CN101636005A - 面热源 - Google Patents
面热源 Download PDFInfo
- Publication number
- CN101636005A CN101636005A CN200810142527A CN200810142527A CN101636005A CN 101636005 A CN101636005 A CN 101636005A CN 200810142527 A CN200810142527 A CN 200810142527A CN 200810142527 A CN200810142527 A CN 200810142527A CN 101636005 A CN101636005 A CN 101636005A
- Authority
- CN
- China
- Prior art keywords
- heat source
- carbon nanotube
- plane heat
- long line
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 100
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 94
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 94
- 238000010438 heat treatment Methods 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 239000011241 protective layer Substances 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000002322 conducting polymer Substances 0.000 claims description 2
- 229920001940 conductive polymer Polymers 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 239000013305 flexible fiber Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical group 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000002356 single layer Substances 0.000 claims 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 229920000742 Cotton Polymers 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000002079 double walled nanotube Substances 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001202 Cs alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 241000276425 Xiphophorus maculatus Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- -1 as: pottery Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000002238 carbon nanotube film Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/54—Heating elements having the shape of rods or tubes flexible
- H05B3/56—Heating cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/003—Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/007—Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/011—Heaters using laterally extending conductive material as connecting means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/013—Heaters using resistive films or coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/032—Heaters specially adapted for heating by radiation heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/04—Heating means manufactured by using nanotechnology
Landscapes
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种面热源,包括一基底;一加热层,所述加热层设置于该基底的表面;至少两电极间隔设置且分别与该加热层电接触,其特征在于,所述加热层包括多个碳纳米管长线结构。
Description
技术领域
本发明涉及一种面热源,尤其涉及一种基于碳纳米管的面热源。
背景技术
热源在人们的生产、生活、科研中起着重要的作用。面热源是热源的一种,其特点为面热源具有一平面结构,将待加热物体置于该平面结构的上方对物体进行加热,因此,面热源可对待加热物体的各个部位同时加热,加热面广、加热均匀且效率较高。面热源已成功用于工业领域、科研领域或生活领域等,如电加热器、红外治疗仪、电暖器等。
现有面热源一般包括一加热层和至少两个电极,该至少两个电极设置于该加热层的表面,并与该加热层的表面电连接。当连接加热层上的电极通入低电压电流时,热量立刻从加热层释放出来。现在市售的面热源通常采用金属制成的电热丝作为加热层进行电热转换。然而,电热丝的强度不高易于折断,特别是弯曲或绕折成一定角度时,因此应用受到限制。另外,以金属制成的电热丝所产生的热量是以普通波长向外辐射的,其电热转换效率不高不利于节省能源。
非金属碳纤维导电材料的发明为面热源的发展带来了突破。采用碳纤维的加热层通常在碳纤维外部涂覆一层防水的绝缘层用作电热转换的元件以代替金属电热丝。由于与金属相比,碳纤维具有较好的韧性,这在一定程度上解决了电热丝强度不高易折断的缺点。然而,由于碳纤维仍是以普通波长向外散热,故并未解决电热转换率低的问题。为了解决上述问题,采用碳纤维的加热层一般包括多根碳纤维热源线铺设而成。该碳纤维热源线为一外表包裹有化纤或者棉线的导电芯线。该化纤或者棉线的外面浸涂一层防水阻燃绝缘材料。所述导电芯线由多根碳纤维与多根表面粘涂有远红外涂料的棉线缠绕而成。导电芯线中加入粘涂有远红外涂料的棉线,一来可增强芯线的强度,二来可使通电后碳导纤维发出的热量能以红外波长向外辐射。
然而,采用碳纤维纸作为加热层具有以下缺点:第一,碳纤维强度不够大,容易破裂,需要加入棉线提高碳纤维的强度,限制了其应用范围;第二,碳纤维本身的电热转换效率较低,需加入粘涂有远红外涂料的棉线提高电热转换效率,不利于节能环保;第三,需先制成碳纤维热源线再制成加热层,不利于大面积制作,不利于均匀性的要求,同时,不利于微型面热源的制作。
有鉴于此,确有必要提供一种面热源,该面热源强度大,电热转换效率较高,有利于节省能源且发热均匀,面热源的大小可控,可制成大面积面热源或者微型面热源。
发明内容
一种面热源,包括一基底;一加热层,所述加热层设置于该基底的表面;至少两电极,该两电极间隔设置并分别与该加热层电接触,其特征在于,所述加热层包括多个碳纳米管长线结构。
与现有技术相比较,所述的面热源具有以下优点:第一,由于碳纳米管具有较好的强度及韧性,碳纳米管长线结构的强度较大,柔性较好,不易破裂,使其具有较长的使用寿命。第二,碳纳米管长线结构中的碳纳米管均匀分布,因此具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有升温迅速、热滞后小、热交换速度快的特点。第三,碳纳米管的直径较小,使得碳纳米管长线结构具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。
附图说明
图1是本技术方案实施例的面热源的结构示意图。
图2是图1的II-II剖面示意图。
图3是本技术方案实施例束状结构的碳纳米管长线结构的结构示意图。
图4是本技术方案实施例绞线状结构的碳纳米管长线结构的结构示意图。
图5是本技术方案实施例束状结构的碳纳米管长线的扫描电镜照片。
图6是本技术方案实施例绞线状结构的碳纳米管长线的扫描电镜照片。
具体实施方式
以下将结合附图详细说明本技术方案面热源。
请参阅图1及图2,本技术方案实施例提供一种面热源10,该面热源10包括一基底18、一反射层17、一加热层16、一第一电极12、一第二电极14和一绝缘保护层15。所述反射层17设置于基底18的表面。所述加热层16设置于所述反射层17的表面。所述第一电极12和第二电极14间隔设置,并与该加热层16电接触,用于使所述加热层16中流过电流。所述绝缘保护层15设置于所述加热层16的表面,并将所述第一电极12和第二电极14覆盖,用于避免所述加热层16吸附外界杂质。
所述基底18形状不限,其具有一表面用于支撑加热层16或者反射层17。优选地,所述基底18为一板状基底,其材料可为硬性材料,如:陶瓷、玻璃、树脂、石英等,亦可以选择柔性材料,如:塑料或柔性纤维等。当为柔性材料时,该面热源10在使用时可根据需要弯折成任意形状。其中,基底18的大小不限,可依据实际需要进行改变。本实施例优选的基底18为一陶瓷基板。
所述反射层17的设置用来反射加热层16所发的热量,从而控制加热的方向,用于单面加热,并进一步提高加热的效率。所述反射层17的材料为一白色绝缘材料,如:金属氧化物、金属盐或陶瓷等。本实施例中,反射层17为三氧化二铝层,其厚度为100微米~0.5毫米。该反射层17可通过溅射或其他方法形成于该基底18表面。可以理解,所述反射层17也可设置在基底18远离加热层16的表面,即所述基底18设置于所述加热层16和所述反射层17之间,进一步加强反射层17反射热量的作用。所述反射层17为一可选择的结构。所述加热层16可直接设置在基底18的表面,此时面热源10的加热方向不限,可用于双面加热。
所述加热层16包括多个碳纳米管长线结构160。所述多个碳纳米管长线结构160平行铺设,或者交叉铺设于所述基底18表面。其中,碳纳米管长线结构160之间交叉的角度不限。所述相邻两个平行的碳纳米管长线结构160之间的距离为0微米~30微米。本实施例中,优选相邻两个平行的碳纳米管长线结构160间隔的距离为20微米。可以理解,所述多个碳纳米管长线结构160排列或者铺设的方式不限,只需确保形成一均匀的加热层16即可。进一步地,所述加热层16中至少部分碳纳米管长线结构160沿从所述第一电极22向第二电极24延伸的方向铺设于所述基底18表面,以确保流经碳纳米管长线结构160的电流最大。所述加热层16的厚度为3毫米~25毫米。
所述碳纳米管长线结构160包括至少一根碳纳米管长线161。请参阅图3及图4,优选地所述碳纳米管长线结构160是由多根碳纳米管长线161组成的束状结构或者由多根碳纳米管长线161组成的绞线结构。所述碳纳米管长线结构160的直径为20微米~2毫米,其大小由碳纳米管长线161的根数及直径大小决定,碳纳米管长线161的直径越大,根数越多,碳纳米管长线结构160的直径越大,反之,碳纳米管长线结构160的直径越小。所述碳纳米管长线结构160的长度大小由碳纳米管长线161的长度大小决定。本实施例中所述碳纳米管长线结构160是由多根碳纳米管长线161组成的束状结构,直径为50微米。
请参阅图5及图6,所述碳纳米管长线161是由多个首尾相连的碳纳米管束组成的束状结构或者绞线结构。所述碳纳米管长线包括多个沿碳纳米管长线161的轴向方向择优取向排列的碳纳米管。具体地,所述束状结构的碳纳米管长线161可通过有机溶剂处理所述碳纳米管薄膜,或者通过直接拉取碳纳米管阵列获得。该碳纳米管长线161中碳纳米管沿碳纳米管长线的轴向方向平行排列。所述绞线结构碳纳米管长线161可通过对束状结构的碳纳米管长线161施加机械外力扭转获得。扭转后该碳纳米管长线161中碳纳米管沿碳纳米管长线的轴向方向螺旋排列。
所述碳纳米管长线161的直径与长度和碳纳米管阵列所生长的基底的尺寸有关。可根据实际需求制得。本实施例中,采用气相沉积法在4英寸的基底生长超顺排碳纳米管阵列。所述碳纳米管长线161的直径为1微米~100微米,长度为50毫米~100毫米。
所述碳纳米管长线结构160中的碳纳米管为单壁碳纳米管、双壁碳纳米管或者多壁碳纳米管。当所述碳纳米管长线结构160中的碳纳米管为单壁碳纳米管时,该单壁碳纳米管的直径为0.5纳米~50纳米。当所述碳纳米管长线结构160中的碳纳米管为双壁碳纳米管时,该双壁碳纳米管的直径为1.0纳米~50纳米。当所述碳纳米管长线结构160中的碳纳米管为多壁碳纳米管时,该多壁碳纳米管的直径为1.5纳米~50纳米。
所述第一电极12和第二电极14由导电材料组成,该第一电极12和第二电极14的形状不限,可为导电薄膜、金属片或者金属引线。优选地,第一电极12和第二电极14均为一层导电薄膜。该导电薄膜的厚度为0.5纳米~100微米。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物或导电性碳纳米管等。该金属或合金材料可以为铝、铜、钨、钼、金、钛、钕、钯、铯或其任意组合的合金。本实施例中,所述第一电极12和第二电极14的材料为金属钯膜,厚度为5纳米。所述金属钯与碳纳米管具有较好的润湿效果,有利于所述第一电极12及第二电极14与所述加热层16之间形成良好的电接触,减少欧姆接触电阻。
所述的第一电极12和第二电极14可以设置在加热层16的同一表面上也可以设置在加热层16的不同表面上。其中,第一电极12和第二电极14间隔设置,以使加热层16应用于面热源10时接入一定的阻值避免短路现象产生。所述第一电极12和第二电极14的设置位置与碳纳米管长线结构160的排列相关,至少部分碳纳米管长线结构160的两端分别与所述第一电极12和第二电极14电连接。
另外,所述的第一电极12和第二电极14也可通过一导电粘结剂(图未示)设置于该加热层16的表面上,导电粘结剂在实现第一电极12和第二电极14与加热层16电接触的同时,还可以将所述第一电极12和第二电极14更好地固定于加热层16的表面上。本实施例优选的导电粘结剂为银胶。
可以理解,第一电极12和第二电极14的结构和材料均不限,其设置目的是为了使所述加热层16中流过电流。因此,所述第一电极12和第二电极14只需要导电,并与所述加热层16之间形成电接触都在本发明的保护范围内。
所述绝缘保护层15为一可选择结构,其材料为一绝缘材料,如:橡胶、树脂等。所述绝缘保护层15厚度不限,可以根据实际情况选择。所述绝缘保护层15覆盖于所述第一电极12、第二电极14和加热层16之上,可以使该面热源10在绝缘状态下使用,同时还可以避免所述加热层16中的碳纳米管吸附外界杂质。本实施例中,该绝缘保护层15的材料为橡胶,其厚度为0.5~2毫米。
本技术方案实施例的面热源10在使用时,可先将面热源10的第一电极12和第二电极14连接导线后接入电源。在接入电源后热源10中的碳纳米管长线结构160即可辐射出一定波长范围的电磁波。所述面热源20可以与待加热物体的表面直接接触。或者,由于本实施例中作为加热层16的碳纳米管长线结构160中的碳纳米管具有良好的导电性能,且该碳纳米管长线结构160本身已经具有一定的自支撑性及稳定性,所述面热源20可以与待加热物体相隔一定的距离设置。
本技术方案实施例中的面热源10在碳纳米管长线结构160的面积大小一定时,可以通过调节电源电压大小和加热层16的厚度,可以辐射出不同波长范围的电磁波。电源电压的大小一定时,加热层16的厚度和面热源10辐出电磁波的波长的变化趋势相反。即当电源电压大小一定时,加热层16的厚度越厚,面热源10辐出电磁波的波长越短,该面热源10可以产生一可见光热辐射;加热层16的厚度越薄,面热源10辐出电磁波的波长越长,该面热源10可以产生一红外线热辐射。加热层16的厚度一定时,电源电压的大小和面热源10辐出电磁波的波长成反比。即当加热层16的厚度一定时,电源电压越大,面热源10辐出电磁波的波长越短,该面热源10可以产生一可见光热辐射;电源电压越小,面热源10辐出电磁波的波长越长,该面热源10可以产生一红外热辐射。
碳纳米管具有良好的导电性能以及热稳定性,且作为一理想的黑体结构,具有比较高的热辐射效率。将该面热源10暴露在氧化性气体或者大气的环境中,其中碳纳米管长线结构的厚度为5毫米,通过在10伏~30伏调节电源电压,该面热源10可以辐射出波长较长的电磁波。通过温度测量仪发现该面热源10的温度为50℃~500℃。对于具有黑体结构的物体来说,其所对应的温度为200℃~450℃时就能发出人眼看不见的热辐射(红外线),此时的热辐射最稳定、效率最高。应用该碳纳米管长线结构制成的发热元件,可应用于电加热器、红外治疗仪、电暖器等领域。
进一步地,将本技术方案实施例中的面热源10放入一真空装置中,通过在80伏~150伏调节电源电压,该面热源10可以辐射出波长较短的电磁波。当电源电压大于150伏时,该面热源10陆续会发出红光、黄光等可见光。通过温度测量仪发现该面热源10的温度可达到1500℃以上,此时会产生一普通热辐射。随着电源电压的进一步增大,该面热源10还能产生杀死细菌的人眼看不见的射线(紫外光),可应用于光源、显示器件等领域。
所述的面热源具有以下优点:第一,由于碳纳米管具有较好的强度及韧性,碳纳米管长线结构的强度较大,柔性较好,不易破裂,使其具有较长的使用寿命。第二,碳纳米管长线结构中的碳纳米管均匀分布,因此具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有升温迅速、热滞后小、热交换速度快、辐射效率高的特点。第三,碳纳米管的直径较小,使得碳纳米管长线结构具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。第四,多个碳纳米管长线结构交叉形成一多层结构以提供一定的支撑作用,使碳纳米管复合结构具有更好的韧性。第五,碳纳米管长线结构可通过从碳纳米管阵列中拉取后作进一步处理得到,方法简单且有利于大面积面热源的制作。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (14)
1.一种面热源,其包括:
一基底;
一加热层,所述加热层设置于该基底的表面;
至少两电极,该至少两个电极间隔设置且分别与该加热层电接触;
其特征在于,所述加热层包括多个碳纳米管长线结构。
2.如权利要求1所述的面热源,其特征在于,所述多个碳纳米管长线结构平行设置形成一单层结构。
3.如权利要求2所述的面热源,其特征在于,所述相邻两个碳纳米管长线结构之间的距离小于30微米。
4.如权利要求1所述的面热源,其特征在于,所述多个碳纳米管长线结构交叉设置形成一多层结构。
5.如权利要求1所述的面热源,其特征在于,所述碳纳米管长线结构包括至少一碳纳米管长线。
6.如权利要求5所述的面热源,其特征在于,所述碳纳米管长线结构为由多根碳纳米管长线组成的束状结构或者绞线结构。
7.如权利要求6所述的面热源,其特征在于,所述碳纳米管长线包括多个首尾相连且择优取向排列的碳纳米管。
8.如权利要求7所述的面热源,其特征在于,所述碳纳米管长线中的碳纳米管沿碳纳米管长线的轴向方向平行排列或螺旋排列。
9.如权利要求1所述的面热源,其特征在于,所述至少两电极的材料为金属、合金、铟锡氧化物、锑锡氧化物、导电银胶、导电聚合物或导电性碳纳米管。
10.如权利要求1所述的面热源,其特征在于,所述至少两电极设置在碳纳米管长线结构的同一表面或者不同表面。
11.如权利要求1所述的面热源,其特征在于,所述基底的材料为柔性材料或硬性材料,且所述柔性材料为塑料或柔性纤维,所述硬性材料为陶瓷、玻璃、树脂或石英。
12.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一反射层,该反射层设置于加热层表面,所述反射层的材料为金属氧化物、金属盐或陶瓷,厚度为100微米~0.5毫米。
13.如权利要求12所述的面热源,其特征在于,所述反射层设置在所述加热层与基底之间或者设置在所述基底远离加热层的表面。
14.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一绝缘保护层设置于所述加热层表面,所述绝缘保护层的材料包括橡胶或树脂。
Priority Applications (40)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101425272A CN101636005B (zh) | 2008-07-25 | 2008-07-25 | 面热源 |
KR1020080094915A KR20090033138A (ko) | 2007-09-28 | 2008-09-26 | 면가열원 |
EP08253151A EP2043406B1 (en) | 2007-09-28 | 2008-09-26 | Plane heat source |
ES08253151T ES2386584T3 (es) | 2007-09-28 | 2008-09-26 | Fuente térmica plana |
US12/456,071 US20100126985A1 (en) | 2008-06-13 | 2009-06-11 | Carbon nanotube heater |
US12/460,854 US20090321420A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,849 US20100000986A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,870 US20100000990A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,852 US20100140258A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,869 US20100139845A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,868 US20090321421A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,850 US20100140257A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,848 US20100000985A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,871 US20100230400A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,855 US20100000987A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,851 US20090321418A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,853 US20090321419A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,817 US20100108664A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,858 US20100000988A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,859 US20100000989A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,867 US20090314765A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
JP2009174779A JP5473454B2 (ja) | 2008-07-25 | 2009-07-27 | 面熱源 |
US12/462,153 US20100000669A1 (en) | 2008-06-13 | 2009-07-30 | Carbon nanotube heater |
US12/462,188 US20100139851A1 (en) | 2008-06-13 | 2009-07-30 | Carbon nanotube heater |
US12/462,155 US20100140259A1 (en) | 2008-06-13 | 2009-07-30 | Carbon nanotube heater |
US12/655,507 US20100122980A1 (en) | 2008-06-13 | 2009-12-31 | Carbon nanotube heater |
US12/658,193 US20100147829A1 (en) | 2008-06-13 | 2010-02-04 | Carbon nanotube heater |
US12/658,237 US20100154975A1 (en) | 2008-06-13 | 2010-02-04 | Carbon Nanotube heater |
US12/658,184 US20100147828A1 (en) | 2008-06-13 | 2010-02-04 | Carbon nanotube heater |
US12/658,182 US20100147827A1 (en) | 2008-06-13 | 2010-02-04 | Carbon nanotube heater |
US12/658,198 US20100147830A1 (en) | 2008-06-07 | 2010-02-04 | Carbon nanotube heater |
US12/660,356 US20110024410A1 (en) | 2008-06-13 | 2010-02-25 | Carbon nanotube heater |
US12/660,820 US20100163547A1 (en) | 2008-06-13 | 2010-03-04 | Carbon nanotube heater |
US12/661,165 US20100170891A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,115 US20100200567A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,150 US20100170890A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,133 US20100200568A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,110 US20100218367A1 (en) | 2008-06-13 | 2010-03-11 | Method for making carbon nanotube heater |
US12/661,926 US20100187221A1 (en) | 2008-06-13 | 2010-03-25 | Carbon nanotube hearter |
US12/750,186 US20100180429A1 (en) | 2008-06-13 | 2010-03-30 | Carbon nanotube heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101425272A CN101636005B (zh) | 2008-07-25 | 2008-07-25 | 面热源 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101636005A true CN101636005A (zh) | 2010-01-27 |
CN101636005B CN101636005B (zh) | 2012-07-18 |
Family
ID=41594999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101425272A Active CN101636005B (zh) | 2007-09-28 | 2008-07-25 | 面热源 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5473454B2 (zh) |
CN (1) | CN101636005B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104113942A (zh) * | 2013-04-19 | 2014-10-22 | 中环股份有限公司 | 电热组件 |
CN104791868A (zh) * | 2015-03-23 | 2015-07-22 | 广东美的厨房电器制造有限公司 | 解冻盘及微波炉 |
CN114641100A (zh) * | 2020-12-15 | 2022-06-17 | 安徽宇航派蒙健康科技股份有限公司 | 基于自组装模板-金属沉积法及气态碳源沉积法制备透明耐高温电热器件的方法 |
US20220213651A1 (en) * | 2019-05-09 | 2022-07-07 | Giesecke+Devrient Currency Technology Gmbh | Electrically conductive paper structure, method for manufacturing same and use |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112657056A (zh) * | 2019-10-15 | 2021-04-16 | 北京富纳特创新科技有限公司 | 面膜式美容仪 |
CN112642055A (zh) * | 2019-10-11 | 2021-04-13 | 北京富纳特创新科技有限公司 | 面膜式美容仪 |
CN112642051A (zh) * | 2019-10-11 | 2021-04-13 | 北京富纳特创新科技有限公司 | 面膜式美容仪 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0451437Y2 (zh) * | 1988-07-04 | 1992-12-03 | ||
JPH0785954A (ja) * | 1993-09-16 | 1995-03-31 | Jamco Corp | 遠赤外線放射発熱体 |
CN101638765A (zh) * | 2000-11-29 | 2010-02-03 | 萨莫希雷梅克斯公司 | 电阻加热器及其应用 |
JP5017522B2 (ja) * | 2005-09-13 | 2012-09-05 | 株式会社アイ.エス.テイ | 面状発熱体及びその製造方法 |
CN100500556C (zh) * | 2005-12-16 | 2009-06-17 | 清华大学 | 碳纳米管丝及其制作方法 |
KR100749886B1 (ko) * | 2006-02-03 | 2007-08-21 | (주) 나노텍 | 탄소나노튜브를 이용한 발열체 |
JP5109168B2 (ja) * | 2006-03-10 | 2012-12-26 | 株式会社アイ.エス.テイ | 発熱定着ベルト及びその製造方法並びに画像定着装置 |
CN101086939B (zh) * | 2006-06-09 | 2010-05-12 | 清华大学 | 场发射元件及其制备方法 |
CN101090586B (zh) * | 2006-06-16 | 2010-05-12 | 清华大学 | 纳米柔性电热材料及包括该纳米柔性电热材料的加热装置 |
JP2008164115A (ja) * | 2006-12-28 | 2008-07-17 | Taiyo Nippon Sanso Corp | 配管加熱用のヒータ装置 |
CN101409961B (zh) * | 2007-10-10 | 2010-06-16 | 清华大学 | 面热光源,其制备方法及应用其加热物体的方法 |
CN101626639B (zh) * | 2008-07-11 | 2011-07-27 | 清华大学 | 面热源 |
CN101407312B (zh) * | 2007-10-10 | 2011-01-26 | 鸿富锦精密工业(深圳)有限公司 | 碳纳米管薄膜的制备装置及其制备方法 |
-
2008
- 2008-07-25 CN CN2008101425272A patent/CN101636005B/zh active Active
-
2009
- 2009-07-27 JP JP2009174779A patent/JP5473454B2/ja active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104113942A (zh) * | 2013-04-19 | 2014-10-22 | 中环股份有限公司 | 电热组件 |
CN104791868A (zh) * | 2015-03-23 | 2015-07-22 | 广东美的厨房电器制造有限公司 | 解冻盘及微波炉 |
CN104791868B (zh) * | 2015-03-23 | 2018-06-05 | 广东美的厨房电器制造有限公司 | 解冻盘及微波炉 |
US20220213651A1 (en) * | 2019-05-09 | 2022-07-07 | Giesecke+Devrient Currency Technology Gmbh | Electrically conductive paper structure, method for manufacturing same and use |
CN114641100A (zh) * | 2020-12-15 | 2022-06-17 | 安徽宇航派蒙健康科技股份有限公司 | 基于自组装模板-金属沉积法及气态碳源沉积法制备透明耐高温电热器件的方法 |
CN114641100B (zh) * | 2020-12-15 | 2022-12-13 | 安徽宇航派蒙健康科技股份有限公司 | 基于自组装模板-金属沉积法及气态碳源沉积法制备透明耐高温电热器件的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2010034058A (ja) | 2010-02-12 |
JP5473454B2 (ja) | 2014-04-16 |
CN101636005B (zh) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101626639B (zh) | 面热源 | |
CN101605409B (zh) | 面热源 | |
CN101636005B (zh) | 面热源 | |
CN102056353A (zh) | 加热器件及其制备方法 | |
TWI420954B (zh) | 加熱器件及其製備方法 | |
CN101610613B (zh) | 线热源 | |
CN101616515B (zh) | 线热源 | |
CN101616513B (zh) | 线热源 | |
CN101636001B (zh) | 立体热源 | |
CN101636004B (zh) | 面热源 | |
CN101636007B (zh) | 面热源 | |
CN101636008B (zh) | 面热源 | |
CN101636006B (zh) | 面热源 | |
CN101616514B (zh) | 线热源 | |
CN101616516B (zh) | 线热源 | |
TWI462628B (zh) | 面熱源 | |
TWI462630B (zh) | 面熱源 | |
CN101626641B (zh) | 空心热源 | |
CN101626642B (zh) | 空心热源 | |
CN101636011B (zh) | 空心热源 | |
TWI380733B (en) | Planar heating source | |
TWI427027B (zh) | 空心熱源 | |
TWI360521B (en) | Planar heat source | |
CN101636002B (zh) | 立体热源 | |
CN101616512A (zh) | 线热源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |