1380734 101年.10月17日梭正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明步及一種線熱源,尤其涉及一種基於奈米碳管的 線熱源。 【先前技術】 [0002] 熱源於人們的生產、生活、科研中起著重要的作用。線 熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外 治療儀、電暖益專領域。 Φ [0003] 請參見圖1,先前技術提供一種線熱源10,其包括一中空 圓柱狀支架102 ; —加熱層104設置於該支架102表面, 一絕緣保護層106設置於該加熱層104表面;兩個電極 110分別設置於支架102兩端,且與加熱層104電連接; 兩個夾緊件108分別將兩個電極110與加熱層104卡固於 支架102兩端。其中,電極110通常採用一金屬片、金屬 絲、金屬膜、銦錫氧化物(ITO)層、銻錫氧化物(ΑΤΟ )層、導電銀膠層或導電聚合物層等。當通過兩個電極 • 110對該線熱源10施加一電壓時,所述電熱層104產生焦 耳熱,並向周圍進行熱輻射〇 然而,採用金屬片、 金屬絲、金屬膜、銦錫氧化物(ΙΤ0)層、銻錫氧化物( ΑΤΟ)層、導電銀膠層或導電聚合物層作為線熱源的電極 具有以下缺點:第一,該電極的電阻率較大,故,對電 能的損耗也較大。第二,該電極的柔韌性及機械強度差 ,長期折疊容易斷裂,使用壽命短,不易應用於柔性線 熱源。第三,該電極的密度較大,重量大,使用不便。 1013396804-0 [0004] 有鑒於此,提供一種電極的電阻率較小,柔韌性及機械 09712828产'單編號Α0101 第3頁/共23頁 1380734 __ 101年10月17日核正替换頁 強度高,長期折疊不易斷裂,且密度小,重量輕的線熱 源實為必要。 【發明内容】 [0005] 一種線熱源包括一線狀基底,一加熱層設置於線狀基底 的表面,以及兩個電極間隔設置於加熱層的表面,並分 別與該加熱層電連接,其中,所述電極中,至少一個電 極包括一奈米碳管結構。 [0006] 相較於先前技術,所述的線熱源具有以下優點:其一, 奈米碳管具有極好的導電性,故,該電極的電阻小,有 | 利於降低功耗,提高發熱效率。其二,奈米碳管的優異 的力學特性使得奈米碳管結構具有很好的柔韌性及機械 — 強度,故,採用奈米碳管結構作電極,可相應的提高線 熱源,尤其係柔性線熱源的耐用性,故,該線熱源使用 壽命長;其三,奈米碳管密度小,故,該線熱源重量輕 ,使用方便。 【實施方式】 [0007] 以下將結合附圖詳細說明本技術方案提供的線熱源。 [0008] 請參閱圖2至圖4,本技術方案實施例提供一種線熱源20 ,該線熱源20包括一線狀基底202 ; —反射層210設置於 該線狀基底202的表面;一加熱層204設置於所述反射層 210表面;兩個電極206間隔設置於該加熱層204的表面 ,且與該加熱層204電連接;以及一絕緣保護層208設置 於該加熱層204的表面。所述線熱源20的長度不限,直徑 為0. 1微米〜1. 5厘米。本實施例的線熱源20的直徑優選 為1. 1毫米〜1. 1厘米。 0971282# 單编號 A〇101 第4頁/共23頁 1013396804-0 1380734 101年10月17日梭正替換頁 [0009] 所述線狀基底202用於支撐加熱層204,其材料可為硬性 材料,如:陶免、玻璃、樹脂、石英等,亦可選擇柔性 材料,如:塑膠或柔性纖維等,用以使該線熱源20使用 時根據需要彎折成任意形狀。所述線狀基底202的長度、 直徑以及形狀不限,可依據實際需要進行選擇。本實施 例優選的線狀基底202為一陶瓷桿,其直徑為1毫米~1厘 米。 [0010] 所述反射層210的材料為一白色絕緣材料,如:金屬氧化 φ 物、金屬鹽或陶瓷等。本實施例中,反射層210的材料優 選三氧化二鋁,其厚度為100微米〜0. 5毫米。該反射層 210通過蒸發或濺射的方法沈積於該線狀基底202表面。 所述反射層210用來反射加熱層204所發的熱量,使其有 效的散發到外界空間去,故,該反射層210為一可選擇結 構。 [0011] 所述加熱層204的材料不限,其可為金屬絲層、電熱膜、 碳纖維層或奈米碳管層。當採用奈米碳管層作為加熱層 ® 204時,該奈米碳管層包括複數個均勻分佈的奈米碳管。 該奈米碳管層中的奈米碳管有序排列或無序排列。該奈 米碳管層的厚度為0. 01微米〜2毫米。該奈米碳管層中的 奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米 碳管中的一種或多種。所述單壁奈米碳管的直徑為0. 5奈 米〜10奈米,雙壁奈米碳管的直徑為1. 0奈米〜15奈米, 多壁奈米碳管的直徑為1. 5奈米〜50奈米。該奈米碳管的 長度為200~900微米。 [0012] 該奈米碳管層可包裹或纏繞於所述反射層210的表面,或 097128281^^ AQ1Q1 ^ 5 I / # 23 I 1013396804-0 1380734 101年10月17日梭正替換頁 通過黏結劑固定於所述反射層210的表面。可以理解,當 沒有反射層210時,該奈米碳管層可直接設置於線裝基底 202的表面。奈米碳管具有良好的導電性能以及熱穩定性 ,作為一理想的黑體結構,且具有比較高的熱輻射效率 [0013] 所述電極206可設置於加熱層204的同一表面上也可設置 於加熱層2 04的不同表面上,且與加熱層204電連接。所 述電極206可通過奈米碳管層的黏性或導電黏結劑(圖未 示)設置於該加熱層204的表面上。導電黏結劑於實現電 極206與奈米碳管層電接觸的同時,還可將電極206更好 地固定於奈米碳管層的表面上β通過該兩個電極206可對 加熱層204進行施加電壓。其中,兩個電極206之間相隔 設置,以使採用奈米碳管層的加熱層204通電發熱時接入 一定的阻值避免短路現象產生。優選地,將電極206環繞 設置於加熱層204的表面。 [0014] 所述的電極206中至少一個電極206包括一奈米碳管結構 。該奈米碳管結構設置於線裝基底202的兩端,並包裹或 纏繞於所述加熱層204的表面,或通過導電黏結劑固定於 所述加熱層204的表面,且與加熱層204電連接。該奈米 碳管結構中的奈米碳管包括單壁奈米碳管、雙壁奈米碳 管及多壁奈米碳管中的一種或多種。本實施例優選金屬 性奈米碳管。所述單壁奈米碳管的直徑為0. 5奈米〜10奈 米,雙壁奈米碳管的直徑為1.0奈米奈米,多壁奈米 碳管的直徑為1.5奈米〜50奈米。該奈米碳管的長度為大 於200微米。 單编號删1 第6頁/共23頁 1013396804-0 1380734 101年10月17日按正替換頁 [0015] 具體地,該奈米碳管結構包括一有序奈米碳管薄膜或至 少兩層重疊且交叉設置的有序奈米碳管薄膜,或至少一 奈米碳管長線。 [0016] • 當所述奈米碳管結構包括至少一有序奈米碳管薄膜時。 請參閱圖5,該有序奈米碳管薄膜可通過直接拉伸一奈米 碳管陣列獲得。該有序奈米碳管薄膜包括複數個沿拉伸 方向定向排列的奈米碳管。所述奈米碳管均勻分佈,且 0 平行於奈米碳管薄膜表面。具體地,請參閱圖6,所述有 序奈米碳管薄膜包括複數個首尾相連且長度相等的奈米 碳管束162。所述奈米碳管束162的兩端通過凡德瓦爾力 相互連接。每個奈米碳管束162包括複數個長度相等且平 行排列的奈米碳管163。所述相鄰的奈米碳管163之間通 過凡德瓦爾冷緊密結合。該奈米碳管的長度為200〜900微 米。故,該有序奈米碳管薄膜具有一定的柔韌性,可彎 曲折疊成任意形狀而不破裂,且採用該有序奈米碳管薄 膜的電極260具有較長的使用壽命。 Φ [0017] 所述有序奈米碳管薄膜係由奈米碳管陣列經進一步處理 得到的,故其長度不限,寬度及奈米碳管陣列所生長的 基底的尺寸有關,可根據實際需求制得。本實施例中, 採用氣相沈積法於4英寸的基底生長超順排奈米碳管陣列 ^所述有序奈米碳管薄膜的寬度可為0. 01厘米~10厘米, 厚度為0. 01微米〜100微米。有序奈米碳管薄膜的厚度優 選為0. 1微米〜10微米。 [0018] 另,所述有序奈米碳管薄膜還可包括複數個平行排列的 長奈米碳管。該長奈米碳管的長度為1厘米~5厘米,直徑 097128281^^^^ A〇101 1013396804-0 第7頁/共23頁 1380734 _- 101年10月17日核正替换頁 為0. 5奈米〜50奈米。由於該長奈米碳管為單根奈米碳管 ,故,其電阻更小。故,採用該有序奈米碳管薄膜設置 於反射層210或加熱層204的表面做電極206,可更有效 的傳導電流,減少電能的損耗。 [0019] 當所述奈米碳管結構包括至少兩層重疊設置的有序奈米 碳管薄膜時,相鄰的有序奈米碳管薄膜之間通過凡德瓦 爾力緊密結合。進一步,該奈米碳管結構中的有序奈米 〇 碳管薄膜的層數不限,且相鄰兩層有序奈米碳管薄膜之 間具有一交叉角度α90度,具體可依據實際需 _ 求製備。由於該有序奈米碳管薄膜中的奈米碳管沿同一 方向定向排列,故,於奈米碳管排列方向具有優異的導 電性。本實施例通過改變相鄰兩層有序奈米碳管薄膜之 間的交叉角度α,可使得該奈米碳管結構於各個方向都 具有優異的導電性。本實施例中,優選交叉角度α =90度 〇 [0020] 當所述奈米碳管結構包括至少一奈米碳管長線時,該奈 米碳管長線纏繞於反射層210或加熱層204的表面。所述 € 奈米碳管長線可通過直接拉伸一奈米碳管陣列獲得或拉 伸一奈米碳管陣列後經過扭轉紡紗獲得。所述奈米碳管 長線的直徑為1奈米〜100微米,其長度不限,可根據實際 需求制得。請參見圖7及圖8,所述奈米碳管長線包括複 數個首尾相連的奈米碳管束平行地組成的束狀結構或由 複數個首尾相連的奈米碳管束相互扭轉組成的絞線結構 。該相鄰的奈米碳管束之間通過凡德瓦爾力緊密結合, 該奈米碳管束包括複數個首尾相連且定向排列的奈米碳 097128280编號删1 第8頁/共23頁 1013396804-0 1380734 101年.10月17日梭正替換頁 管。該奈米碳管的長度為200〜900微米。故,奈米碳管長 線具有一定的柔韌性。 [0021] 所述奈米碳管結構還可包括複數個奈米碳管長線,且複 數個奈米碳管長線交叉且重疊設置於加熱層204的表面。 該奈米碳管結構的長度、寬度以及厚度不限,可根據實 際需要製備"由於奈米碳管長線具有一定的柔韌性,故 ,該奈米碳管結構可彎曲折疊成任意形狀而不破裂。 [0022] 由於該奈米碳管長線中的奈米碳管沿著奈米碳管長線的 長度方向排列,故,該奈米碳管長線沿著長度方向具有 較小的電阻。故,將該奈米碳管長線纏繞於加熱層204的 表面做電極206,可有效的傳導電流,節約電能。 [0023] 當只有一個電極206包括一奈米碳管結構時,另一電極 206採用金屬片金屬絲、金屬膜或導電膠層等。本實施例 優選地,兩個電極206都採用奈米碳管結構製作,且該奈 米碳管結構包括重疊且交叉設置的50層有序奈米碳管薄 膜,相鄰兩層有序奈米碳管薄膜之間交叉的角度為90度 。該奈米碳管結構中有序奈米碳管薄膜的長度為1厘米, 寬度為1厘米,厚度為30微米。本實施例將兩個上述奈米 碳管結構分別間隔包裹於加熱層204的表面。由於奈米碳 管結構良好的導電性,使得奈米碳管結構與加熱層204之 間形成良好的電連接。 [0024] 本實施例中,加熱層204採用奈米碳管層。兩個電極206 都採用採用重疊且交叉設置的10層有序奈米碳管薄膜, 相鄰兩層有序奈米碳管薄膜之間交叉的角度為90度。該 0971282#單編號 A_ 第9頁/共23頁 1013396804-0 1380734 101年10月17日核正替换頁 結構可減小加熱層204與電極206之間的歐姆接觸電阻, 提高對電能的利用率。 [0025] 所述絕緣保護層208的材料為一絕緣材料,如:橡膠、樹 脂等。所述絕緣保護層208厚度不限,可根據實際情況選 擇。本實施例中,該絕緣保護層208的材料採用橡膠,其 厚度為0. 5〜2毫米。該絕緣保護層208可通過塗敷或包裹 的方法形成於加熱層204的表面。所述絕緣保護層208用 來防止該線熱源20使用時與外界形成電接觸,同時還可 防止加熱層204中的奈米碳管層吸附外界雜質。該絕緣保 護層208為一可選擇結構。 [0026] 該線熱源20使用時,可將其設置於所要加熱的物體表面 或將其與被加熱的物體間隔設置,利用其熱輻射即可進 行加熱。另,還可將複數個該線熱源20排列成各種預定 的圖形使用。該線熱源20可廣泛應用於電加熱器、紅外 治療儀、電暖器等領域。 [0027] 所述的線熱源20具有以下優點:其一,奈米碳管具有較 低的電阻率,故,該電極206的電阻小,有利於節約電能 。其二,奈米碳管的優異的力學特性使得奈米碳管結構 具有很好的柔韌性及機械強度,故,採用奈米碳管結構 作電極206,可相應的提高線熱源20,尤其係柔性線熱源 20的耐用性,故,該線熱源20使用壽命長;其三,奈米 碳管密度小,故,該線熱源20重量輕,使用方便。其四 ,加熱層204採用奈米碳管層,該奈米碳管層具有較高的 電熱轉換效率。其五,加熱層204採用奈米碳管層,電極 206採用奈米碳管結構,可減小加熱層204與電極206之 1013396804-0 097128281^單编號A0101 第10頁/共23頁 1380734 ιοί 年·ι〇 月 i7i 間的歐姆接觸電阻,提高對電能的利用率。 [0028]另,本實施例中,由於奈米碳管具有奈米级的直徑,使 得製備的奈米碳管結構可具有較小的厚度,故,採用小 直徑的線狀基底可製備微型線熱源。奈米碳管具有強的 抗腐蝕性’使其可於酸性環境中工作。而且,奈米碳管 具有極強的穩定性,即使於300(TC以上高溫的真空環境 下工作而不會分解,使該線熱源20適合於真空高溫下工 作。另’奈米碳管比同體積的鋼強度高1〇〇倍,重量卻只 ^ 有其1/6 ’故,採用奈米碳管的線熱源20具有更高的強户 及更輕的重量。 [0029] 綜上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡孰采本 技藝之人士援依本發明之精神所作之等致修娜戈變化〃 皆應涵蓋於以下申請專利範圍内。 • [0030] 【圖式簡單說明】 圖1為先前技術的線熱源的結構示意圖》 [0031] 圖2為本技術方案實施例的線熱源的結構示专圖 [0032] 圖3為圖2的線熱源沿線m - Π的剖面示意圖。 [0033] 圖4為圖3的線熱源沿線IV-IV的剖面示意圖。 [0034] 圖5為本技術方案實施例的奈米碳管薄膜的拉 、叩卸描電鏡照片 〇 [0035] 圖6為本技術方案實施例的奈米碳管薄膜沾 、的。卩分故大結構 097128281^^^^ A0101 第11頁/共23頁 1013396804-0 1380734 101年10月17日修正替換頁 示意圖。 [0036] 圖7為本技術方案實施例的束狀結構的奈米碳管長線的掃 描電鏡照片。 [0037] 圖8為本技術方案實施例的絞線結構的奈米碳管長線的掃 描電鏡照片。 【主要元件符號說明】 [0038] 線熱源:10,20 [0039] 支架:102 • [0040] 加熱層:104,204 [0041] 保護層:106 - [0042] 夾緊件:108 [0043] 電極:110,206 [0044] 線狀基底:202 [0045] 絕緣保護層:208 [0046] 反射層:210 [0047] 奈米碳管束:162 [0048] 奈米碳管:163 09712828产單编號 A〇101 第12頁/共23頁 1013396804-01380734 101. October 17th Shuttle Replacement Page VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a line heat source, and more particularly to a line heat source based on a carbon nanotube. [Prior Art] [0002] Heat plays an important role in people's production, life, and scientific research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heating and heating fields. Φ [0003] Referring to FIG. 1 , the prior art provides a line heat source 10 including a hollow cylindrical bracket 102; a heating layer 104 is disposed on the surface of the bracket 102, and an insulating protective layer 106 is disposed on the surface of the heating layer 104; The two electrodes 110 are respectively disposed at two ends of the bracket 102 and electrically connected to the heating layer 104. The two clamping members 108 respectively fix the two electrodes 110 and the heating layer 104 to both ends of the bracket 102. The electrode 110 is usually made of a metal piece, a metal wire, a metal film, an indium tin oxide (ITO) layer, a bismuth tin oxide layer, a conductive silver paste layer or a conductive polymer layer. When a voltage is applied to the line heat source 10 through the two electrodes 110, the electrothermal layer 104 generates Joule heat and conducts heat radiation to the surroundings. However, a metal piece, a wire, a metal film, indium tin oxide is used ( The electrode of the ΙΤ0) layer, the antimony tin oxide layer, the conductive silver paste layer or the conductive polymer layer as the line heat source has the following disadvantages: First, the resistivity of the electrode is large, so the loss of electric energy is also compared. Big. Second, the electrode has poor flexibility and mechanical strength, long-term folding is easy to break, and has a short service life, and is not easily applied to a flexible line heat source. Third, the electrode has a large density, a large weight, and is inconvenient to use. 1013396804-0 [0004] In view of this, there is provided a small resistivity of the electrode, flexibility and mechanical 09712828 production 'single number Α 0101 page 3 / total 23 pages 1380734 __ October 17th, the nuclear replacement page strength is high Long-term folding is not easy to break, and the line heat source with low density and light weight is really necessary. SUMMARY OF THE INVENTION [0005] A line heat source includes a linear substrate, a heating layer is disposed on the surface of the linear substrate, and two electrodes are spaced apart from the surface of the heating layer, and are electrically connected to the heating layer, respectively, At least one of the electrodes includes a carbon nanotube structure. Compared with the prior art, the line heat source has the following advantages: First, the carbon nanotube has excellent conductivity, so the resistance of the electrode is small, and the power consumption is reduced, and the heat generation efficiency is improved. . Secondly, the excellent mechanical properties of the carbon nanotubes make the carbon nanotube structure have good flexibility and mechanical strength. Therefore, using the carbon nanotube structure as the electrode can increase the line heat source, especially the flexibility. The durability of the line heat source, therefore, the line heat source has a long service life; thirdly, the carbon nanotube density is small, so the line heat source is light in weight and convenient to use. Embodiments [0007] Hereinafter, a line heat source provided by the present technical solution will be described in detail with reference to the accompanying drawings. 2 to FIG. 4, an embodiment of the present technical solution provides a line heat source 20 including a linear substrate 202; a reflective layer 210 disposed on a surface of the linear substrate 202; and a heating layer 204. The electrodes are disposed on the surface of the reflective layer 210; the two electrodes 206 are spaced apart from the surface of the heating layer 204 and electrically connected to the heating layer 204; and an insulating protective layer 208 is disposed on the surface of the heating layer 204. 5厘米。 The length of the wire is 0. 1 micron ~ 1. 5 cm. 1厘米〜1. 1厘米。 The diameter of the linear heat source 20 is preferably 1. 1 mm ~ 1. 1 cm. 0971282# Single No. A〇101 Page 4/Total 23 Page 1013396804-0 1380734 October 17th, 2011 Shuttle Replacement Page [0009] The linear substrate 202 is used to support the heating layer 204, and the material thereof may be rigid. Materials such as ceramics, glass, resin, quartz, etc., may also be selected as flexible materials, such as plastic or flexible fibers, to bend the line heat source 20 into any shape as needed. The length, diameter and shape of the linear substrate 202 are not limited and can be selected according to actual needs. The preferred linear substrate 202 of this embodiment is a ceramic rod having a diameter of from 1 mm to 1 cm. [0010] The material of the reflective layer 210 is a white insulating material such as a metal oxide φ material, a metal salt or a ceramic. 5毫米。 The thickness of the material is preferably from 100 micrometers to 0. 5 millimeters. The reflective layer 210 is deposited on the surface of the linear substrate 202 by evaporation or sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 204 to be effectively radiated to the external space. Therefore, the reflective layer 210 is an optional structure. [0011] The material of the heating layer 204 is not limited, and may be a wire layer, an electric heating film, a carbon fiber layer or a carbon nanotube layer. When a carbon nanotube layer is used as the heating layer ® 204, the carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes in the carbon nanotube layer are ordered or disorderly arranged. The thickness of the carbon nanotube layer is 0.01 μm to 2 mm. The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, and the diameter of the double-walled carbon nanotube is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon nanotube is 1. 5 nm ~ 50 nm. The carbon nanotubes have a length of 200 to 900 microns. [0012] The carbon nanotube layer may be wrapped or wound around the surface of the reflective layer 210, or 097128281^^ AQ1Q1 ^ 5 I / # 23 I 1013396804-0 1380734 October 17th, the shuttle is replacing the page by bonding The agent is fixed to the surface of the reflective layer 210. It will be understood that when there is no reflective layer 210, the carbon nanotube layer can be disposed directly on the surface of the wire substrate 202. The carbon nanotube has good electrical conductivity and thermal stability as an ideal black body structure and has relatively high heat radiation efficiency. [0013] The electrode 206 may be disposed on the same surface of the heating layer 204 or may be disposed on The different layers of the heating layer 206 are electrically connected to the heating layer 204. The electrode 206 may be disposed on the surface of the heating layer 204 via a viscous or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive can also better fix the electrode 206 to the surface of the carbon nanotube layer while the electrode 206 is in electrical contact with the carbon nanotube layer. β can be applied to the heating layer 204 through the two electrodes 206. Voltage. Wherein, the two electrodes 206 are spaced apart to allow a certain resistance value to be avoided when the heating layer 204 using the carbon nanotube layer is energized and heated to avoid short circuit. Preferably, the electrode 206 is disposed around the surface of the heating layer 204. [0014] At least one of the electrodes 206 includes a carbon nanotube structure. The carbon nanotube structure is disposed at two ends of the wire substrate 202 and wrapped or wound around the surface of the heating layer 204, or fixed to the surface of the heating layer 204 by a conductive adhesive, and electrically connected to the heating layer 204. . The carbon nanotubes in the carbon nanotube structure include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. This embodiment is preferably a metallic carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, the diameter of the double-walled carbon nanotube is 1.0 nm, and the diameter of the multi-walled carbon nanotube is 1.5 nm to 50. Nano. The carbon nanotubes have a length greater than 200 microns. Single Number Delete 1 Page 6 / Total 23 Page 1013396804-0 1380734 October 17th, 101, according to the replacement page [0015] Specifically, the carbon nanotube structure comprises an ordered carbon nanotube film or at least two An ordered carbon nanotube film with overlapping and intersecting layers, or at least one nanometer carbon tube long line. [0016] when the carbon nanotube structure comprises at least one ordered carbon nanotube film. Referring to Figure 5, the ordered carbon nanotube film can be obtained by directly stretching a carbon nanotube array. The ordered carbon nanotube film comprises a plurality of carbon nanotubes oriented in the direction of stretching. The carbon nanotubes are evenly distributed and 0 is parallel to the surface of the carbon nanotube film. Specifically, referring to Fig. 6, the ordered carbon nanotube film comprises a plurality of carbon nanotube bundles 162 connected end to end and of equal length. Both ends of the carbon nanotube bundle 162 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 162 includes a plurality of carbon nanotubes 163 of equal length and parallel arrangement. The adjacent carbon nanotubes 163 are tightly bonded by van der Waals cooling. The carbon nanotubes have a length of 200 to 900 micrometers. Therefore, the ordered carbon nanotube film has a certain flexibility, can be bent and folded into an arbitrary shape without cracking, and the electrode 260 using the ordered carbon nanotube film has a long service life. Φ [0017] The ordered carbon nanotube film is obtained by further processing the carbon nanotube array, so the length is not limited, and the width and the size of the substrate on which the carbon nanotube array is grown may be related to actual needs. be made of. 01厘米至10厘米的厚度。 The thickness of the 0. 01 cm ~ 10 cm, the thickness of 0. 01 cm ~ 10 cm, the thickness of the ordered carbon nanotube film. 01 micron to 100 micron. The thickness of the ordered carbon nanotube film is preferably from 0.1 μm to 10 μm. [0018] In addition, the ordered carbon nanotube film may further include a plurality of long carbon nanotubes arranged in parallel. The length of the long carbon nanotube is 1 cm ~ 5 cm, the diameter of 097128281 ^ ^ ^ ^ A 〇 101 1013396804-0 page 7 / a total of 23 pages 1380734 _- October 17, 101 nuclear replacement page is 0. 5 nm ~ 50 nm. Since the long carbon nanotube is a single carbon nanotube, its electrical resistance is smaller. Therefore, the ordered carbon nanotube film is disposed on the surface of the reflective layer 210 or the heating layer 204 as the electrode 206, which can conduct current more effectively and reduce the loss of electric energy. [0019] When the carbon nanotube structure comprises at least two layers of ordered carbon nanotube films disposed one on top of the other, the adjacent ordered carbon nanotube films are tightly bonded by van der Waals forces. Further, the number of layers of the ordered nano-carbon tube film in the carbon nanotube structure is not limited, and the adjacent two layers of ordered carbon nanotube film have a crossing angle of α90 degrees, which may be according to actual needs. _ Seek preparation. Since the carbon nanotubes in the ordered carbon nanotube film are aligned in the same direction, they have excellent electrical conductivity in the direction in which the carbon nanotubes are arranged. In this embodiment, the carbon nanotube structure can be made to have excellent electrical conductivity in all directions by changing the crossing angle α between adjacent two ordered ordered carbon nanotube films. In this embodiment, preferably, the intersection angle α=90 degrees 〇[0020] When the carbon nanotube structure includes at least one nano carbon tube long line, the nano carbon tube long line is wound around the reflective layer 210 or the heating layer 204. surface. The long line of the carbon nanotubes can be obtained by directly stretching a carbon nanotube array or stretching a carbon nanotube array and then twisting and spinning. The long diameter of the carbon nanotubes is from 1 nm to 100 μm, and the length thereof is not limited, and can be prepared according to actual needs. Referring to FIG. 7 and FIG. 8 , the long carbon nanotube line includes a bundle structure in which a plurality of end-to-end carbon nanotube bundles are parallel or a twisted wire structure composed of a plurality of end-to-end carbon nanotube bundles twisted to each other. . The adjacent carbon nanotube bundles are tightly coupled by van der Waals force, and the carbon nanotube bundles comprise a plurality of end-to-end aligned carbon nanotubes 097128280 numbered 1 Page 8 / 23 pages 1013396804-0 1380734 101. On October 17th, Shuttle is replacing the page tube. The carbon nanotubes have a length of 200 to 900 microns. Therefore, the long carbon nanotube line has a certain flexibility. [0021] The carbon nanotube structure may further include a plurality of carbon nanotube long lines, and a plurality of carbon nanotube long lines intersect and overlap the surface of the heating layer 204. The length, width and thickness of the carbon nanotube structure are not limited, and can be prepared according to actual needs. Since the long carbon nanotube has a certain flexibility, the carbon nanotube structure can be bent and folded into any shape without rupture. [0022] Since the carbon nanotubes in the long line of the carbon nanotubes are arranged along the length of the long line of the carbon nanotubes, the long carbon nanotubes have a small electrical resistance along the length direction. Therefore, the long carbon wire of the nano carbon tube is wound around the surface of the heating layer 204 to form an electrode 206, which can effectively conduct current and save electrical energy. [0023] When only one electrode 206 includes a carbon nanotube structure, the other electrode 206 is a metal sheet metal wire, a metal film or a conductive adhesive layer or the like. In this embodiment, preferably, the two electrodes 206 are all made of a carbon nanotube structure, and the carbon nanotube structure comprises a 50-layer ordered carbon nanotube film which is overlapped and cross-connected, and two adjacent layers of ordered carbon nanotubes. The angle of intersection between the carbon tube films is 90 degrees. The ordered carbon nanotube film in the carbon nanotube structure has a length of 1 cm, a width of 1 cm, and a thickness of 30 μm. In this embodiment, two of the above-mentioned carbon nanotube structures are separately wrapped around the surface of the heating layer 204. Due to the good electrical conductivity of the carbon nanotube structure, a good electrical connection is made between the carbon nanotube structure and the heating layer 204. [0024] In this embodiment, the heating layer 204 is a carbon nanotube layer. Both electrodes 206 are formed by overlapping and intersecting 10 layers of ordered carbon nanotube film, and the angle between the adjacent two layers of ordered carbon nanotube film is 90 degrees. The 0971282# single number A_ page 9 / 23 pages 1013396804-0 1380734 October 17th, 101 nuclear replacement page structure can reduce the ohmic contact resistance between the heating layer 204 and the electrode 206, improve the utilization of electrical energy . [0025] The material of the insulating protective layer 208 is an insulating material such as rubber, resin, or the like. The thickness of the insulating protective layer 208 is not limited and may be selected according to actual conditions. 5〜2毫米。 The thickness of the material is 0. 5~2 mm. The insulating protective layer 208 can be formed on the surface of the heating layer 204 by a coating or wrapping method. The insulating protective layer 208 is used to prevent the line heat source 20 from making electrical contact with the outside when in use, and also prevents the carbon nanotube layer in the heating layer 204 from adsorbing foreign impurities. The insulating protective layer 208 is an optional structure. When the line heat source 20 is in use, it can be placed on the surface of the object to be heated or spaced from the object to be heated, and can be heated by the heat radiation. Alternatively, a plurality of the line heat sources 20 may be arranged for use in various predetermined patterns. The line heat source 20 can be widely used in the fields of electric heaters, infrared therapeutic devices, electric heaters and the like. [0027] The line heat source 20 has the following advantages: First, the carbon nanotube has a lower electrical resistivity, so that the resistance of the electrode 206 is small, which is conducive to saving electrical energy. Secondly, the excellent mechanical properties of the carbon nanotubes make the carbon nanotube structure have good flexibility and mechanical strength. Therefore, the use of a carbon nanotube structure as the electrode 206 can correspondingly improve the line heat source 20, especially The durability of the flexible wire heat source 20 is such that the wire heat source 20 has a long service life; thirdly, the carbon nanotube has a low density, so the wire heat source 20 is light in weight and convenient to use. Fourth, the heating layer 204 adopts a carbon nanotube layer, and the carbon nanotube layer has a high electrothermal conversion efficiency. Fifthly, the heating layer 204 adopts a carbon nanotube layer, and the electrode 206 adopts a carbon nanotube structure, which can reduce the heating layer 204 and the electrode 206 by 1013396804-0 097128281^ single number A0101 page 10 / total 23 pages 1380734 ιοί The ohmic contact resistance between the years ι〇月 i7i improves the utilization of electric energy. [0028] In addition, in the embodiment, since the carbon nanotube has a diameter of a nanometer, the prepared carbon nanotube structure can have a small thickness, so a microwire can be prepared by using a small diameter linear substrate. Heat source. The carbon nanotubes have strong corrosion resistance, making them work in an acidic environment. Moreover, the carbon nanotubes have extremely strong stability, and even if they work in a vacuum environment of 300 or higher temperature, they do not decompose, so that the line heat source 20 is suitable for working under vacuum high temperature. The volume of the steel is 1 times higher than the weight, but the weight is only 1/6'. Therefore, the line heat source 20 using the carbon nanotubes has a higher strength and lighter weight. [0029] 'The invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above is only a preferred embodiment of the invention, and it is not possible to limit the scope of the patent application of the present invention. The changes made by the person in accordance with the spirit of the present invention should be covered by the following patent application. [0030] [Simplified Schematic] FIG. 1 is a schematic diagram of the structure of the prior art line heat source [0031] 2 is a schematic view showing the structure of a line heat source according to an embodiment of the present invention. [0032] FIG. 3 is a cross-sectional view of the line heat source of FIG. 2 along line m - 。. [0033] FIG. 4 is a line heat source along line IV- of FIG. A schematic cross-sectional view of IV. [0034] FIG. 5 is a technical solution of the present invention. [0035] FIG. 6 is a view of a carbon nanotube film of the embodiment of the present invention. The structure of the carbon nanotube film is 097128281^^^^ A0101 11 pages/total 23 pages 1013396804-0 1380734 A schematic diagram of a modified replacement page on October 17, 2011. [0036] FIG. 7 is a scanning electron micrograph of a long carbon nanotube tube of a bundle structure according to an embodiment of the present invention. 8 is a scanning electron micrograph of a long carbon nanotube wire of a stranded wire structure according to an embodiment of the present invention. [Main component symbol description] [0038] Line heat source: 10, 20 [0039] Bracket: 102 • [0040] Heating layer : 104, 204 [0041] Protective layer: 106 - [0042] Clamping member: 108 [0043] Electrode: 110, 206 [0044] Linear substrate: 202 [0045] Insulating protective layer: 208 [0046] Reflecting layer: 210 [0047] Nano carbon tube bundle: 162 [0048] Nano carbon tube: 163 09712828 Production order No. A 〇 101 Page 12 / Total 23 1013396804-0