1360521 100年.12月27日修正春换頁 、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種面熱源,尤其涉及一種基於奈米碳管的 面熱源。 【先前技術】 [0002] 熱源在人們的生產、生活、科研中起著重要的作用。面 熱源係熱源的一種,其特點為面熱源具有一平面結構, 將待加熱物體置於該平面結構的上方對物體進行加熱, 故,面熱源可對待加熱物體的各個部位同時加熱,加熱 面廣、加熱均勻且效率較高。面熱源已成功用於工業領 域、科研領域或生活領域等,如電加熱器、紅外治療儀 、電暖器等。 [0003] 先前面熱源一般包括一加熱層和至少兩個電極,該至少 兩個電極設置於該加熱層的表面,並與該加熱層的表面 電連接。當連接加熱層上的電極通入低電壓電流時,熱 量立刻從加熱層釋放出來。現在市售的面熱源通常採用 金屬製成的電熱絲作為加熱層進行電熱轉換。然而,電 熱絲的強度不高易於折斷,特別係彎曲或繞折成一定角 度時,故應用受到限制。另,以金屬製成的電熱絲所產 生的熱量係以普通波長向外輻射的,其電熱轉換效率不 高不利於節省能源。 [0004] 非金屬碳纖維導電材料的發明為面熱源的發展帶來了突 破。採用碳纖維的加熱層通常在碳纖維外部塗覆一層防 水的絕緣層用作電熱轉換的元件以代替金屬電熱絲。由 於碳纖維具有較好的韌性,這在一定程度上解決了電熱 097125371 表單編號A0101 第3頁/共18頁 1003483784-0 1360521 _. .100年.12月27日梭正替換頁 絲強度不高易折斷的缺點。然而,由於碳纖維仍係以普 通波長向外散熱,故並未解決電熱轉換率低的問題。為 解決上述問題,採用碳纖維的加熱層一般包括多根碳纖 維熱源線鋪設而成。該碳纖維熱源線為一外表包裹有化 纖或者棉線的導電迖線。該化纖或者棉線的外面浸塗一 層防水阻燃絕緣材料。所述導電芯線由多根碳纖維與多 根表面粘塗有遠紅外塗料的棉線纏繞而成。導電芯線中 加入粘塗有遠紅外塗料的棉線,一來可增強芯線的強度 ,二來可使通電後碳導纖維發出的熱量能以紅外波長向 外輻射。 [0005] 然而,採用碳纖維紙作為加熱層具有以下缺點:第一, 碳纖維強度不夠大,柔性不夠好,容易破裂,需要加入 棉線提高碳纖維的強度,限制了其應有範圍;第二,碳 纖維本身的電熱轉換效率較低,需加入粘塗有遠紅外塗 料的棉線提高電熱轉換效率,不科於節能環保;第三, 需先製成碳纖維熱源線再製成加熱層,不利於大面積製 作,不利於均勻性的要求,同時,不利於微型面熱源的 製作。 [0006] 有鑒於此,提供一種具有強度大,電熱轉換效率較高, 有利於節省能源且發熱均勻,大小可控,可製成大面積 或者微型的面熱源實為必要。 【發明内容】 [0007] —種面熱源,該面熱源包括一第一電極、一第二電極和 一加熱層。所述第一電極和第二電極間隔設置於該加熱 層上,並與該加熱層電接觸。該加熱層包括一奈米碳管 097125371 表單编號A0101 第4頁/共18頁 1003483784-0 1360521 100年.12月日梭正替¥頁 層,該奈米碳管層包括多個均勻分佈的奈米碳管。 [0008] 相較於先前技術,所述的面熱源具有以下優點:第一, 由於奈米碳管具有較好的強度及韌性,奈米碳管層的強 度較大,奈米碳管層的柔性好,不易破裂,使其具有較 長的使用壽命。第二,奈米碳管層中的奈米碳管均勻分 佈,奈米碳管層具有均勻的厚度及電阻,發熱均勻,奈 米碳管的電熱轉換效率高,故該面熱源具有升溫迅速、 熱滯後小、熱交換速度快的特點。第三,奈米碳管的直 徑較小,使得奈米碳管層具有較小的厚度,可製備微型 面熱源,應用於微型器件的加熱。 [0009] 【實施方式】 以下將結合附圖詳細說明本技術方案面熱源。 [0010] 請參閱圖1及圖2,本技術方案實施例提供一種面熱源,10 ,該面熱源10包括一基底18、一反射層17、一加熱層16 、一第一電極12、一第二電極14和一絕緣保護層15。所 述反射層17設置於基底18的表面。所述加熱層16設置於 所述反射層17的表面。所述第一電極12和第二電極14間 隔設置於所述加熱層16的表面,並與該加熱層16電接觸 ,用於使所述加熱層16中流過電流。所述絕緣保護層15 設置於·所述加熱層16的表面,並將所述第一電極12和第 二電極14覆蓋,用於避免所述加熱層16吸附外界雜質。 [0011] 所述基底18形狀不限,其具有一表面用於支撐加熱層16 或者反射層17。優選地,所述基底18為一板狀基底,其 材料可為硬性材料,如:陶究、玻璃、樹脂、石英等, 097125371 亦可選擇柔性材料,如:塑膠或柔性纖維等。當為柔性 表單編號A0101 第5頁/共18頁 1003483784-0 1360521 1100年.12月27日梭正替换頁 讨科時,該面熱源10在使用時可根據需要彎折成任意形 狀。其中,基底18的大小不限,可依據實際需要進行改 變。本實施例優選的基底18為一陶瓷基板。另,當加熱 層16具有一定的自支撐性及穩定性時,所述面熱源10中 的基底18為一可選擇的結構。 [0012] 所述反射層17的設置用來反射加熱層16所發的熱量,從 而控制加熱的方向,用於單面加熱,並進一步提高加熱 的妹率。所述反射層17的材料為一白色絕緣材料,如: 食屬氧化物、金屬鹽或陶瓷等。本實施例中,反射層17 為多氣化一銘層,其厚度為1〇〇微米〜0. 5毫米。該反射層 17<通過濺射或其他方法形成於該基底18表面。可以理 解,所述反射層17也可設置在基底μ遠離加熱層16的表 面,即所述基底18設置於所述加熱層16和所述反射層I? 之間’進一步加強反射層17反射熱量的作用。當面熱源 10不包括基底18時’所述加熱層16可直接設置於所述反 射層17的表面。所述反射層17為一可選擇的結構。所述 加熱層16可直接設置在基底18的表面,此時面熱源1〇的 加熱方向不限,可用於雙面加熱》 [0013] 所述加熱層16包括一奈米碳管層。該奈米碳管層包括多 個均勻分佈的奈米碳管。該奈米碳管層包括一奈米碳管 薄勝或者多個奈米碳管長線。所述奈米碳管薄膜包括有 序奈米碳管薄膜或者無序奈米碳管薄膜。所述有序奈米 唉管薄膜中奈米碳管有序排列,並沿固定方向擇優取向 排列。所述無序奈米碳管薄膜中奈米碳管無序排列。所 述多個奈米碳管長線可平行鋪設或者交叉鋪設形成奈米 097125371 表單編號A0101 第6頁/共18頁 1003483784-0 1360521 100年.12月27日修正替kw 碳管層。所述奈米碳管長線包括多個首尾相連的奈米礙 管束,該奈米碳管束包括多個長度相等且均勻分佈的奈 米碳管。該奈米碳管長線係由多個奈米碳管束組成的束 狀結構或者絞線結構。所述束狀結構的奈米碳管長線中 的奈米碳管沿奈米碳管長線的軸向擇優取向排列。所述 絞線結構的奈米碳管長線中的奈米碳管繞奈米碳管長線 的軸向螺旋狀旋轉排列。 [0014] 所述奈米碳管層中的奈米碳管為單壁奈米碳管、雙壁奈 米碳管或者多壁奈米碳管。當所述奈米碳管層中的奈米 碳管為單壁奈米碳管時,該單壁奈米碳管的直徑為0. 5奈 米〜50奈米。當所述奈米碳管層中的奈米碳管為雙壁奈米 碳管時,該雙壁奈米碳管的直徑為1. 0奈米~50奈米。當 所述奈米碳管層中的奈米碳管為多壁奈米碳管時,該多 壁奈米碳管的直徑為1.5奈米~50_奈米。 [0015] 優選地,所述奈米碳管層包括至少一有序奈米碳管薄膜 。該有序奈米碳管薄膜可通過直接拉伸一奈米碳管陣列 獲得。該有序奈米碳管薄膜包括多個沿拉伸方向定向排 列的奈米碳管。請參閱圖3,具體地,所述有序奈米碳管 薄膜161包括多個首尾相連且長度相等的奈米碳管束162 。所述奈米碳管束162的兩端通過凡德瓦爾力相互連接。 每個奈米碳管束162包括多個長度相等且平行排列的奈米 碳管163。所述相鄰的奈米碳管163之間通過凡德瓦爾力 緊密結合。所述有序奈米碳管薄膜161係由奈米碳管陣列 經進一步處理得到的,故其長度與寬度和奈米碳管陣列 所生長的基底的尺寸有關。可根據實際需求制得。本實 097125371 表單編號A0101 第7頁/共18頁 1003483784-0 1360521 ___ 100年12月日梭正替换頁 施例中,採用氣相沈積法在4英寸的基底生長超順排奈米 碳管陣列。所述有序奈米碳管薄膜161的寬度可為0. 01厘 米~10厘米,厚度為10奈米〜100微米。所述有序奈米碳 管薄膜161中,多個奈米碳管均勻分佈且平行於所述奈米 碳管層的表面。所述的多個奈米碳管沿拉伸方向擇優取 向排列。 [0016] 進一步地,所述奈米碳管層包括至少兩個重疊設置的上 述有序奈米碳管薄膜161。具體地,相鄰的兩個有序奈米 碳管薄膜161中的奈米碳管具有一交叉角度α,且0度S a S 90度,具體可依據實際需求製備。可以理解,由於 奈米碳管層中的多値有序奈米碳管‘薄膜161可重疊設置, 故,上述奈米碳管層的厚度不限,可根據實際需要製成 具有任意厚度的奈米碳管層。優選地,所述奈米碳管層 的厚度為100奈米〜5毫米。若奈米碳管層的厚度小於10微 米時,還可製成透明的面熱源應用於顯示裝置等其他裝 置中。 [0017] 另,所述加熱層16可包括至少一奈米碳管薄膜和多個奈 米碳管長線互相重疊形成的奈米碳管複合結構,其中, 奈米碳管長線平行或者交叉設置提供一定的支撐作用, 使奈米碳管複合結構具有更好的韌性。由於奈米碳管層 具有一定的韌性,可彎折,故本技術方案實施例中的加 0 熱層16可為平面結構也可為曲面結構。 [0018] 所述第一電極12和第二電極14由導電材料組成,該第一 電極12和第二電極14的形狀不限,可為導電薄膜、金屬 片或者金屬引線。優選地,第一電極12和第二電極14均 097125371 表單編號Α0101 第8頁/共18頁 1003483784-0 1360521 100年.12月27日修正_«頁 為一層導電薄膜。該導電薄膜的厚度為0. 5奈米~100微米 。該導電薄膜的材料可為金屬、合金、銦錫氧化物(ΙΤ0 )、銻錫氧化物(ΑΤ0)、導電銀膠、導電聚合物或導電 性奈米碳管等。該金屬或合金材料可為鋁、銅、鎢、鉬 、金、欽、敛、纪、絶或其任意組合的合金。本實施例 中,所述第一電極12和第二電極14的材料為金屬鈀膜, 厚度為5奈米。所述金屬鈀與奈米碳管具有較好的潤濕效 果,有利於所述第一電極12及第二電極14與所述加熱層 16之間形成良好的電接觸,減少歐姆接觸電阻。 [0019] 所述的第一電極12和第二電極14可設置在加熱層16的同 一表面上也可設置在加熱層16的不同表面上。或者,當 所述面熱源10中未包括基底18時,也可將加熱層16固定 在間隔的第一電極12和第二電極14表面,該第一電極12 和第二電極14用於支撐加熱層16。其中,第一電極12和 第二電極14間隔設置,以使加熱層16應用於面熱源10時 接入一定的阻值避免短路現象產生。由於作為加熱層16 的奈米碳管層本身有很好的粘附性,故第一電極12和第 二電極14直接就可與奈米碳管層之間形成很好的電接觸 〇 [0020] 另,所述的第一電極12和第二電極14也可通過一導電粘 結劑(圖未示)設置於該加熱層16的表面上,導電粘結劑 在實現第一電極12和第二電極14與加熱層16電接觸的同 時,還可將所述第一電極12和第二電極14更好地固定於 加熱層16的表面上。本實施例優選的導電粘結劑為銀膠 〇 097125371 表單編號Α0101 第9頁/共18頁 1003483784-0 1360521 100年.12月27 B修正替換頁 [0021] 可以理解’第-電極12和第二電極14的結構和材料均不 限,其設置目的係使所述加熱層16中流過電流。故,所 述第-電極12和第二電極14只需要導電,並與所述加熱 層16之間形成電接觸都在本發明的保護範圍内。 [0022] 所述絕緣保護層15為-可選擇結構,其材料為—絕緣材 料,如:橡膠、樹脂等《所述絕緣保護層15厚度不限, 可根據實際情況選擇。所述絕緣保護層15覆蓋於所述第 一電極12、第二電極14和加熱層16之上,可使該面熱源 10在絕緣狀態下使用,同時還可避免所述加熱層16中的 奈米碳管吸附外界雜質。本實施例中,該絕緣保謀層15 的材料為橡膠,其厚度為〇. 5〜2毫米》 [0023] 本技術方案實施例的面熱源1〇在使用時,可先將面熱源 10的第一電極12和第二電極14連接導線後接入電源。在 接入電源後面熱源10中的奈米碳管層即可輻射出一定波 長範圍的電磁波。所述面熱源1〇可與待加熱物體的表面 直接接觸。或者,由於本實施例中作為加熱層16的奈米 碳管層中的奈米碳管具有良好的導電性能,且該奈米碳 管層本身已經具有一定的自支撐性及穩定性,所述面熱 源10可與待加熱物體相隔一定的距離設置。 [0024] 本技術方案實施例中的面熱源1〇在奈米碳管層的面積大 小一定時,可通過調節電源電壓大小和奈米碳管層的厚 度’可輻射出不同波長範圍的電磁波。電源電壓的大小 一定時’奈米碳管層的厚度和麵熱源1〇輻出電磁波的波 長成反比。即當電源電壓大小一定時,奈米碳管層的厚 度越厚’面熱源10輻出電磁波的波長越短,該面熱源10 097125371 表單編號A0101 第10頁/共18頁 1003483784-0 1360521 100年.12月27日按正替换頁 可產生一可見光熱輻射;奈米碳管層的厚度越薄,面熱 源10輻出電磁波的波長越長,該面熱源10可產生一紅外 線熱輻射。奈米碳管層的厚度一定時,電源電壓的大小 和麵熱源10賴出電磁波的波長成反比"即當奈米碳管層 的厚度一定時,電源電壓越大,面熱源10輻出電磁波的 波長越短,該面熱源10可產生一可見光熱輻射;電源電 壓越小,面熱源10輻出電磁波的波長越長,該面熱源10 可產生一紅外熱轄射。 [0025] 奈米碳管具有良好的導電性能及熱穩定性,且作為一理 想的黑體結構,具有比較高的熱輻射效率。將該面熱源 10暴露在氧化性氣體或者大氣的環境中,其中奈米碳管 層的厚度為5毫米,通過在10伏〜30伏調節電源電壓,該 面熱源1 0可輕射出波長較長的電磁波。通過溫度測量儀 發現該面熱源10的溫度為50°C~500°C。對於具有黑體結 構的物體來說,其所對應的溫度為200°C~450°C時就能發 出人眼看不見的熱輻射(紅外線),此時的熱輻射最穩 定、效率最高。應用該奈米碳管層製成的發熱元件,可 應用於電加熱器、紅外治療儀、電暖器等領域。 [0026] 進一步地,將本技術方案實施例中的面熱源10放入一真 空裝置中,通過在80伏~ 15 0伏調節電源電壓,該面熱源 10可輻射出波長較短的電磁波。當電源電壓大於150伏時 ,該面熱源10陸續會發出紅光、黃光等可見光。通過溫 度測量儀發現該面熱源10的溫度可達到1 500°C以上,此 時會產生一普通熱輻射。隨著電源電壓的進一步增大, 該面熱源10還能產生殺死細菌的人眼看不見的射線(紫 097125371 表單編號A0101 第11頁/共18頁 1003483784-0 1360521 100年.12月27日核正替换頁 外光),可應用於光源、顯示器件等領域。 [0027] 所述的面熱源具有以下優點:第一,由於奈米碳管具有 較好的強度及韌性,奈米碳管層的強度較大,奈米碳管 層的柔性好,不易破裂,使其具有較長的使用壽命。第 二,奈米碳管層中的奈米碳管均勻分佈,奈米碳管層具 有均勻的厚度及電阻,發熱均勻,奈米碳管的電熱轉換 效率高,故該面熱源具有升溫迅速、熱滯後小、熱交換 速度快、輻射效率高的特點。第三,奈米碳管的直徑較 小,使得奈米碳管層具有較小的厚度,可製備微型面熱 源,應用於微型器件的加熱。第四,奈米碳管層可包括 至少一奈米碳管薄膜和多個奈米碳管長線互相重疊形成 的奈米碳管複合結構,其中,奈米碳管長線平行或者交 叉設置提供一定的支撐作用,使奈米碳管複合結構具有 更好的韌性。第五,奈米碳管層可通過從奈米碳管陣列 中拉取後作進一步處理得到,方法簡單且有利於大面積 面熱源的製作。 [0028] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範®内。 【圖式簡單說明】 [0029] 圖1係本技術方案實施例的面熱源的結構示意圖。 [0030] 圖2係圖1的Π - Π剖面示意圖。 097125371 表單编號A0101 第12頁/共18頁 1003483784-0 1360521 100年.12月2>日核正頁 [0031] 圖3係本技術方案實施例的有序奈米碳管薄膜的部分放大 示意圖。 [0032] 【主要元件符號說明】 面熱源:10 [0033] 第一電極:12 [0034] 第二電極:14 [0035] 絕緣保護層:15 [0036] 加熱層:16 [0037] 奈米碳管薄膜:161 [0038] 奈米碳管束:162 [0039] 奈米碳管:16 3 [0040] 反射層:17 [0041] 基底:18 097125371 表單編號A0101 第13頁/共18頁 1003483784-01360521 100 years. December 27th revised spring page, invention description: [Technical field of invention] [0001] The present invention relates to a surface heat source, and more particularly to a surface heat source based on a carbon nanotube. [Prior Art] [0002] Heat sources play an important role in people's production, life, and research. The surface heat source is a heat source, which is characterized in that the surface heat source has a planar structure, and the object to be heated is placed above the planar structure to heat the object, so that the surface heat source can simultaneously heat various parts of the object to be heated, and the heating surface is wide. Uniform heating and high efficiency. Surface heat sources have been successfully used in industrial fields, scientific research fields or living areas, such as electric heaters, infrared therapeutic devices, and electric heaters. The front front heat source generally includes a heating layer and at least two electrodes disposed on a surface of the heating layer and electrically connected to a surface of the heating layer. When the electrode connected to the heating layer is supplied with a low voltage current, the heat is immediately released from the heating layer. Commercially available surface heat sources are usually electrothermally converted using a heating wire made of metal as a heating layer. However, the strength of the heating wire is not high and it is easy to break, especially when it is bent or folded into a certain angle, so the application is limited. In addition, the heat generated by the heating wire made of metal is radiated outward at a normal wavelength, and the electrothermal conversion efficiency is not high, which is disadvantageous for saving energy. [0004] The invention of non-metallic carbon fiber conductive materials has brought about a breakthrough in the development of surface heat sources. A heating layer using carbon fibers is usually coated with a water-repellent insulating layer on the outside of the carbon fibers as an electrothermal conversion element instead of the metal heating wire. Due to the good toughness of carbon fiber, this solves the electric heating to a certain extent. 097125371 Form No. A0101 Page 3 / 18 pages 1003483784-0 1360521 _. .100 years. December 27th, the shuttle is not replacing the strength of the wire. The shortcomings of breaking. However, since the carbon fiber is still radiated outward at a normal wavelength, the problem of low electrothermal conversion rate is not solved. In order to solve the above problems, the heating layer using carbon fiber generally comprises a plurality of carbon fiber heat source lines. The carbon fiber heat source line is a conductive twisted wire wrapped with a chemical fiber or a cotton thread. The outer surface of the chemical fiber or cotton thread is dip coated with a waterproof and flame-retardant insulating material. The conductive core wire is formed by winding a plurality of carbon fibers with a plurality of cotton threads coated with a far-infrared coating. The cotton wire coated with the far-infrared coating is added to the conductive core wire to enhance the strength of the core wire. Secondly, the heat generated by the carbon fiber after the energization can be radiated outward at the infrared wavelength. [0005] However, the use of carbon fiber paper as a heating layer has the following disadvantages: First, the carbon fiber strength is not large enough, the flexibility is not good enough, and it is easy to be broken, and it is necessary to add cotton wire to increase the strength of the carbon fiber, thereby limiting its proper range; second, the carbon fiber itself The electrothermal conversion efficiency is low, and the cotton wire coated with the far-infrared coating needs to be added to improve the electrothermal conversion efficiency, which is not suitable for energy conservation and environmental protection; thirdly, the carbon fiber heat source line needs to be first made into a heating layer, which is not conducive to large-area production. It is not conducive to the uniformity requirements, and at the same time, it is not conducive to the fabrication of micro-surface heat sources. [0006] In view of the above, it is necessary to provide a surface heat source with large strength, high electrothermal conversion efficiency, favorable energy saving, uniform heat generation, and controllable size, and can be made into a large area or a miniature surface. SUMMARY OF THE INVENTION [0007] A seed surface heat source includes a first electrode, a second electrode, and a heating layer. The first electrode and the second electrode are disposed on the heating layer at intervals and are in electrical contact with the heating layer. The heating layer comprises a carbon nanotube 097125371 Form No. A0101 Page 4 / 18 pages 1003483784-0 1360521 100 years. December Japan is replacing the ¥ layer, the carbon nanotube layer comprises a plurality of evenly distributed Carbon nanotubes. [0008] Compared with the prior art, the surface heat source has the following advantages: First, because the carbon nanotube has better strength and toughness, the strength of the carbon nanotube layer is larger, and the carbon nanotube layer is It is flexible and not easy to break, making it have a long service life. Secondly, the carbon nanotubes in the carbon nanotube layer are evenly distributed, the carbon nanotube layer has a uniform thickness and electrical resistance, the heat is uniform, and the electric heat conversion efficiency of the carbon nanotubes is high, so the heat source of the surface has a rapid temperature rise. The characteristics of small thermal hysteresis and fast heat exchange. Third, the diameter of the carbon nanotubes is small, so that the carbon nanotube layer has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. [Embodiment] Hereinafter, a surface heat source of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , an embodiment of the present technical solution provides a surface heat source 10 . The surface heat source 10 includes a substrate 18 , a reflective layer 17 , a heating layer 16 , a first electrode 12 , and a first surface . The two electrodes 14 and an insulating protective layer 15. The reflective layer 17 is disposed on the surface of the substrate 18. The heating layer 16 is disposed on the surface of the reflective layer 17. The first electrode 12 and the second electrode 14 are disposed on the surface of the heating layer 16 and are in electrical contact with the heating layer 16 for flowing a current in the heating layer 16. The insulating protective layer 15 is disposed on the surface of the heating layer 16, and covers the first electrode 12 and the second electrode 14 for preventing the heating layer 16 from adsorbing external impurities. [0011] The substrate 18 is not limited in shape, and has a surface for supporting the heating layer 16 or the reflective layer 17. Preferably, the substrate 18 is a plate-like substrate, and the material thereof may be a hard material such as ceramics, glass, resin, quartz, etc. 097125371 may also be selected from flexible materials such as plastic or flexible fibers. When it is flexible Form No. A0101 Page 5 of 18 1003483784-0 1360521 1100. December 27th Shuttle Replacement Page When the section is used, the surface heat source 10 can be bent into any shape as needed. The size of the substrate 18 is not limited and can be changed according to actual needs. The preferred substrate 18 of this embodiment is a ceramic substrate. In addition, the substrate 18 in the surface heat source 10 is an optional structure when the heating layer 16 has a certain degree of self-supportingness and stability. [0012] The reflective layer 17 is arranged to reflect the heat generated by the heating layer 16, thereby controlling the direction of heating, for single-sided heating, and further increasing the heating rate. The material of the reflective layer 17 is a white insulating material such as: a food oxide, a metal salt or a ceramic. 5毫米。 In this embodiment, the thickness of the layer is 1 〇〇 micron ~ 0. 5 mm. The reflective layer 17< is formed on the surface of the substrate 18 by sputtering or other methods. It can be understood that the reflective layer 17 can also be disposed on the surface of the substrate μ away from the heating layer 16, that is, the substrate 18 is disposed between the heating layer 16 and the reflective layer I? to further strengthen the reflective layer 17 to reflect heat. The role. When the surface heat source 10 does not include the substrate 18, the heating layer 16 may be directly disposed on the surface of the reflective layer 17. The reflective layer 17 is an alternative structure. The heating layer 16 may be directly disposed on the surface of the substrate 18, and the heating direction of the surface heat source 1 is not limited, and may be used for double-sided heating. [0013] The heating layer 16 includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes. The carbon nanotube layer comprises a carbon nanotube or a plurality of carbon nanotube long wires. The carbon nanotube film comprises an ordered carbon nanotube film or a disordered carbon nanotube film. The carbon nanotubes in the ordered nanotube film are arranged in an orderly manner and are arranged in a preferred orientation along a fixed direction. The carbon nanotubes in the disordered carbon nanotube film are disorderly arranged. The long lines of the plurality of carbon nanotubes can be laid in parallel or cross-laid to form a nano 097125371 Form No. A0101 Page 6 of 18 1003483784-0 1360521 100 years. December 27th correction for the kw carbon tube layer. The carbon nanotube long line comprises a plurality of end-to-end nanotube bundles comprising a plurality of carbon nanotubes of equal length and even distribution. The long carbon nanotube line is a bundle structure or a stranded structure composed of a plurality of carbon nanotube bundles. The carbon nanotubes in the long carbon nanotube line of the bundle structure are arranged along the axially preferred orientation of the long line of the carbon nanotubes. The carbon nanotubes in the long line of the carbon nanotubes of the stranded structure are arranged in an axial spiral rotation around the long line of the carbon nanotubes. [0014] The carbon nanotubes in the carbon nanotube layer are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. 5纳米〜50纳米。 When the carbon nanotubes in the carbon nanotubes are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is 0.5 nm ~ 50 nm. When the carbon nanotubes in the carbon nanotube layer are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is 1.0 nm to 50 nm. When the carbon nanotubes in the carbon nanotube layer are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. [0015] Preferably, the carbon nanotube layer comprises at least one ordered carbon nanotube film. The ordered carbon nanotube film can be obtained by directly stretching a carbon nanotube array. The ordered carbon nanotube film comprises a plurality of carbon nanotubes oriented in the direction of stretching. Referring to Fig. 3, in particular, the ordered carbon nanotube film 161 comprises a plurality of carbon nanotube bundles 162 which are connected end to end and of equal length. Both ends of the carbon nanotube bundle 162 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 162 includes a plurality of carbon nanotubes 163 of equal length and arranged in parallel. The adjacent carbon nanotubes 163 are tightly bonded by van der Waals force. The ordered carbon nanotube film 161 is further processed by a carbon nanotube array, so its length is related to the width and the size of the substrate on which the carbon nanotube array is grown. Can be made according to actual needs.本实097125371 Form No. A0101 Page 7 of 18 1003483784-0 1360521 ___ In December 2015, the Japanese shuttle is replacing the page, using vapor deposition to grow super-sequential carbon nanotube arrays on a 4-inch substrate. . The ordered carbon nanotube film 161 may have a width of from 0.01 cm to 10 cm and a thickness of from 10 nm to 100 μm. In the ordered carbon nanotube film 161, a plurality of carbon nanotubes are uniformly distributed and parallel to the surface of the carbon nanotube layer. The plurality of carbon nanotubes are preferentially aligned along the stretching direction. [0016] Further, the carbon nanotube layer includes at least two of the above ordered carbon nanotube films 161 disposed in an overlapping manner. Specifically, the carbon nanotubes in the adjacent two ordered carbon nanotube films 161 have a cross angle α and a degree of S a 90 degrees, which can be prepared according to actual needs. It can be understood that since the multi-pigmented ordered carbon nanotubes 'film 161 in the carbon nanotube layer can be overlapped, the thickness of the above-mentioned carbon nanotube layer is not limited, and can be made to have any thickness according to actual needs. Carbon tube layer. Preferably, the carbon nanotube layer has a thickness of from 100 nm to 5 mm. When the thickness of the carbon nanotube layer is less than 10 μm, a transparent surface heat source can be used for other devices such as display devices. [0017] In addition, the heating layer 16 may include a carbon nanotube composite structure formed by overlapping at least one carbon nanotube film and a plurality of carbon nanotube long lines, wherein the carbon nanotube long lines are parallel or cross-connected to provide A certain supporting effect makes the carbon nanotube composite structure have better toughness. Since the carbon nanotube layer has a certain toughness and can be bent, the 0-heated layer 16 in the embodiment of the present invention may be a planar structure or a curved structure. [0018] The first electrode 12 and the second electrode 14 are composed of a conductive material, and the shapes of the first electrode 12 and the second electrode 14 are not limited and may be a conductive film, a metal piece or a metal lead. Preferably, the first electrode 12 and the second electrode 14 are both 097125371 Form No. 1010101 Page 8 of 18 1003483784-0 1360521 100 years. December 27th revision _« page is a layer of conductive film. The thickness of the conductive film is from 0.5 nm to 100 μm. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ΑΤ0), conductive silver paste, conductive polymer or conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, chin, hexagram, bismuth or any combination thereof. In this embodiment, the material of the first electrode 12 and the second electrode 14 is a metal palladium film having a thickness of 5 nm. The metal palladium and the carbon nanotubes have better wetting effect, which facilitates good electrical contact between the first electrode 12 and the second electrode 14 and the heating layer 16, and reduces ohmic contact resistance. [0019] The first electrode 12 and the second electrode 14 may be disposed on the same surface of the heating layer 16 or on different surfaces of the heating layer 16. Alternatively, when the substrate 18 is not included in the surface heat source 10, the heating layer 16 may be fixed to the surfaces of the spaced first electrode 12 and the second electrode 14, and the first electrode 12 and the second electrode 14 are used for supporting heating. Layer 16. The first electrode 12 and the second electrode 14 are spaced apart to allow a certain resistance to be applied when the heating layer 16 is applied to the surface heat source 10 to avoid short circuit. Since the carbon nanotube layer as the heating layer 16 itself has good adhesion, the first electrode 12 and the second electrode 14 directly form a good electrical contact with the carbon nanotube layer [0020] In addition, the first electrode 12 and the second electrode 14 may also be disposed on the surface of the heating layer 16 through a conductive adhesive (not shown), and the conductive adhesive realizes the first electrode 12 and the first electrode The first electrode 12 and the second electrode 14 may also be better fixed to the surface of the heating layer 16 while the second electrode 14 is in electrical contact with the heating layer 16. The preferred conductive adhesive of this embodiment is silver plastic 〇 097125371 Form No. 101 0101 Page 9 / 18 pages 1003483784-0 1360521 100 years. December 27 B correction replacement page [0021] It can be understood that 'the first electrode 12 and the first The structure and material of the two electrodes 14 are not limited, and the purpose of the arrangement is to cause an electric current to flow in the heating layer 16. Therefore, it is within the scope of the present invention that the first electrode 12 and the second electrode 14 need only be electrically conductive and form electrical contact with the heating layer 16. [0022] The insulating protective layer 15 is an optional structure, and the material thereof is an insulating material, such as rubber, resin, etc. The thickness of the insulating protective layer 15 is not limited, and may be selected according to actual conditions. The insulating protective layer 15 covers the first electrode 12, the second electrode 14, and the heating layer 16, so that the surface heat source 10 can be used in an insulated state, and the nano layer in the heating layer 16 can also be avoided. The carbon nanotubes adsorb foreign impurities. In this embodiment, the material of the insulating layer 15 is rubber, and the thickness thereof is 〜. 5~2 mm. [0023] When the surface heat source 1〇 of the embodiment of the present invention is used, the surface heat source 10 may be first used. The first electrode 12 and the second electrode 14 are connected to the power supply after connecting the wires. The carbon nanotube layer in the heat source 10 behind the power source can radiate electromagnetic waves of a certain wavelength range. The surface heat source 1〇 is in direct contact with the surface of the object to be heated. Alternatively, since the carbon nanotubes in the carbon nanotube layer as the heating layer 16 in the present embodiment have good electrical conductivity, and the carbon nanotube layer itself has a certain self-supporting property and stability, The surface heat source 10 can be disposed at a certain distance from the object to be heated. [0024] The surface heat source 1 in the embodiment of the present invention can radiate electromagnetic waves of different wavelength ranges by adjusting the magnitude of the power supply voltage and the thickness of the carbon nanotube layer when the area of the carbon nanotube layer is constant. When the power supply voltage is constant, the thickness of the carbon nanotube layer is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source. That is, when the power supply voltage is constant, the thickness of the carbon nanotube layer is thicker. The shorter the wavelength of the electromagnetic wave radiated from the surface heat source 10, the surface heat source 10 097125371 Form No. A0101 Page 10 / 18 pages 1003483784-0 1360521 100 years On December 27, a visible light radiation can be generated according to the positive replacement page; the thinner the thickness of the carbon nanotube layer, the longer the wavelength of the electromagnetic wave emitted by the surface heat source 10, and the surface heat source 10 can generate an infrared heat radiation. When the thickness of the carbon nanotube layer is constant, the magnitude of the power supply voltage is inversely proportional to the wavelength of the electromagnetic wave 10 depending on the wavelength of the electromagnetic wave. When the thickness of the carbon nanotube layer is constant, the power supply voltage is increased, and the surface heat source 10 emits electromagnetic waves. The shorter the wavelength, the surface heat source 10 can generate a visible light heat radiation; the smaller the power source voltage, the longer the wavelength of the electromagnetic wave emitted by the surface heat source 10, the surface heat source 10 can generate an infrared heat ray. [0025] The carbon nanotubes have good electrical conductivity and thermal stability, and have a relatively high heat radiation efficiency as an ideal black body structure. The surface heat source 10 is exposed to an oxidizing gas or an atmosphere, wherein the thickness of the carbon nanotube layer is 5 mm. By adjusting the power supply voltage at 10 volts to 30 volts, the surface heat source 10 can be lightly emitted for a longer wavelength. Electromagnetic waves. The temperature of the surface heat source 10 was found to be 50 ° C to 500 ° C by a temperature measuring instrument. For an object with a black body structure, the temperature corresponding to the temperature of 200 ° C ~ 450 ° C can produce invisible heat radiation (infrared), the heat radiation at this time is the most stable and efficient. The heating element made of the carbon nanotube layer can be applied to electric heaters, infrared therapeutic devices, electric heaters and the like. Further, the surface heat source 10 in the embodiment of the present technical solution is placed in a vacuum device, and the surface heat source 10 can radiate electromagnetic waves having a short wavelength by adjusting the power supply voltage at 80 volts to 150 volts. When the power supply voltage is greater than 150 volts, the surface heat source 10 gradually emits visible light such as red light or yellow light. It is found by the temperature measuring instrument that the temperature of the surface heat source 10 can reach above 1 500 ° C, and a normal heat radiation is generated. As the power supply voltage is further increased, the surface heat source 10 can also generate rays that are invisible to the human eye that kill bacteria (Purple 097125371 Form No. A0101 Page 11/18 pages 1003483784-0 1360521 100 years. December 27th Nuclear It is used to replace the external light) and can be applied to fields such as light sources and display devices. [0027] The surface heat source has the following advantages: First, since the carbon nanotube has good strength and toughness, the strength of the carbon nanotube layer is large, and the carbon nanotube layer has good flexibility and is not easily broken. It has a long service life. Secondly, the carbon nanotubes in the carbon nanotube layer are evenly distributed, the carbon nanotube layer has a uniform thickness and electrical resistance, the heat is uniform, and the electric heat conversion efficiency of the carbon nanotubes is high, so the heat source of the surface has a rapid temperature rise. The characteristics of small thermal hysteresis, fast heat exchange rate and high radiation efficiency. Third, the diameter of the carbon nanotubes is small, so that the carbon nanotube layer has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. Fourth, the carbon nanotube layer may include a carbon nanotube composite structure formed by at least one carbon nanotube film and a plurality of carbon nanotube long lines overlapping each other, wherein the long carbon nanotubes are parallel or cross-connected to provide a certain Supporting effect makes the carbon nanotube composite structure have better toughness. Fifth, the carbon nanotube layer can be further processed by drawing from the carbon nanotube array, and the method is simple and favorable for the production of a large-area heat source. [0028] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included in the following application. BRIEF DESCRIPTION OF THE DRAWINGS [0029] FIG. 1 is a schematic structural view of a surface heat source according to an embodiment of the present technical solution. 2 is a cross-sectional view of the Π-Π of FIG. 1. 097125371 Form No. A0101 Page 12 of 18 1003483784-0 1360521 100. December 2> Japanese Nuclear Front Page [0031] FIG. 3 is a partially enlarged schematic view of the ordered carbon nanotube film of the embodiment of the present technical solution. . [Main component symbol description] Surface heat source: 10 [0033] First electrode: 12 [0034] Second electrode: 14 [0035] Insulating protective layer: 15 [0036] Heating layer: 16 [0037] Nano carbon Tube film: 161 [0038] Nano carbon tube bundle: 162 [0039] Nano carbon tube: 16 3 [0040] Reflective layer: 17 [0041] Substrate: 18 097125371 Form No. A0101 Page 13 / Total 18 Page 1003483784-0