CN101636007B - 面热源 - Google Patents

面热源 Download PDF

Info

Publication number
CN101636007B
CN101636007B CN2008101426148A CN200810142614A CN101636007B CN 101636007 B CN101636007 B CN 101636007B CN 2008101426148 A CN2008101426148 A CN 2008101426148A CN 200810142614 A CN200810142614 A CN 200810142614A CN 101636007 B CN101636007 B CN 101636007B
Authority
CN
China
Prior art keywords
heat source
plane heat
heating
carbon nanotube
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101426148A
Other languages
English (en)
Other versions
CN101636007A (zh
Inventor
王鼎
刘长洪
范守善
姜开利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2008101426148A priority Critical patent/CN101636007B/zh
Priority to ES08253151T priority patent/ES2386584T3/es
Priority to EP08253151A priority patent/EP2043406B1/en
Priority to KR1020080094915A priority patent/KR20090033138A/ko
Priority to US12/456,071 priority patent/US20100126985A1/en
Priority to US12/460,849 priority patent/US20100000986A1/en
Priority to US12/460,855 priority patent/US20100000987A1/en
Priority to US12/460,859 priority patent/US20100000989A1/en
Priority to US12/460,851 priority patent/US20090321418A1/en
Priority to US12/460,853 priority patent/US20090321419A1/en
Priority to US12/460,869 priority patent/US20100139845A1/en
Priority to US12/460,817 priority patent/US20100108664A1/en
Priority to US12/460,867 priority patent/US20090314765A1/en
Priority to US12/460,850 priority patent/US20100140257A1/en
Priority to US12/460,852 priority patent/US20100140258A1/en
Priority to US12/460,868 priority patent/US20090321421A1/en
Priority to US12/460,848 priority patent/US20100000985A1/en
Priority to US12/460,870 priority patent/US20100000990A1/en
Priority to US12/460,854 priority patent/US20090321420A1/en
Priority to US12/460,858 priority patent/US20100000988A1/en
Priority to US12/460,871 priority patent/US20100230400A1/en
Priority to JP2009173470A priority patent/JP5175248B2/ja
Priority to US12/462,155 priority patent/US20100140259A1/en
Priority to US12/462,188 priority patent/US20100139851A1/en
Priority to US12/462,153 priority patent/US20100000669A1/en
Priority to US12/655,507 priority patent/US20100122980A1/en
Publication of CN101636007A publication Critical patent/CN101636007A/zh
Priority to US12/658,237 priority patent/US20100154975A1/en
Priority to US12/658,198 priority patent/US20100147830A1/en
Priority to US12/658,193 priority patent/US20100147829A1/en
Priority to US12/658,182 priority patent/US20100147827A1/en
Priority to US12/658,184 priority patent/US20100147828A1/en
Priority to US12/660,356 priority patent/US20110024410A1/en
Priority to US12/660,820 priority patent/US20100163547A1/en
Priority to US12/661,110 priority patent/US20100218367A1/en
Priority to US12/661,133 priority patent/US20100200568A1/en
Priority to US12/661,115 priority patent/US20100200567A1/en
Priority to US12/661,165 priority patent/US20100170891A1/en
Priority to US12/661,150 priority patent/US20100170890A1/en
Priority to US12/661,926 priority patent/US20100187221A1/en
Priority to US12/750,186 priority patent/US20100180429A1/en
Application granted granted Critical
Publication of CN101636007B publication Critical patent/CN101636007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Abstract

一种面热源,其包括:一基底;一加热层,该加热层设置于该基底的表面;至少两电极间隔设置且分别与该加热层电接触,其中,所述加热层包括一碳纳米管层,该碳纳米管层包括多个相互缠绕的碳纳米管。

Description

面热源
技术领域
本发明涉及一种面热源,尤其涉及一种基于碳纳米管的面热源。
背景技术
热源在人们的生产、生活、科研中起着重要的作用。面热源是热源的一种,其特点为面热源具有一平面结构,将待加热物体置于该平面结构的上方对物体进行加热,因此,面热源可对待加热物体的各个部位同时加热,加热面广、加热均匀且效率较高。面热源已成功用于工业领域、科研领域或生活领域等,如电加热器、红外治疗仪、电暖器等。
现有面热源一般包括一加热层和至少两个电极,该至少两个电极设置于该加热层的表面,并与该加热层的表面电连接。当连接加热层上的电极通入低电压电流时,热量立刻从加热层释放出来。现在市售的面热源通常采用金属制成的电热丝作为加热层进行电热转换。然而,电热丝的强度不高易于折断,特别是弯曲或绕折成一定角度时,因此应用受到限制。另外,以金属制成的电热丝所产生的热量是以普通波长向外辐射的,其电热转换效率不高不利于节省能源。
非金属碳纤维导电材料的发明为面热源的发展带来了突破。采用碳纤维的加热层通常在碳纤维外部涂覆一层防水的绝缘层用作电热转换的元件以代替金属电热丝。由于碳纤维具有较好的韧性,这在一定程度上解决了电热丝强度不高易折断的缺点。然而,由于碳纤维仍是以普通波长向外散热,故并未解决电热转换率低的问题。为了解决上述问题,采用碳纤维的加热层一般包括多根碳纤维热源线铺设而成。该碳纤维热源线为一外表包裹有化纤或者棉线的导电芯线。该化纤或者棉线的外面浸涂一层防水阻燃绝缘材料。所述导电芯线由多根碳纤维与多根表面粘涂有远红外涂料的棉线缠绕而成。导电芯线中加入粘涂有远红外涂料的棉线,一来可增强芯线的强度,二来可使通电后碳导纤维发出的热量能以红外波长向外辐射。
然而,采用碳纤维纸作为加热层具有以下缺点:第一,碳纤维强度不够大,柔性不够好,容易破裂,需要加入棉线提高碳纤维的强度,限制了其应有范围;第二,碳纤维本身的电热转换效率较低,需加入粘涂有远红外涂料的棉线提高电热转换效率,不利于节能环保;第三,需先制成碳纤维热源线再制成加热层,不利于大面积制作,不利于均匀性的要求,同时,不利于微型面热源的制作。
有鉴于此,确有必要提供一种面热源,该面热源强度大,电热转换效率较高,有利于节省能源且发热均匀,面热源的大小可控,可制成大面积面热源或者微型面热源。
发明内容
一种面热源,其包括:一基底;一加热层,该加热层设置于该基底的表面;至少两电极间隔设置且分别与该加热层电接触,其中,所述加热层包括一碳纳米管层,该碳纳米管层包括多个相互缠绕的碳纳米管。
与现有技术相比较,所述的面热源具有以下优点:第一,所述的碳纳米管层中的碳纳米管无序排列,具有很好的韧性,可以弯曲折叠成任意形状而不破裂,所以具有较长的使用寿命。第二,碳纳米管层中的碳纳米管均匀分布,碳纳米管层具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有升温迅速、热滞后小、热交换速度快的特点。第三,碳纳米管的直径较小,使得碳纳米管层具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。
附图说明
图1是本技术方案实施例的面热源的结构示意图。
图2是图1沿II-II线的剖面示意图。
图3为本技术方案实施例的碳纳米管层的扫描电镜照片。
图4为本技术方案实施例的碳纳米管层的照片。
具体实施方式
以下将结合附图详细说明本技术方案面热源。
请参阅图1及图2,本技术方案实施例提供一种面热源10,该面热源10包括一基底18、一反射层17、一加热层16、一第一电极12、一第二电极14和一绝缘保护层15。所述反射层17设置于基底18的表面。所述加热层16设置于所述反射层17的表面。所述第一电极12和第二电极14间隔设置,并分别与该加热层16电接触,用于使所述加热层16中流过电流。所述绝缘保护层15设置于所述加热层16的表面,并将所述第一电极12和第二电极14覆盖,用于避免所述加热层16吸附外界杂质。
所述基底18形状不限,其具有一表面用于支撑加热层16或者反射层17。优选地,所述基底18为一板状基底,其材料可为硬性材料,如:陶瓷、玻璃、树脂、石英等,亦可以选择柔性材料,如:塑料或柔性纤维等。当为柔性材料时,该面热源10在使用时可根据需要弯折成任意形状。其中,基底18的大小不限,可依据实际需要进行改变。本实施例优选的基底18为一陶瓷基板。
所述反射层17的设置用来反射加热层16所发的热量,从而控制加热的方向,用于单面加热,并进一步提高加热的效率。所述反射层17的材料为一白色绝缘材料,如:金属氧化物、金属盐或陶瓷等。本实施例中,反射层17为三氧化二铝层,其厚度为100微米~0.5毫米。该反射层17可通过溅射或其他方法形成于该基底18表面。可以理解,所述反射层17也可设置在基底18远离加热层16的表面,即所述基底18设置于所述加热层16和所述反射层17之间,进一步加强反射层17反射热量的作用。所述反射层17为一可选择的结构。所述加热层16可直接设置在基底18的表面,此时面热源10的加热方向不限,可用于双面加热。
所述加热层16设置于基底18的表面,用于加热。所述加热层16包括一碳纳米管层,该碳纳米管层本身具有一定的粘性,可以利用本身的粘性设置于基底18的表面,也可以通过粘结剂设置于基底18的表面。所述的粘结剂为硅胶。该碳纳米管层的长度、宽度和厚度不限,可根据实际需要选择。本技术方案提供的碳纳米管层的长度为1~10厘米,宽度为1~10厘米,厚度为1微米~2毫米。可以理解,碳纳米管层的热响应速度与其厚度有关。在相同面积的情况下,碳纳米管层的厚度越大,热响应速度越慢;反之,碳纳米管层的厚度越小,热响应速度越快。
所述碳纳米管层包括相互缠绕的碳纳米管,请参阅图3。所述的碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。该碳纳米管层中,碳纳米管为均匀分布,无规则排列,使得该碳纳米管层呈各向同性;碳纳米管相互缠绕,因此该碳纳米管层具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂,请参阅图4。该碳纳米管层中的碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米~10纳米,双壁碳纳米管的直径为1.0纳米~15纳米,多壁碳纳米管的直径为1.5纳米~50纳米。该碳纳米管的长度大于50微米。本实施例中,碳纳米管的长度优选为200~900微米。
本实施例中,加热层16采用厚度为100微米的碳纳米管层。该碳纳米管层的长度为5厘米,碳纳米管层的宽度为3厘米。利用碳纳米管层本身的粘性,将该碳纳米管层设置于基底18的表面。
所述第一电极12和第二电极14由导电材料组成,该第一电极12和第二电极14的形状不限,可为导电薄膜、金属片或者金属引线。优选地,第一电极12和第二电极14均为一层导电薄膜。该导电薄膜的厚度为0.5纳米~100微米。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物或导电性碳纳米管等。该金属或合金材料可以为铝、铜、钨、钼、金、钛、钕、钯、铯或其任意组合的合金。本实施例中,所述第一电极12和第二电极14的材料为金属钯膜,厚度为5纳米。所述金属钯与碳纳米管具有较好的润湿效果,有利于所述第一电极12及第二电极14与所述加热层16之间形成良好的电接触,减少欧姆接触电阻。
所述的第一电极12和第二电极14可以设置在加热层16的同一表面上也可以设置在加热层16的不同表面上。其中,第一电极12和第二电极14间隔设置,以使加热层16应用于面热源10时接入一定的阻值避免短路现象产生。由于作为加热层16的碳纳米管层本身有很好的粘附性,故第一电极12和第二电极14直接就可以与碳纳米管层之间形成很好的电接触。
另外,所述的第一电极12和第二电极14也可通过一导电粘结剂(图未示)设置于该加热层16的表面上,导电粘结剂在实现第一电极12和第二电极14与加热层16电接触的同时,还可以将所述第一电极12和第二电极14更好地固定于加热层16的表面上。本实施例优选的导电粘结剂为银胶。
可以理解,第一电极12和第二电极14的结构和材料均不限,其设置目的是为了使所述加热层16中流过电流。因此,所述第一电极12和第二电极14只需要导电,并与所述加热层16之间形成电接触都在本发明的保护范围内。
所述绝缘保护层15为一可选择结构,其材料为一绝缘材料,如:橡胶、树脂等。所述绝缘保护层15厚度不限,可以根据实际情况选择。所述绝缘保护层15覆盖于所述第一电极12、第二电极14和加热层16之上,可以使该面热源10在绝缘状态下使用,同时还可以避免所述加热层16中的碳纳米管吸附外界杂质。本实施例中,该绝缘保护层15的材料为橡胶,其厚度为0.5~2毫米。
本技术方案实施例的面热源10在使用时,可先将面热源10的第一电极12和第二电极14连接导线后接入电源。在接入电源后热源10中的碳纳米管层即可辐射出一定波长范围的电磁波。所述面热源20可以与待加热物体的表面直接接触。或者,由于本实施例中作为加热层16的碳纳米管层中的碳纳米管具有良好的导电性能,且该碳纳米管层本身已经具有一定的自支撑性及稳定性,所述面热源20可以与待加热物体相隔一定的距离设置。
本技术方案实施例中的面热源10在碳纳米管层的面积大小一定时,可以通过调节电源电压大小和碳纳米管层的厚度,可以辐射出不同波长范围的电磁波。电源电压的大小一定时,碳纳米管层的厚度和面热源10辐出电磁波的波长成反比。即当电源电压大小一定时,碳纳米管层的厚度越厚,面热源10辐出电磁波的波长越短,该面热源10可以产生一可见光热辐射;碳纳米管层的厚度越薄,面热源10辐出电磁波的波长越长,该面热源10可以产生一红外线热辐射。碳纳米管层的厚度一定时,电源电压的大小和面热源10辐出电磁波的波长成反比。即当碳纳米管层的厚度一定时,电源电压越大,面热源10辐出电磁波的波长越短,该面热源10可以产生一可见光热辐射;电源电压越小,面热源10辐出电磁波的波长越长,该面热源10可以产生一红外热辐射。
碳纳米管具有良好的导电性能以及热稳定性,且作为一理想的黑体结构,具有比较高的热辐射效率。将该面热源10暴露在氧化性气体或者大气的环境中,其中碳纳米管层的厚度为5毫米,通过在10伏~30伏调节电源电压,该面热源10可以辐射出波长较长的电磁波。通过温度测量仪发现该面热源10的温度为50℃~500℃。对于具有黑体结构的物体来说,其所对应的温度为200℃~450℃时就能发出人眼看不见的热辐射(红外线),此时的热辐射最稳定、效率最高。应用该碳纳米管层制成的发热元件,可应用于电加热器、红外治疗仪、电暖器等领域。
进一步地,将本技术方案实施例中的面热源10放入一真空装置中,通过在80伏~150伏调节电源电压,该面热源10可以辐射出波长较短的电磁波。当电源电压大于150伏时,该面热源10陆续会发出红光、黄光等可见光。通过温度测量仪发现该面热源10的温度可达到1500℃以上,此时会产生一普通热辐射。随着电源电压的进一步增大,该面热源10还能产生杀死细菌的人眼看不见的射线(紫外光),可应用于光源、显示器件等领域。
所述的面热源具有以下优点:第一,由于碳纳米管具有较好的强度及韧性,碳纳米管层的强度较大,碳纳米管层的柔性好,不易破裂,使其具有较长的使用寿命。第二,碳纳米管层中的碳纳米管均匀分布,碳纳米管层具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有升温迅速、热滞后小、热交换速度快、辐射效率高的特点。第三,碳纳米管的直径较小,使得碳纳米管层具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种面热源,其包括:
一基底;
一加热层,该加热层设置于该基底的表面;以及
至少两电极,该至少两个电极间隔设置且分别与该加热层电接触;
其特征在于,所述加热层包括一碳纳米管层,其包括相互缠绕的碳纳米管,该碳纳米管层中的多个碳纳米管通过范德华力相互吸引、缠绕形成网络状结构,所述至少两个电极分别与该网络状结构电连接。
2.如权利要求1所述的面热源,其特征在于,所述碳纳米管均匀分布,无规则排列,碳纳米管层呈各向同性。
3.如权利要求1所述的面热源,其特征在于,所述的碳纳米管层的厚度为1微米至2毫米。
4.如权利要求1所述的面热源,其特征在于,所述的碳纳米管的长度大于50微米,直径小于50纳米。
5.如权利要求1所述的面热源,其特征在于,所述至少两电极的材料为金属、合金、铟锡氧化物、锑锡氧化物、导电银胶、导电聚合物或导电性碳纳米管。
6.如权利要求1所述的面热源,其特征在于,所述至少两电极设置在碳纳米管层的同一表面或者不同表面。
7.如权利要求1所述的面热源,其特征在于,所述基底的材料为柔性材料或硬性材料,且所述柔性材料为塑料或柔性纤维,所述硬性材料为陶瓷、玻璃、树脂或石英。
8.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一反射层,该反射层设置于加热层表面,反射层的材料为金属氧化物、金属盐或陶瓷,厚度为100微米~0.5毫米。
9.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一反射层,设置在所述基底远离加热层的表面,反射层的材料为金属氧化物、金属盐或陶瓷,厚度为100微米~0.5毫米。
10.如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一绝缘保护层设置于所述加热层表面,所述绝缘保护层的材料包括橡胶或树脂。
CN2008101426148A 2007-09-28 2008-07-25 面热源 Active CN101636007B (zh)

Priority Applications (40)

Application Number Priority Date Filing Date Title
CN2008101426148A CN101636007B (zh) 2008-07-25 2008-07-25 面热源
ES08253151T ES2386584T3 (es) 2007-09-28 2008-09-26 Fuente térmica plana
EP08253151A EP2043406B1 (en) 2007-09-28 2008-09-26 Plane heat source
KR1020080094915A KR20090033138A (ko) 2007-09-28 2008-09-26 면가열원
US12/456,071 US20100126985A1 (en) 2008-06-13 2009-06-11 Carbon nanotube heater
US12/460,852 US20100140258A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,859 US20100000989A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,851 US20090321418A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,853 US20090321419A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,869 US20100139845A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,817 US20100108664A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,867 US20090314765A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,850 US20100140257A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,855 US20100000987A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,868 US20090321421A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,848 US20100000985A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,870 US20100000990A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,854 US20090321420A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,858 US20100000988A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,871 US20100230400A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,849 US20100000986A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
JP2009173470A JP5175248B2 (ja) 2008-07-25 2009-07-24 面熱源
US12/462,188 US20100139851A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/462,155 US20100140259A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/462,153 US20100000669A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/655,507 US20100122980A1 (en) 2008-06-13 2009-12-31 Carbon nanotube heater
US12/658,237 US20100154975A1 (en) 2008-06-13 2010-02-04 Carbon Nanotube heater
US12/658,198 US20100147830A1 (en) 2008-06-07 2010-02-04 Carbon nanotube heater
US12/658,193 US20100147829A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,182 US20100147827A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,184 US20100147828A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/660,356 US20110024410A1 (en) 2008-06-13 2010-02-25 Carbon nanotube heater
US12/660,820 US20100163547A1 (en) 2008-06-13 2010-03-04 Carbon nanotube heater
US12/661,110 US20100218367A1 (en) 2008-06-13 2010-03-11 Method for making carbon nanotube heater
US12/661,133 US20100200568A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,115 US20100200567A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,165 US20100170891A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,150 US20100170890A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,926 US20100187221A1 (en) 2008-06-13 2010-03-25 Carbon nanotube hearter
US12/750,186 US20100180429A1 (en) 2008-06-13 2010-03-30 Carbon nanotube heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101426148A CN101636007B (zh) 2008-07-25 2008-07-25 面热源

Publications (2)

Publication Number Publication Date
CN101636007A CN101636007A (zh) 2010-01-27
CN101636007B true CN101636007B (zh) 2012-11-21

Family

ID=41595001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101426148A Active CN101636007B (zh) 2007-09-28 2008-07-25 面热源

Country Status (2)

Country Link
JP (1) JP5175248B2 (zh)
CN (1) CN101636007B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6185983B2 (ja) * 2012-04-20 2017-08-23 フューチャー カーボン ゲゼルシャフト ミット ベシュレンクテル ハフツングFuture Carbon GmbH 電気式の加熱装置及び構成要素並びに電気式の加熱装置及び構成要素素子を製造するための方法
CN105934003A (zh) * 2016-06-21 2016-09-07 深圳市昌龙盛机电技术有限公司 一种穿戴式硅胶红外发热片
CN109890094A (zh) * 2019-03-15 2019-06-14 西安交通大学 一种高温发热膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483667A (zh) * 2002-09-16 2004-03-24 �廪��ѧ 一种碳纳米管绳及其制造方法
CN200994196Y (zh) * 2006-12-19 2007-12-19 深圳市宝安唐锋电器厂 一种新型电热膜加热装置
CN101092234A (zh) * 2006-06-21 2007-12-26 清华大学 碳纳米管膜的生长装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528677A (ja) * 2000-11-29 2004-09-16 サーモセラミックス インコーポレイテッド 抵抗加熱器及びその使用法
JP5017522B2 (ja) * 2005-09-13 2012-09-05 株式会社アイ.エス.テイ 面状発熱体及びその製造方法
KR100749886B1 (ko) * 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
CN101409961B (zh) * 2007-10-10 2010-06-16 清华大学 面热光源,其制备方法及应用其加热物体的方法
CN101407312B (zh) * 2007-10-10 2011-01-26 鸿富锦精密工业(深圳)有限公司 碳纳米管薄膜的制备装置及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483667A (zh) * 2002-09-16 2004-03-24 �廪��ѧ 一种碳纳米管绳及其制造方法
CN101092234A (zh) * 2006-06-21 2007-12-26 清华大学 碳纳米管膜的生长装置及方法
CN200994196Y (zh) * 2006-12-19 2007-12-19 深圳市宝安唐锋电器厂 一种新型电热膜加热装置

Also Published As

Publication number Publication date
CN101636007A (zh) 2010-01-27
JP5175248B2 (ja) 2013-04-03
JP2010034055A (ja) 2010-02-12

Similar Documents

Publication Publication Date Title
CN101626639B (zh) 面热源
CN101605409B (zh) 面热源
CN102056353A (zh) 加热器件及其制备方法
TWI420954B (zh) 加熱器件及其製備方法
CN101636005B (zh) 面热源
CN101610613B (zh) 线热源
CN101616515B (zh) 线热源
CN101636007B (zh) 面热源
CN101616513B (zh) 线热源
CN101636004B (zh) 面热源
CN101636001B (zh) 立体热源
CN101636008B (zh) 面热源
CN101616514B (zh) 线热源
CN101636006B (zh) 面热源
CN101616516B (zh) 线热源
TWI462630B (zh) 面熱源
CN101626642B (zh) 空心热源
TWI462628B (zh) 面熱源
CN101636011B (zh) 空心热源
CN101616512B (zh) 线热源
TWI380733B (en) Planar heating source
CN101636002B (zh) 立体热源
TWI360521B (en) Planar heat source
TWI448417B (zh) 線熱源
TWI380731B (en) Planar heating source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant