完全检测到干扰声音之前开始产生相对声音(Gegenschall)。这特别是在较高频率的情况下是有利的。
虽然根据第五实施例仅仅描述了基于前馈路径中以前周期的平均,但这同样可以在分析反馈路径上的内部麦克风的信号uMik,i(k)时使用。
根据图7所描述的结构例如可以在图2中所描述的有源噪音补偿设备的结构中实施为信号处理单元SVE1-SVEn之一。
根据本发明的第六实施例,耳机具有壳体,该壳体带有内罩IK和外罩AK。这例如在图2中进行了描述。在此,外罩AK实现无源噪音防护的功能,其方式是将噪音以无源方式衰减。外罩AK可以在声学上在无源噪音减小例如紧密配合、包围耳朵的内部体积、重的材料和厚的壁厚方面进行优化。内罩IK例如可以贴合耳朵地构建,并且由此可以实现较小的内部体积,其能够实现对有源噪音补偿与壁W的协调更有利的初始条件。在此内罩IK优选可移动地固定在外罩AK上,使得其能够将其位置与不同佩戴者的耳朵形状匹配。此外优选的是实现了在外罩和内罩之间的声学去耦。
通过两个去耦的罩能够在单个的耳机中实现良好的无源衰减以及对于有源噪音补偿的有利的先决条件。
可选地,外罩可以具有开口100,这些开口例如可以用于降低罩的内部中的压力波动,这些压力波动会由于头部运动而产生。通过开口100可以泄漏过压和欠压。这些孔主要对于低频是重要的,而可听见的频率部分保持不变。通过实施开口100可以调节如下的频率范围:在该频率范围中开口影响罩的内部的压力。
根据第七实施例,将内部麦克风设置为距调节扬声器W预先给定的距离。
根据现有技术的麦克风尽可能紧密地置于扬声器上,以便减少由于距扬声器W和内部麦克风的预先确定的距离以及由于声速而导致的静寂时间(Totzeit),根据第八实施例的内部麦克风尽可能靠近耳朵入口地放置。进行根据现有技术的扬声器和内部麦克风之间的距离的减少,以便对抗在调节段的输入信号y(k)和输出信号uMik,i(k)之间的相位的漂移。然而因为根据第八实施例要减少内部声音uMik,i(k)中的能量,以便降低在耳膜上的噪音,因此有意义的是将内部麦克风尽可能靠近耳朵入口地放置。
例如,内部麦克风可以设置在支承于耳道中的耳塞中,而带有外部麦克风的耳机支承在头部上。
如前面已经阐述的那样,内部麦克风在耳道附近的布置不利地作用于反馈路径中较高频率的补偿。然而当在耳朵入口附近耳机带有内部麦克风的情况下进行根据图4所描述的对滤波器参数的频率选择性适配,则可以补偿上面描述的补偿不足。为此,反馈路径可以针对低频(在这些频率情况下静寂时间并不十分重要)来设计,而前馈路径用于对高频进行补偿。
根据第七实施例的内部麦克风的设计例如可以与图4中所示的调节器结合。
根据第八实施例,反馈路径并不是数字地构建而是模拟地构建。这尤其具有的优点是,不再需要A/D转换和D/A转换,这使得通过反馈路径的补偿更快并且由此更好。此外,抗噪声滤波器(Antischall-Filter)的模拟实现具有较小的传输时间、较低的复杂性、较小的能量消耗以及较低的成本。此外,可以设计反馈路径的模拟实现,其中以数字方式控制滤波器特性。
由此可以实现混合的构型,其中滤波器模拟地构建,而滤波器的适配(滤波器参数的改变)通过数字监视单元来进行。

Claims (4)

1.一种耳机,其包括:
具有内罩(IK)和外罩(AK)的壳体,
设置在内罩(IK)内的电声转换器(D),
其中外罩(AK)能够通过利用与用户头部紧密配合实现无源噪音防护,
其中所述外罩(AK)包括包围耳朵的内部体积,
其中所述内罩(IK)能够贴合用户耳朵构建,
其中所述内罩(IK)可移动地固定在所述外罩(AK)上,
其中在所述外罩(AK)与所述内罩(IK)之间存在声学去耦,
其中所述外罩(AK)包括用于降低罩的内部中的压力波动的开口(100)。
2.根据权利要求1所述的耳机,其中在内罩(IK)内设置有第一麦克风(M2),其中来自内部麦克风(M2)的信号用作有源噪音补偿的反馈信息。
3.根据权利要求2所述的耳机,其还包括用于记录外部声音的外部麦克风(M1)。
4.根据权利要求1、2或3所述的耳机,其中有源噪音补偿在数字域中进行。
CN200880009214.8A 2007-03-19 2008-03-19 耳机 Active CN101653014B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007013719.4A DE102007013719B4 (de) 2007-03-19 2007-03-19 Hörer
DE102007013719.4 2007-03-19
PCT/EP2008/053289 WO2008113822A2 (de) 2007-03-19 2008-03-19 Hörer

Publications (2)

Publication Number Publication Date
CN101653014A CN101653014A (zh) 2010-02-17
CN101653014B true CN101653014B (zh) 2014-09-10

Family

ID=39493313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880009214.8A Active CN101653014B (zh) 2007-03-19 2008-03-19 耳机

Country Status (5)

Country Link
US (1) US20100166203A1 (zh)
EP (1) EP2138007A2 (zh)
CN (1) CN101653014B (zh)
DE (1) DE102007013719B4 (zh)
WO (1) WO2008113822A2 (zh)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526944C2 (sv) 2003-11-27 2005-11-22 Peltor Ab Hörselskydd
SE528515C2 (sv) 2005-04-29 2006-12-05 Peltor Ab Hörselkåpa med mikrofonanordning
SE528519C2 (sv) 2005-04-29 2006-12-05 Peltor Ab Hörselkåpa
SE528514C2 (sv) 2005-04-29 2006-12-05 Peltor Ab Hörselkåpa
SE530023C2 (sv) 2006-06-20 2008-02-12 Peltor Ab Hörselkåpa
US8238590B2 (en) 2008-03-07 2012-08-07 Bose Corporation Automated audio source control based on audio output device placement detection
SE532379C2 (sv) 2008-03-26 2009-12-29 3M Svenska Ab Hörselskydd innefattande behandlingsanordningar för behandling av repeterbart och icke-repeterbart buller
SE531656E5 (sv) 2008-05-12 2011-04-26 3M Svenska Ab Hörselskydd
DE102008050425A1 (de) * 2008-10-08 2010-04-15 Sennheiser Electronic Gmbh & Co. Kg Vorrichtung zur aktiven Reduzierung von Fremdschall
DE102009008550A1 (de) * 2009-02-12 2010-08-19 Sennheiser Electronic Gmbh & Co. Kg Kommunikations-und/oder Unterhaltungssystem
WO2010117714A1 (en) * 2009-03-30 2010-10-14 Bose Corporation Personal acoustic device position determination
US8243946B2 (en) 2009-03-30 2012-08-14 Bose Corporation Personal acoustic device position determination
US8238567B2 (en) 2009-03-30 2012-08-07 Bose Corporation Personal acoustic device position determination
US8699719B2 (en) 2009-03-30 2014-04-15 Bose Corporation Personal acoustic device position determination
US8238570B2 (en) 2009-03-30 2012-08-07 Bose Corporation Personal acoustic device position determination
US8090114B2 (en) 2009-04-28 2012-01-03 Bose Corporation Convertible filter
US8611553B2 (en) 2010-03-30 2013-12-17 Bose Corporation ANR instability detection
JP5497891B2 (ja) * 2009-04-28 2014-05-21 ボーズ・コーポレーション 音依存のanr信号処理調整
US8144890B2 (en) 2009-04-28 2012-03-27 Bose Corporation ANR settings boot loading
US8280066B2 (en) 2009-04-28 2012-10-02 Bose Corporation Binaural feedforward-based ANR
US8073151B2 (en) 2009-04-28 2011-12-06 Bose Corporation Dynamically configurable ANR filter block topology
US8073150B2 (en) 2009-04-28 2011-12-06 Bose Corporation Dynamically configurable ANR signal processing topology
US8165313B2 (en) * 2009-04-28 2012-04-24 Bose Corporation ANR settings triple-buffering
US8184822B2 (en) * 2009-04-28 2012-05-22 Bose Corporation ANR signal processing topology
US8532310B2 (en) 2010-03-30 2013-09-10 Bose Corporation Frequency-dependent ANR reference sound compression
EP2584559B1 (en) * 2009-04-28 2015-10-28 Bose Corporation Personal acoustic noise reducing circuit
DE202009009804U1 (de) * 2009-07-17 2009-10-29 Sennheiser Electronic Gmbh & Co. Kg Headset und Hörer
CN102238448A (zh) * 2010-04-27 2011-11-09 北京东方迪码科技有限公司 多场景模式化数字掩声防护耳罩
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
WO2012075343A2 (en) 2010-12-03 2012-06-07 Cirrus Logic, Inc. Oversight control of an adaptive noise canceler in a personal audio device
DE102011013343B4 (de) 2011-03-08 2012-12-13 Austriamicrosystems Ag Regelsystem für aktive Rauschunterdrückung sowie Verfahren zur aktiven Rauschunterdrückung
US9214150B2 (en) 2011-06-03 2015-12-15 Cirrus Logic, Inc. Continuous adaptation of secondary path adaptive response in noise-canceling personal audio devices
US8948407B2 (en) 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9076431B2 (en) 2011-06-03 2015-07-07 Cirrus Logic, Inc. Filter architecture for an adaptive noise canceler in a personal audio device
US8848936B2 (en) 2011-06-03 2014-09-30 Cirrus Logic, Inc. Speaker damage prevention in adaptive noise-canceling personal audio devices
US8958571B2 (en) * 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9325821B1 (en) * 2011-09-30 2016-04-26 Cirrus Logic, Inc. Sidetone management in an adaptive noise canceling (ANC) system including secondary path modeling
GB201205275D0 (en) 2012-03-26 2012-05-09 Soundchip Sa Media/communications system
US9142205B2 (en) 2012-04-26 2015-09-22 Cirrus Logic, Inc. Leakage-modeling adaptive noise canceling for earspeakers
US9014387B2 (en) 2012-04-26 2015-04-21 Cirrus Logic, Inc. Coordinated control of adaptive noise cancellation (ANC) among earspeaker channels
US9319781B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Frequency and direction-dependent ambient sound handling in personal audio devices having adaptive noise cancellation (ANC)
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9076427B2 (en) 2012-05-10 2015-07-07 Cirrus Logic, Inc. Error-signal content controlled adaptation of secondary and leakage path models in noise-canceling personal audio devices
US9082387B2 (en) 2012-05-10 2015-07-14 Cirrus Logic, Inc. Noise burst adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9107010B2 (en) 2013-02-08 2015-08-11 Cirrus Logic, Inc. Ambient noise root mean square (RMS) detector
US9369798B1 (en) 2013-03-12 2016-06-14 Cirrus Logic, Inc. Internal dynamic range control in an adaptive noise cancellation (ANC) system
US9106989B2 (en) 2013-03-13 2015-08-11 Cirrus Logic, Inc. Adaptive-noise canceling (ANC) effectiveness estimation and correction in a personal audio device
US9215749B2 (en) 2013-03-14 2015-12-15 Cirrus Logic, Inc. Reducing an acoustic intensity vector with adaptive noise cancellation with two error microphones
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9324311B1 (en) 2013-03-15 2016-04-26 Cirrus Logic, Inc. Robust adaptive noise canceling (ANC) in a personal audio device
US9635480B2 (en) 2013-03-15 2017-04-25 Cirrus Logic, Inc. Speaker impedance monitoring
US9208771B2 (en) 2013-03-15 2015-12-08 Cirrus Logic, Inc. Ambient noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9467776B2 (en) 2013-03-15 2016-10-11 Cirrus Logic, Inc. Monitoring of speaker impedance to detect pressure applied between mobile device and ear
US10206032B2 (en) 2013-04-10 2019-02-12 Cirrus Logic, Inc. Systems and methods for multi-mode adaptive noise cancellation for audio headsets
US9066176B2 (en) 2013-04-15 2015-06-23 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation including dynamic bias of coefficients of an adaptive noise cancellation system
US9462376B2 (en) 2013-04-16 2016-10-04 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9460701B2 (en) 2013-04-17 2016-10-04 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by biasing anti-noise level
US9478210B2 (en) 2013-04-17 2016-10-25 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US9264808B2 (en) 2013-06-14 2016-02-16 Cirrus Logic, Inc. Systems and methods for detection and cancellation of narrow-band noise
DE102013216133A1 (de) 2013-08-14 2015-02-19 Sennheiser Electronic Gmbh & Co. Kg Hörer oder Headset
US9392364B1 (en) 2013-08-15 2016-07-12 Cirrus Logic, Inc. Virtual microphone for adaptive noise cancellation in personal audio devices
US9666176B2 (en) 2013-09-13 2017-05-30 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by adaptively shaping internal white noise to train a secondary path
US9620101B1 (en) 2013-10-08 2017-04-11 Cirrus Logic, Inc. Systems and methods for maintaining playback fidelity in an audio system with adaptive noise cancellation
US9704472B2 (en) 2013-12-10 2017-07-11 Cirrus Logic, Inc. Systems and methods for sharing secondary path information between audio channels in an adaptive noise cancellation system
US10219071B2 (en) 2013-12-10 2019-02-26 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
US10382864B2 (en) 2013-12-10 2019-08-13 Cirrus Logic, Inc. Systems and methods for providing adaptive playback equalization in an audio device
US9369557B2 (en) 2014-03-05 2016-06-14 Cirrus Logic, Inc. Frequency-dependent sidetone calibration
US9479860B2 (en) 2014-03-07 2016-10-25 Cirrus Logic, Inc. Systems and methods for enhancing performance of audio transducer based on detection of transducer status
US9648410B1 (en) 2014-03-12 2017-05-09 Cirrus Logic, Inc. Control of audio output of headphone earbuds based on the environment around the headphone earbuds
US9319784B2 (en) 2014-04-14 2016-04-19 Cirrus Logic, Inc. Frequency-shaped noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
US9609416B2 (en) 2014-06-09 2017-03-28 Cirrus Logic, Inc. Headphone responsive to optical signaling
US9620142B2 (en) * 2014-06-13 2017-04-11 Bose Corporation Self-voice feedback in communications headsets
US10181315B2 (en) 2014-06-13 2019-01-15 Cirrus Logic, Inc. Systems and methods for selectively enabling and disabling adaptation of an adaptive noise cancellation system
US9478212B1 (en) 2014-09-03 2016-10-25 Cirrus Logic, Inc. Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US9552805B2 (en) 2014-12-19 2017-01-24 Cirrus Logic, Inc. Systems and methods for performance and stability control for feedback adaptive noise cancellation
US9905216B2 (en) 2015-03-13 2018-02-27 Bose Corporation Voice sensing using multiple microphones
JP2016177204A (ja) * 2015-03-20 2016-10-06 ヤマハ株式会社 サウンドマスキング装置
WO2017029550A1 (en) 2015-08-20 2017-02-23 Cirrus Logic International Semiconductor Ltd Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
US9578415B1 (en) 2015-08-21 2017-02-21 Cirrus Logic, Inc. Hybrid adaptive noise cancellation system with filtered error microphone signal
CN105187993B (zh) * 2015-10-15 2017-08-01 深圳东方酷音信息技术有限公司 一种三维立体声耳机装置及还原方法
US10165345B2 (en) * 2016-01-14 2018-12-25 Nura Holdings Pty Ltd Headphones with combined ear-cup and ear-bud
US10013966B2 (en) 2016-03-15 2018-07-03 Cirrus Logic, Inc. Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
US9860626B2 (en) 2016-05-18 2018-01-02 Bose Corporation On/off head detection of personal acoustic device
US9838812B1 (en) 2016-11-03 2017-12-05 Bose Corporation On/off head detection of personal acoustic device using an earpiece microphone
US10536763B2 (en) 2017-02-22 2020-01-14 Nura Holding Pty Ltd Headphone ventilation
WO2019079948A1 (en) * 2017-10-23 2019-05-02 Goertek Inc. HEADER AND METHOD FOR PERFORMING AN ADAPTIVE SELF-ACCORD FOR A HEADPHONES
KR102406572B1 (ko) * 2018-07-17 2022-06-08 삼성전자주식회사 오디오 신호를 처리하는 오디오 장치 및 오디오 신호 처리 방법
CN111817643B (zh) * 2020-06-24 2024-05-17 包头长安永磁电机有限公司 一种基于麦克风阵列噪声监测的电机降噪系统及方法
CN112969123B (zh) * 2021-04-13 2024-01-09 深圳市美恩微电子有限公司 一种降噪型音乐蓝牙耳机及其降噪方法
CN113132846B (zh) * 2021-04-13 2024-05-10 北京安声科技有限公司 耳机的主动降噪方法及装置、半入耳式主动降噪耳机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661901B1 (en) * 2000-09-01 2003-12-09 Nacre As Ear terminal with microphone for natural voice rendition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT295618B (de) * 1969-04-25 1972-01-10 Akg Akustische Kino Geraete Kopfhörer, insbesondere zur stereophonischen Wiedergabe von Schallereignissen
US3984885A (en) * 1974-03-15 1976-10-12 Matsushita Electric Industrial Co., Ltd. 4-Channel headphones
US5097510A (en) * 1989-11-07 1992-03-17 Gs Systems, Inc. Artificial intelligence pattern-recognition-based noise reduction system for speech processing
US4987598A (en) * 1990-05-03 1991-01-22 Nelson Industries Active acoustic attenuation system with overall modeling
WO1993026085A1 (en) * 1992-06-05 1993-12-23 Noise Cancellation Technologies Active/passive headset with speech filter
US5278913A (en) * 1992-07-28 1994-01-11 Nelson Industries, Inc. Active acoustic attenuation system with power limiting
US5815582A (en) * 1994-12-02 1998-09-29 Noise Cancellation Technologies, Inc. Active plus selective headset
US5806025A (en) * 1996-08-07 1998-09-08 U S West, Inc. Method and system for adaptive filtering of speech signals using signal-to-noise ratio to choose subband filter bank
US7292704B2 (en) * 2003-10-27 2007-11-06 Wayne Lederer Noise attenuating headset
US20070041589A1 (en) * 2005-08-17 2007-02-22 Gennum Corporation System and method for providing environmental specific noise reduction algorithms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661901B1 (en) * 2000-09-01 2003-12-09 Nacre As Ear terminal with microphone for natural voice rendition

Also Published As

Publication number Publication date
CN101653014A (zh) 2010-02-17
WO2008113822A3 (de) 2009-01-08
DE102007013719A1 (de) 2008-09-25
WO2008113822A2 (de) 2008-09-25
EP2138007A2 (de) 2009-12-30
DE102007013719B4 (de) 2015-10-29
US20100166203A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
CN101653014B (zh) 耳机
KR102292773B1 (ko) 개인용 오디오 장치의 적어도 일부를 구현하기 위한 집적 회로 및 변환기의 부근에서의 주변 오디오 사운드들을 소거하기 위한 방법
CN106878895B (zh) 包括改进的反馈抵消系统的听力装置
CN101577847B (zh) 信号处理设备和信号处理方法
US8804979B2 (en) Method of determining parameters in an adaptive audio processing algorithm and an audio processing system
CN102947685B (zh) 用于减少环境噪声对收听者的影响的方法和装置
EP2736271B1 (en) A method of controlling an update algorithm of an adaptive feedback estimation system and a de-correlation unit
CN101184345B (zh) 噪声降低装置、方法以及噪声降低音频输出装置
Liebich et al. Signal processing challenges for active noise cancellation headphones
CN1951148B (zh) 用于限制扬声器位移的系统
CN106507258B (zh) 一种听力装置及其运行方法
EP2284831A1 (en) Active noise reduction method using perceptual masking
CN103024633B (zh) 确定音频处理系统的系统参数的方法及相应音频处理系统
EP2677765B1 (en) Headphone for active noise suppression
US20010036283A1 (en) Active noise reduction system
CN106210986A (zh) 主动降噪系统
CN103959814A (zh) 耳孔可佩戴式声音收集设备,信号处理设备和声音收集方法
US8953818B2 (en) Spectral band substitution to avoid howls and sub-oscillation
JP2000152374A (ja) 自動スピ―カ・イコライザ
US8693717B2 (en) Method for compensating for an interference sound in a hearing apparatus, hearing apparatus, and method for adjusting a hearing apparatus
CN105491495A (zh) 基于确定性序列的反馈估计
KR20220110294A (ko) 노이즈 제어를 위한 시스템들 및 방법들
JP2010268188A (ja) フィードバック型ノイズキャンセリングヘッドホン
CN107666637B (zh) 自调式主动噪声消除方法、系统及耳机装置
Taringoo et al. Analysis of effort constraint algorithm in active noise control systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant