CN101647173B - 在电力分配系统中阻尼多个模式的电磁振荡 - Google Patents

在电力分配系统中阻尼多个模式的电磁振荡 Download PDF

Info

Publication number
CN101647173B
CN101647173B CN2008800103388A CN200880010338A CN101647173B CN 101647173 B CN101647173 B CN 101647173B CN 2008800103388 A CN2008800103388 A CN 2008800103388A CN 200880010338 A CN200880010338 A CN 200880010338A CN 101647173 B CN101647173 B CN 101647173B
Authority
CN
China
Prior art keywords
controller
damping
oscillation
mode
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800103388A
Other languages
English (en)
Other versions
CN101647173A (zh
Inventor
P·科巴
M·拉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland filed Critical ABB Research Ltd Switzerland
Publication of CN101647173A publication Critical patent/CN101647173A/zh
Application granted granted Critical
Publication of CN101647173B publication Critical patent/CN101647173B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/242Arrangements for preventing or reducing oscillations of power in networks using phasor measuring units [PMU]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明涉及互联多个发电机与消费者的电力系统中阻尼多模电磁振荡。描述了具有相量测量单元(PMU)和功率振荡阻尼器(POD)控制器的、用于阻尼这样的振荡的控制器。每个振荡模式信号被阻尼,然后被叠加,以便得出控制信号。反馈控制器被用来把控制信号反馈到电力系统中的功率流控制设备。

Description

在电力分配系统中阻尼多个模式的电磁振荡
技术领域
本发明涉及在互联多个发电机与消费者的电力系统中的阻尼多模电磁振荡的领域。
背景技术
随着电力市场正在进行的衰退,从远距离发电机到本地消费者的负荷传输和电力托送已成为普通的实践。由于在公用事业与对于资产最佳化的需要之间的竞争的结果,增加的电功率量通过现有的网络被发送,必定引起拥塞、传输瓶颈和/或电力传输系统的部件的振荡。在这方面,电力传输网络是高度动态的。总的来说,在包括若干交流发电机的电力系统中的电磁振荡具有小于几Hz的频率,并且被认为只要它们衰变(decay)就是可接受的。它们是由系统负荷的正常的微小改变引发的,而且它们是任何电力系统的特性。
然而,当例如由于发电机、负荷和/或传输线的连接或断连带来的功率流的新分布的原因改变了电力系统的工作点时,可能出现阻尼不足的振荡。同样地,若干现有电力网络的互联,即使电力网络在它们互联之前没有单独地呈现任何阻尼差的振荡,也可能引起阻尼不足的振荡。在这些情形下,几MW的传输功率的增加可能造成在稳定振荡与不稳定振荡之间的差别,不稳定振荡具有使得系统坍塌或导致失去同步、失去互联以及最后不能向消费者供应电力的潜在可能。对电力系统的适当监视可以帮助网络运营商准确地评估电力系统状态并通过采取适当的行动来避免电力系统全部停电,所述行动诸如连接专门设计的振荡阻尼设备。
电力传输和分布系统或网络包括:高压联络线,用于连接地理上分开的区域;中压线;和子站,用于变换电压和用于在线路之间切换连接。对于管理网络而言,本领域已知的是利用相量测量单元(Phasor MeasurementUnit,PMU)。PMU提供关于网络的、加时间印记的局部信息,尤其是电流、电压、和负荷流。由PMU在整个网络中收集的且在中央数据处理器被处理的多个相量测量提供了电力系统的总电状态的快照。
专利申请EP-A 1737098描述了电力系统中由灵活AC传输系统(Flexible AC Transmission System,FACTS)装置进行的组合的电压或功率流控制和阻尼单模电磁振荡。为此,关于电力系统的状态或工作点的信息从适合的第二系统信号生成,并从中得出FACTS控制器的控制参数。控制参数和第一系统信号被用于计算规定FACTS装置的设置的控制命令。根据电力系统的状态变化,诸如传输网络的拓扑变化,通过适当地重新调节阻尼或稳定化设备的控制参数,来避免阻尼差的或甚至不稳定的振荡。
示例性灵活交流传输系统(Flexible Alternating-Current TransmissioinSystem,FACTS)装置包括功率半导体组件,并且作为例子,包括静态无功补偿器(Static-Var Compensator,SVC)、统一功率流控制器(Unified PowerFlow Controller,UPFC)、晶闸管控制的串联电容器(Thyristor-ControlledSeries Capacitor,TSCS)、晶闸管控制的移相变压器(thyristor controlledphase-shifting transformer,TCPST)、阻抗调制器、和串联补偿电容器。
这样的已知技术使得能够根据单个反馈信号阻尼控制所选择的单模振荡。这被称为单输入单输出解决方案(SISO)。已经发现,在电力网络中的机电振荡也采取多个振荡模式叠加的形式。这些多振荡模式产生与单模振荡类似的问题,因此具有使得电力网络坍塌的潜在可能。而且,在其中功率振荡阻尼(Power Oscillation Damping,POD)控制器被用来稳定化单个选择的振荡模式的情况下,这可能常常具有使存在的其它振荡模式(例如第二主导模式)不稳定的效果,随后第二主导模式比第一主导模式被阻尼得更小。因此,可以看出,第二主导模式(和任何其他模式)受到SISO POD控制器性能的负影响,SISO POD控制器被调节以改进对第一主导振荡模式的阻尼。
参照使得单模振荡的阻尼控制得以实现的已知技术,图1示出了利用本地反馈的已知SISO POD控制器的效果的复频域曲线图。在这样的复频域曲线图(在s平面上)上,x轴代表s的实部(它是绝对模态阻尼(absolutemodal damping)),而y轴代表s的虚部(它是模态频率(modal frequency),以每秒弧度计),其中s平面变换通常被称为拉普拉斯变换(Laplacetransform),因此在s平面中,乘以s具有在对应的实时域中微分的效果,而被s除具有积分的效果。在s平面上的每个点代表特征值或转移函数极点(transfer function pole)。最接近x轴的箭头10代表第一主导振荡模式的阻尼的改进,这是因为特征值的改变被引导到复平面的左半部。另外根据x轴的平行箭头12代表第二主导振荡模式的阻尼的恶化(在时域中增加振荡),它由特征值向复平面的右半部的改变表示。
R.Sadikovic等人的论文“Application of FACTS Devices for Dampingof Power System Oscillations”,proceedings of the Power Tech conference2005,6月27-30,St.Petersburg RU,出于各种目的在此引用它的公开内容以供参考。该论文解决了在改变工作条件的情形下恰当的反馈信号的选择和功率振荡阻尼(power oscillation damping,POD)控制器参数的随后自适应调节。它是基于线性化系统模型,其转移函数G(s)被扩展到N个留数(residue)之和:
G ( s ) = Σ i = 1 N R i ( s - λ i )
N个特征值λi对应于系统的N个振荡模式,而对于特定模式的留数Ri给出了该模式的特征值对在系统的输出与输入之间的反馈的灵敏度。
发明内容
因此,本发明的目的是以灵活的方式和用最少的附加设备来阻尼电力传输网络中的多个电磁振荡。这些目的是通过按照权利要求1和5的用于阻尼电力系统中的多个电磁振荡的方法和控制器来达到的。根据从属权利要求另外的优选实施例是是明显的。
按照本发明的第一方面,提供了用于阻尼电力系统中的多个电磁振荡的方法。该方法包括:从至少一个电力系统位置获得相量数据信号;分析每个振荡模式;从所述信号内提取每个振荡模式;根据分析,阻尼每个振荡模式;以及把从阻尼的振荡模式得出的控制信号施加到电力系统中的功率流控制设备。该方法的特征在于,提取振荡模式的步骤还包括模式选择和模式留数最大化。
优选地,该方法还包括:叠加两个或多个阻尼的振荡模式以获得叠加信号;以及把从叠加信号得出的控制信号施加到电力系统中的功率流控制设备。因此,该方法可以被有利地用于阻尼单振荡模式或多振荡模式。
优选地,模式选择的步骤还包括获得模态可控制性和模态可观察性。而且,每个模式留数代表模态可控制性和模态可观察性的乘积。
按照本发明的第二方面,提供了用于阻尼电力系统中的多个电磁振荡的控制器。该控制器包括:至少一个相量测量单元,获得包括振荡模式信号的相量数据信号;至少一个功率振荡阻尼器控制器,用于接收和阻尼每个振荡模式信号;叠加装置,用于接收和求和被阻尼的信号并且得出控制信号;以及反馈控制器,把控制信号反馈到电力系统中的功率流控制设备。该控制器的特征在于,它还包括模式选择装置和留数最大化装置,用于在相量数据信号内提取每个振荡模式。
电力系统是大规模系统,具有许多动态状态、振荡模式和可测量的输入与输出。因此,有许多可能的信号可被选择为反馈信号。本发明确保了对反馈信号和控制器设计过程的适当选择,以使得至少一个振荡模式能够被有效地阻尼。应当指出,本发明的控制器在本说明书中也可被称为补偿器。
优选地,至少一个功率振荡阻尼器控制器可以是MIMO功率振荡阻尼器控制器、SISO功率振荡阻尼器控制器、SIMO功率振荡阻尼器控制器或MISO功率振荡阻尼器控制器。
优选地,该控制器在各种各样的监视和控制平台上操作。
在另一个优选实施例中,该控制器在相量测量单元上操作。
在又一个优选实施例中,该控制器在功率流控制设备上操作。
本发明的控制器可以作为在数字计算机上运行的软件或作为使用诸如EPROM之类的技术的硬接线实现方式等而被实施。有利地,本发明具有相当低的复杂性,但有效地解决了阻尼电力传输网中的多个电磁振荡的问题。
附图说明
将在以下的正文中参照附图中图示的优选示例性实施例,更详细地说明本发明的主题,其中:
图1图形地图示了按照现有技术利用本地反馈信号进行控制的已知SISO POD控制器的复频域中的影响。
图2是本发明的控制器的设计方法的流程图。
图3A-图3E示意地图示了本发明的控制器的各种实施例。
图4示出了基于所有可用信号的最佳控制解决方案的奈奎斯特图(Nyquist diagram)。
图5示出了仅基于本地信号的最佳控制解决方案的奈奎斯特图。
图6图形地图示了按照本发明的利用仔细选择的远程PMU反馈信号进行控制的MIMO POD控制器的复频域中的影响。
图7示出了在电力系统中与包括远程信号的所有可用信号对应的留数增益的曲线图。
在附图中使用的附图标记和它们的意义中以汇总表的形式列于附图标记列表中。原则上,在图中同样的部件被提供以相同的附图标记。
具体实施方式
图2示出了使得同时阻尼电力系统中的多个振荡模式使得实现的方法步骤的流程图。为了完整起见,包括本发明算法的以下推导。在第一步骤14,电力系统的数学模型
x · = f ( x , t ) - - - ( 1 )
y=g(x,t)
围绕感兴趣的点x=x0被线性化,因此得到:
Δ x · ( t ) = AΔx ( t ) + BΔu ( t ) - - - ( 2 )
Δy(t)=CΔx(t)+DΔu(t)
(为了简化和不损失所得到的结果的一般性,在从这里开始所写的公式中假设该直通矩阵(direct through matrix)D为零矩阵)
在第二步骤16中,模态分析把该模型变换成模态坐标,得出满足(3)和(4)的n个特征值λk以及相应的左lk和右rk特征向量(k=1,…,n)。
det(A-λkI)=0(3)
Ark=rkλk
应当指出,如果状态空间矩阵A具有n个不同的特征值,Λ,R和L分别是特征值的对角矩阵以及右特征向量和左特征向量的矩阵。
AR=R.Λ
LTA=ΛLT    (4)
R=L-T
引入以下的相似性变换(5),并把公式(2)重写为(6)。
Δx=Tz(5)
z · ( t ) = T - 1 ATz ( t ) + T - 1 BΔu ( t ) - - - ( 6 )
Δy(t)=CTz(t)
选择变换矩阵T等于R(A的右特征向量的矩阵),
即,Δx=Rz,(6)变成(7)。
z · ( t ) = Λz ( t ) + B ~ Δu ( t ) where C ~ = CR , B ~ = LB and λ k = α k + i ω k - - - ( 7 )
Δy ( t ) = C ~ z ( t )
在图2的第三步骤18中,找出临界模式。接着,选择20临界模式i。这组所有复特征值λk表征为振荡。用于评估振荡的阻尼的实际度量不是绝对阻尼αk而是由(8)式给出的相对阻尼ξk,它产生以百分数计的归一化(normalized)值,ξk∈<-100;+100>。
&xi; k = - 100 &alpha; k | | &lambda; k | | % - - - ( 8 )
工作的电力系统是稳定的,这意味着,根据相对阻尼(8),条件(9)满足;对所有ξk进行排序(通过所有相应的特征值和特征向量Λ,R和L)是有用的。把最小值表示为ξ1,并把它(具有相应的频率ωk)称为主导模式。
min k &xi; k > 0 , k = 1 , . . . , n - - - ( 9 )
所有感兴趣的其他模式是具有最低指数(对应于差的阻尼)的那些模式。如在第五22和第六24流程图步骤中表示的,必须得出模态可控制性和可观察性并且分别选择用于模式I的最佳输入和输出。
应当指出,在复分析中,“留数”是描述亚纯函数围绕奇异点的线积分的行为的复数。留数也可被用来计算实积分,以及允许经由留数定理确定更复杂的路线积分。每个留数代表模态可控制性和可观察性的乘积。
对于感兴趣的所述/任何选择的模式λk,计算26以下的留数组;即,相对于所有可能的输入和输出的,维度mxr的矩阵RES如下:
RES ( &lambda; k ) = C ~ ( : , k ) B ~ ( k , : ) = [ res ji ( &lambda; k ) ] mxr - - - ( 10 )
参照流程图的第八步骤28,可以设想部分SISO控制器(用于单模)被如下设计:
对于感兴趣的模式,比如说λ1,选择输入i和输出j,以使得相应的单个复留数resij1)具有在所有mxr的RES(λ1)之中的最大范数(norm):
max i , j | | res ji ( &lambda; 1 ) | | = | | res ji max ( &lambda; 1 ) | | - - - ( 11 )
如前面提到的,R.Sadikovic等人的论文“Application of FACTSDevices for Damping of Power System Oscillations”,proceedings of the PowerTech conference 2005,六月27-30日,St.Petersburg RU,示出了如何根据由(12)式给出的、特征值λk的已知灵敏度来设计易于经由控制器H(s)闭合在选择的输入i和输出j之间的控制环的SISO控制器。
&Delta;&lambda; k = res ji k H ( &lambda; k ) - - - ( 12 )
选择感兴趣的另一模式,比如说λ2,λ3,…等等。如图2所示,那么有可能返回到第四步骤,以为下一个感兴趣的模式重复第四至第八步骤。参照第九步骤30,获得对于一个模式的所有留数的类似相位,这导致设计另外的能够使所有临界模式稳定的SISO控制器。
参照图2上的第十步骤32,针对具有主导模式的最佳可观察性的k个模式设计k个并行补偿器。可被设计的各种补偿器在图2上表示为3A到3F的流程图方块中予以描述。制动器3C,3D和3F是MIMO控制器,并且它们的输出是部分SISO控制器的贡献的叠加。
当施加反馈控制H(s)时,初始系统G(s)的特征值λi被偏移,由此由控制器引起的此偏移与留数Ri成比例。根据希望的偏移特征值位置λi des,控制器增益K因此可被计算,它反比于留数Ri。在图3A到3E的符号表示中,反馈控制器H和电力系统G分别通过测量的(一个或多个)PMU信号(如从G到H的箭头示出的)和(一个或多个)制动器(如从H到G的箭头示出的)而互联。
图3A到3E示意地图示了本发明的控制器的各种实施例。需要被稳定的临界振荡模式的数目被表示为k。
图3A图示了包括PMU的SISO控制器,接收单个输入34和提供单个输出36到制动器。这种布置可以使用单个PMU和单个制动器来稳定所有临界模式。
图3B图示了包括两个或多个部分控制器的MISO(Multiple-InputSingle-Output,多输入单输出)控制器,并行接收来自若干不同的PMU的输入38并产生用于单个制动器的单个输出40。每个PMU通过相应的控制器把单个输入提供到求和装置42。求和装置的单个输出被输入到制动器。这种布置阻尼k个模式,并且它可以应用于多个不同的PMU测量结果是可用时的情形。相比而言,图3A的布置可以应用于假设只有单个PMU要被安装时的情形。
图3C图示了包括一个提供输入信号44给k个并行控制器的PMU的SIMO(Single-Input Multiple-Output,单输入多输出)控制器,k个并行控制器被设计成使用k个制动器来阻尼k个临界模式。PMU提供单个输入,该单个输入通过k个控制器和k个制动器46被反馈到电力系统。这种布置使k个临界模式稳定。
图3D图示了包括两个或多个PMU、控制器和制动器的MIMO(多输入多输出)控制器;每个部分控制环48利用PMU测量结果和制动器。在控制器的此实施例中,不需要求和装置或叠加装置。这种布置阻尼k个振荡模式。
图3E图示了包括一个PMU 50、一个控制器和一个制动器52的SISO控制器。该PMU提供了单个测量结果,该测量结果通过单个控制器被反馈到制动器。这种布置明显地解决了单个临界模式的稳定。
图3F图示了包括一个PMU 54、一个控制器和一个制动器56的SISO控制器。该PMU提供了单个测量结果,该测量结果通过单个控制器被反馈到制动器。这种布置使用简单的SISO方案解决k个临界模式的稳定。这在所有相应的留数角度类似的情形下是可能的。
当在使用时,本发明的MIMO动态POD补偿器的以上实施例的每个实施例工作如下:
-在远程PMU处获得来自电力系统的相量数据,并且把具有多个振荡的初始分布功率流的信号输入到MIMO、SISO、SIMO和MISO POD控制器。
-借助于模式选择和对于每个模式的留数最大化,提取在信号内的每个单个振荡模式。随后把每个模式输入到单独的SISO POD控制器。
-在SISO POD控制器中分析振荡的大小和类型。
-由POD阻尼单个振荡模式,并输出来自SISO POD控制器的信号。
-把来自每个并行SISO POD控制器的信号馈送到求和装置或任何其他类型的信号叠加装置(利用加权求和等等)。
-把元素(element)最后的阻尼信号发送到制动器。在远程PMU处获得来自电力系统的相量数据和用于阻尼多个振荡模式的所得到的信号。
在自动控制和信号处理中,使用奈奎斯特图来评估具有反馈的系统的稳定性。它由曲线图给出,在该曲线图上画出了频率响应的增益和相位。这些相量量的图把相位和幅度示为离原点的距离和角度。奈奎斯特稳定性准则通过检查开环系统的奈奎斯特图而为闭环控制系统的稳定性提供了简单的测试(即,相同的系统包括设计的控制器,尽管不闭合反馈环)。
图4示出了基于所有可用信号的最佳控制解决方案的奈奎斯特图。应当指出,远程信号也被包括在最好反馈信号的选择中。在(-1,0)的黑色点58表示稳定。曲线图的路线形成没有包围稳定点(-1,0)的两个清晰环,并且曲线图还针对所有频率全都保持在单位圆60(点划线)内。因此,这样的控制系统将具有无限的相位/延时稳定性余量(被示出为它与单位圆不相交)和非常大的增益稳定性余量(由在其与负x轴的相交点(即黑色点)与点(-1,0)之间的相当大的距离示出的)。
图5示出了仅基于本地信号达到的最好控制解决方案的奈奎斯特图。靠近实轴的黑色点62代表与单位圆的相交点。曲线图的路线形成了示出控制系统将是稳定的清晰环。围绕零点的点划线64代表单位圆。这个奈奎斯特图示出了,稳定性余量比使用远程信号的图4所示的控制解决方案中的情形相当小。因此,即使在两种情形下可以达到相同的性能,但本地解决方案是不太鲁棒的。
图6图形地图示了按照本发明的利用远程PMU反馈的MIMO POD控制器的复频域,因此例证了可以通过适当选择用于反馈控制的反馈信号来显著地改进功率振荡的阻尼。具体地,可以看出本发明的POD控制器不仅仅使如图1所示的第一主导模式66稳定,而且也使第二主导模式68稳定。因此,通过仔细选择反馈信号和相应的控制器设计过程,若干主导振荡模式立刻被阻尼。
在图7上图形地示出了250个选定信号的归一化留数增益。在这样的图示上,x轴代表选定信号的指数(1-250)而y轴代表归一化留数增益。留数的这个曲线图--连同图4和5的奈奎斯特图一起--示出了,复留数的增益越高,从控制器需要的增益越小(由奈奎斯特图上的环越小表示),以便达到相同的极点向左偏移(阻尼改进)。因此,可以看出,使用具有高留数增益的信号的控制解决方案是更鲁棒。例如,测量具有指数210的0.85留数单位的信号(远程PMU信号)的两个最大留数绘图示出了,这个信号比起具有指数10的信号(本地信号)更适合用于反馈控制,因此,用于控制的反馈信号的正确选择可被看作为控制器设计过程的第一步骤。除了所有可用的本地信号以外,多个远程信号的可用性在逻辑上扩展了控制工程师所具有的用来选择反馈信号的选项。
在优选实施例中,本发明的MIMO控制器可以在各种各样的监视和控制平台上运行。在另一优选实施例中,本发明的MIMO控制器可以在PMU上运行。
在另一优选实施例中,本发明的MIMO控制器可以在FACTS装置上运行,具体地是在FACTS装置的低级电力电子控制平台上运行。
对于本领域技术人员而言将是明显的:本发明的MIMO控制器可以是硬接线的或被实施为计算机程序。
本发明的另一实施例包括仅有一个FACTS设备的MIMO控制器。参照以上内容,这需要m=1,因此,RES(λk)是列向量。这意味着,与m>1时的情形相比较,在推导方面具有较小的自由度。
在另一实施例中,设想利用多个FACTS装置来阻尼一个模式是可能的或者对于多个FACTS装置的一个输入/反馈信号用以阻尼几个模式。所有这些组合反映在3维矩阵RES(λk)的所考虑的形式和维度上;见三个指数i、j、k仅限于以上推导的步骤(4A)期间的搜索过程中。
在可替换的实施例中,本领域技术人员将会看到,不同的设计算法可被用来设计基础的SISO控制器层,而不是在图5的流程图的第十一步骤所涉及的部分。另外,除了上述的MIMO结果以外,本发明可被修改成提供SISO或SIMO或MISO布置。
在可替换的实施例中,本发明的FACTS装置可以可替换地由诸如AVR或直接负荷调制器之类的快速作用装置代替。
可替换地,上述的叠加运算可以是最小和、最大和、或加权和等等。
参照图2的流程图,本领域技术人员将知道,部分SISO控制器(用于单模)可以经由上述方法的可替换方法予以设计。例如,可以采用所谓的相量POD方法以代替超前滞后方法。显然,主要结果保持不变。
然而,本领域技术人员将注意到,本发明不仅仅是若干单模阻尼系统的组合。具体地,本发明的FACTS控制器不需要稳态调整器。如果任何随机选择的SISO阻尼装置被并行连接以及它们的输出不经过如图2所示的最佳化/信号选择过程就进行求和,则不会有本发明的MIMO阻尼装置,这是因为每个SISO设备不具有主到模式的最佳可观察性。

Claims (10)

1.一种用于阻尼电力系统中的多个电磁振荡的方法,包括:
从至少一个电力系统位置获得相量数据信号,
由模态分析分析(16)每个振荡模式,
从所述相量数据信号内提取(20)每个振荡模式,
根据所述分析,阻尼每个振荡模式,
把从所阻尼的振荡模式得出的控制信号施加到所述电力系统中的功率流控制装置,
其特征在于,
提取振荡模式的步骤还包括模式选择和在所提取的模式的留数矩阵内确定具有最大范数的留数(26)。
2.按照权利要求1所述的方法,其中所述方法还包括:
叠加两个或多个阻尼的振荡模式,以获得叠加信号,以及
把从所述叠加信号得出的控制信号施加到所述电力系统中的功率流控制装置。
3.按照权利要求1和2所述的方法,其中模式选择的步骤还包括获得模态可控制性(22)和模态可观察性(24)。
4.按照权利要求1到2任一项所述的方法,其中每个模式留数代表模态可控制性和模态可观察性的乘积。
5.一种用于阻尼电力系统(G)中的多个电磁振荡的控制器,所述控制器包括:
至少一个相量测量单元(PMU),所述相量测量单元(PMU)获得包括振荡模式信号的相量数据信号,
至少一个功率振荡阻尼器(POD)控制器,用于接收和阻尼每个振荡模式信号,
叠加装置,用于接收和求和所阻尼的振荡模式信号并且得出控制信号,
反馈控制器(H),把所述控制信号反馈给所述电力系统(G)中的功率流控制装置,
其特征在于,所述控制器还包括:
用于在所述相量数据信号内提取每个振荡模式的装置,其中用于提取每个振荡模式的装置包括模式选择装置和用于在所提取的模式的留数矩阵内确定具有所述最大范数的留数的装置。
6.按照权利要求5所述的控制器,其中至少一个功率振荡阻尼器控制器可以是MIMO功率振荡阻尼器控制器、SISO功率振荡阻尼器控制器、SIMO功率振荡阻尼器控制器或MISO功率振荡阻尼器控制器。
7.按照权利要求6所述的控制器,其中所述控制器在各种各样的监视和控制平台上操作。
8.按照权利要求6所述的控制器,其中所述控制器在相量测量单元上操作。
9.按照权利要求6所述的控制器,其中所述控制器在功率流控制装置上操作。
10.一种用于阻尼电力系统中的多个电磁振荡的装置,包括:
用于从至少一个电力系统位置获得相量数据信号的部件,
用于由模态分析分析(16)每个振荡模式的部件,
用于从所述相量数据信号内提取(20)每个振荡模式的部件,
用于根据所述分析而阻尼每个振荡模式的部件,
用于把从所阻尼的振荡模式得出的控制信号施加到所述电力系统中的功率流控制装置的部件,
其特征在于,
用于提取振荡模式的部件还包括用于模式选择的部件和用于在所提取的模式的留数矩阵内确定具有最大范数的留数(26)的部件。
CN2008800103388A 2007-03-28 2008-03-28 在电力分配系统中阻尼多个模式的电磁振荡 Expired - Fee Related CN101647173B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90859507P 2007-03-28 2007-03-28
US60/908,595 2007-03-28
PCT/EP2008/053713 WO2008116929A2 (en) 2007-03-28 2008-03-28 Damping multiple modes of electromagnetic oscillations in power distribution systems

Publications (2)

Publication Number Publication Date
CN101647173A CN101647173A (zh) 2010-02-10
CN101647173B true CN101647173B (zh) 2012-11-14

Family

ID=39689317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800103388A Expired - Fee Related CN101647173B (zh) 2007-03-28 2008-03-28 在电力分配系统中阻尼多个模式的电磁振荡

Country Status (5)

Country Link
US (1) US8022575B2 (zh)
EP (1) EP2140533A2 (zh)
CN (1) CN101647173B (zh)
RU (1) RU2461944C2 (zh)
WO (1) WO2008116929A2 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015247A1 (en) 2009-08-06 2011-02-10 Abb Research Ltd Power or voltage oscillation damping in a power transmission system
EP2299555A1 (en) * 2009-09-21 2011-03-23 ABB Research Ltd. Fault tolerant damping of electromechanical oscillations in power systems
EP2325968A1 (en) * 2009-11-18 2011-05-25 ABB Research Ltd. Tuning a power oscillation damping unit
WO2012041527A1 (en) * 2010-09-28 2012-04-05 Siemens Aktiengesellschaft Power oscillation damping by a converter-based power generation device
CN102005769B (zh) * 2010-12-01 2013-07-17 福建省电力有限公司 基于受扰轨迹模式分析的电力系统动态稳定辅助决策方法
CN102290821B (zh) * 2011-08-31 2013-09-04 东南大学 一种电力系统阻尼控制器参数适应性的判断方法
US9006933B2 (en) 2011-10-21 2015-04-14 General Electric Company Power system stabilization
CN102496944A (zh) * 2011-12-07 2012-06-13 南方电网科学研究院有限责任公司 基于广域信息的电力系统分布式阻尼控制系统及其方法
CN102545245B (zh) * 2012-01-16 2013-12-04 清华大学 基于端口供给能量的电力系统振荡源定位方法
US9293949B2 (en) * 2012-02-06 2016-03-22 Montana Tech Of The University Of Montana Electric power grid signal processing methods, oscillatory mode estimation methods and mode shape estimation methods
US20130234680A1 (en) * 2012-03-08 2013-09-12 General Electric Company Power system stabilization
CN102916439B (zh) * 2012-09-10 2014-10-22 清华大学 一种基于发电机机端母线量测的电力系统振荡源定位方法
US9385533B2 (en) * 2013-05-30 2016-07-05 General Electric Company Power system stabilization
CN103311939B (zh) * 2013-06-14 2014-12-31 华北电力大学(保定) 基于wams的电力系统低频振荡协调阻尼控制方法
US9964572B2 (en) * 2015-02-12 2018-05-08 Nec Corporation Wide-area measurement system based control of grid-scale storage for power system stability enhancement
US9909940B2 (en) * 2015-04-27 2018-03-06 General Electric Company System and method for non-invasive generator damping torque estimation
US10615604B2 (en) 2016-05-28 2020-04-07 PXiSE Energy Solutions, LLC Decoupling synchrophasor based control system for distributed energy resources
US10027119B2 (en) 2016-05-28 2018-07-17 PXiSE Energy Solutions, LLC Decoupling synchrophasor based control system for multiple distributed energy resources
US10452032B1 (en) 2016-09-08 2019-10-22 PXiSE Energy Solutions, LLC Optimizing power contribution of distributed energy resources for real time power demand scheduling
US10599175B1 (en) 2017-02-28 2020-03-24 PXiSE Energy Solutions, LLC Time synchronized frequency and voltage regulation of electric power balancing areas
US11050262B1 (en) * 2017-03-20 2021-06-29 National Technology & Engineering Solutions Of Sandia, Llc Systems and methods for controlling electrical grid resources
US10990072B2 (en) 2017-11-28 2021-04-27 PXiSE Energy Solutions, LLC Maintaining power grid stability using predicted data
US10886741B1 (en) 2017-12-05 2021-01-05 Smart Wires Inc. Power line oscillation damping using distributed FACTS devices that are voltage/impedance injection modules attached to the HV power lines
CN107968416B (zh) * 2017-12-07 2019-04-05 郑州轻工业学院 一种基于upfc阻尼含风电系统振荡特性的pod设计方法
CN110224394B (zh) * 2019-05-29 2020-08-28 海南电网有限责任公司电力科学研究院 适用于非平稳功率振荡信号特征提取的傅里叶分解算法
CN110311392B (zh) * 2019-07-21 2022-05-13 东北电力大学 一种基于spdmd的电力系统振荡模式及模态辨识方法
US11056912B1 (en) 2021-01-25 2021-07-06 PXiSE Energy Solutions, LLC Power system optimization using hierarchical clusters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517422A (en) * 1993-10-12 1996-05-14 Massachusetts Institute Of Technology Method and apparatus for direct control of the inter-area dynamics in large electric power systems
WO2000057529A1 (en) * 1999-03-22 2000-09-28 Abb Ab A method and a device for damping power oscillations in transmission lines
EP1723482A1 (en) * 2004-02-11 2006-11-22 ABB Technology Ltd Power system
EP1737098A1 (en) * 2005-06-24 2006-12-27 Abb Research Ltd. Damping electromagnetic oscillations in power system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699608A1 (ru) * 1977-06-27 1979-11-25 Казахское Отделение Всесоюзного Ордена Октябрьской Революции Проектно-Изыскательского И Научно-Исследовательского Института Энергетических Систем И Электрических Сетей "Энергосетьпроект" Способ предотвращени нарушени статической устойчивости линии электропередачи
US5703791A (en) * 1994-02-17 1997-12-30 Hitachi, Ltd. Electric power system stabilization control apparatus and method thereof
US5642007A (en) * 1994-12-30 1997-06-24 Westinghouse Electric Corporation Series compensator inserting real and reactive impedance into electric power system for damping power oscillations
RU2148290C1 (ru) * 1998-11-06 2000-04-27 Дальневосточный государственный университет путей сообщения Устройство для управления двумя преобразователями

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517422A (en) * 1993-10-12 1996-05-14 Massachusetts Institute Of Technology Method and apparatus for direct control of the inter-area dynamics in large electric power systems
WO2000057529A1 (en) * 1999-03-22 2000-09-28 Abb Ab A method and a device for damping power oscillations in transmission lines
EP1723482A1 (en) * 2004-02-11 2006-11-22 ABB Technology Ltd Power system
EP1737098A1 (en) * 2005-06-24 2006-12-27 Abb Research Ltd. Damping electromagnetic oscillations in power system

Also Published As

Publication number Publication date
EP2140533A2 (en) 2010-01-06
CN101647173A (zh) 2010-02-10
US20100023179A1 (en) 2010-01-28
US8022575B2 (en) 2011-09-20
RU2461944C2 (ru) 2012-09-20
WO2008116929A2 (en) 2008-10-02
WO2008116929A4 (en) 2009-03-26
WO2008116929A3 (en) 2009-02-12
RU2009139661A (ru) 2011-05-10

Similar Documents

Publication Publication Date Title
CN101647173B (zh) 在电力分配系统中阻尼多个模式的电磁振荡
Pulgar-Painemal et al. On inertia distribution, inter-area oscillations and location of electronically-interfaced resources
Sun et al. Robust H∞ load frequency control of multi-area power system with time delay: A sliding mode control approach
Bidram et al. Synchronization of nonlinear heterogeneous cooperative systems using input–output feedback linearization
Xu et al. Multiagent-based reinforcement learning for optimal reactive power dispatch
Padhy et al. Robust wide-area TS fuzzy output feedback controller for enhancement of stability in multimachine power system
Venayagamoorthy Online design of an echo state network based wide area monitor for a multimachine power system
Padhy et al. A coherency-based approach for signal selection for wide area stabilizing control in power systems
EP2299555A1 (en) Fault tolerant damping of electromechanical oscillations in power systems
Abdulrahman MATLAB-based programs for power system dynamic analysis
Hashmani et al. Mode selective damping of power system electromechanical oscillations for large power systems using supplementary remote signals
Ma et al. Classification and regression tree‐based adaptive damping control of inter‐area oscillations using wide‐area signals
Preece Improving the stability of meshed power networks: a probabilistic approach using embedded HVDC lines
Samuelsson Power system damping-structural aspects of controlling active power
Fang et al. Improvement of wide‐area damping controller subject to actuator saturation: a dynamic anti‐windup approach
Chompoobutrgool et al. On the persistence of dominant inter-area oscillation paths in large-scale power networks
CN103326383A (zh) 一种广域阻尼自适应控制系统及其控制方法
Wu New approaches to dynamic equivalent of active distribution network for transient analysis
Hinners et al. Multivariable control of active distribution networks for TSO-DSO-coordinated operation in wide-area power systems
Sharma et al. Time latency compensation for wide area damping controller
Benasla et al. Coherency concept to increase the effectiveness of wide-area damping controller
Zhang et al. Reduced-order fault estimation observer design for discrete-time systems
Monteiro et al. On performance of distributed model predictive control in power system frequency regulation
Kumar et al. Intra-Area Mode: Measurement-Based and Model-Based Assessment in Indian Power System
Tsuji et al. A study of centralized voltage profile control of distribution network considering dynamics of distributed generator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121114

Termination date: 20170328