1380730 101年.10月18日梭正替換頁1380730 101. October 18 shuttle replacement page
發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種面熱源,尤其涉及一種基於奈米碳管的 面熱源。 【先前技術】 [0002] 熱_在人們的生產、生活、科研中起著重要的作用。面 熱源係熱源的一種,其特點為面熱源具有一平面結構, 將待加熱物體置於該平面結構的上方對物體進行加熱, 故,面熱源可對待加熱物體的各個部位同時加熱,加熱 面廣、加熱均勻且效率較高。面熱源已成功用於工業領 域、科研領域或生活領域等,如電加熱器、紅外治療儀 、電暖器等。 [0003] 先前面熱源一般包括一加熱層和至少兩個電極,該至少 兩個電極設置於該加熱層的表面,並與該加熱層的表面 電連接。當連接加熱層上的電極通入低電壓電流時,熱 量立刻從加熱層釋放出來。現在市售的面熱源通常採用 金屬製成的電熱絲作為加熱層進行電熱轉換。然而,電 熱絲的強度不高易於折斷,特別係彎曲或繞折成一定角 度時,故應用受到限制。另,以金屬製成的電熱絲所產 生的熱量係以普通波長向外輻射的,其電熱轉換效率不 高不利於節省能源。 [0004] 非金屬碳纖維導電材料的發明為面熱源的發展帶來了突 破。採用碳纖維的加熱層通常在碳纖維外部塗覆一層防 水的絕緣層用作電熱轉換的元件以代替金屬電熱絲。由 . 於碳纖維具有較好的韌性,這在一定程度上解決了電熱 09713_(P編號廳01 第3頁/共17頁 1013399290-0 1380730 101年10月18日核正替換頁 絲強度不高易折斷的缺點。然而,由於碳纖維仍係以普 通波長向外散熱,故並未解決電熱轉換率低的問題。為 解決上述問題,採用碳纖維的加熱層一般包括多根碳纖 維熱源線鋪設而成。該碳纖維熱源線為一外表包裹有化 纖或者棉線的導電忍線。該化纖或者棉線的外面浸塗一 層防水阻燃絕緣材料。所述導電芯線由多根碳纖維與多 根表面黏塗有遠紅外塗料的棉線缠繞而成。導電芯線中 加入黏塗有遠紅外塗料的棉線,一來可增強芯線的強度 ,二來可使通電後碳導纖維發出的熱量能以紅外波長向 外輻射。 [0005] 然而,採用碳纖維紙作為加熱層具有以下缺點:第一, 碳纖維強度不夠大,柔性不夠好,容易破裂,需要加入 棉線提高碳纖維的強度,限制了其應有範圍;第二,碳 纖維本身的電熱轉換效率較低,需加入黏塗有遠紅外塗 料的棉線提高電熱轉換效率,不利於節能環保;第三, 需先製成碳纖維熱源線再製成加熱層,不利於大面積製 作,不利於均勻性的要求,同時,不利於微型面熱源的 製作。 [0006] 有鑒於此,提供一種具有強度大,電熱轉換效率較高, 有利於節省能源且發熱均勻,大小可控,可製成大面積 或者微型的面熱源實為必要。 【發明内容】 [0007] —種面熱源,其包括:一基底;一加熱層,該加熱層設 置於該基底的表面;至少兩電極間隔設置且分別與該加 熱層電接觸,其中,所述加熱層包括一奈米碳管層,該 _3〇3#單编號 A〇101 第4頁/共17頁 1013399290-0 1380730 101年.10月18日核正替換頁 奈米碳管層包括複數個相互纏繞的奈米碳管。 [0008] 相較與先前技術,所述之面熱源具有以下優點:第一, 所述之奈米碳管層中的奈米碳管無序排列,具有很好的 韌性,可彎曲折疊成任意形狀而不破裂,故具有較長的 使用壽命。第二,奈米碳管層中的奈米碳管均勻分佈, 奈米碳管層具有均勻的厚度及電阻,發熱均勻,奈米碳 管的電熱轉換效率高,故該面熱源具有升溫迅速、熱滯 後小、熱交換速度快的特點。.第三,奈米碳管的直徑較 小,使得奈米碳管層具有較小的厚度,可製備微型面熱 源,應用於微型器件的加熱。 【實施方式】 [0009] 以下將結合附圖詳細說明本技術方案面熱源。 [0010] 請參閱圖1及圖2,本技術方案實施例提供一種面熱源10 ,該面熱源10包括一基底18、一反射層17、一加熱層16 、一第一電極12、一第二電極14和一絕緣保護層15。所 述反射層17設置於基底18的表面。所述加熱層16設置於 所述反射層17的表面。所述第一電極12和第二電極14間 隔設置,並分別與該加熱層16電接觸,用於使所述加熱 層16中流過電流。所述絕緣保護層15設置於所述加熱層 16的表面,並將所述第一電極12和第二電極14覆蓋,用 於避免所述加熱層16吸附外界雜質。 [0011] 所述基底18形狀不限,其具有一表面用於支撐加熱層16 或者反射層17。優選地,所述基底18為一板狀基底,其 材料可為硬性材料,如:陶究、玻璃、樹脂、石英等, 亦可選擇柔性材料,如:塑膠或柔性纖維等。當為柔性 1013399290-0 09713030(^單編號A〇101 第5頁/共17頁 1380730 _- 101年.10月18日核正替换頁 材料時,該面熱源10在使用時可根據需要彎折成任意形 狀。其中,基底18的大小不限,可依據實際需要進行改 變。本實施例優選的基底18為一陶瓷基板。 [0012] 所述反射層17的設置用來反射加熱層16所發的熱量,從 而控制加熱的方向,用於單面加熱,並進一步提高加熱 的效率。所述反射層17的材料為一白色絕緣材料,如: 金屬氧化物、金屬鹽或陶瓷等。本實施例中,反射層17 為三氧化二鋁層,其厚度為10 0微米〜0.5毫米。該反射層 17可通過濺射或其他方法形成於該基底18表面。可以理 解,所述反射層17也可設置在基底18遠離加熱層16的表 面,即所述基底18設置於所述加熱層16和所述反射層17 之間,進一步加強反射層17反射熱量的作用。所述反射 層17為一可選擇的結構。所述加熱層16可直接設置在基 底18的表面,此時面熱源10的加熱方向不限,可用於雙 面加熱。 [0013] 所述加熱層16設置於基底18的表面,用於加熱。所述加 熱層16包括一奈米碳管層,該奈米碳管層本身具有一定 的黏性,可利用本身的黏性設置於基底18的表面,也可 通過黏結劑設置於基底18的表面。所述之黏結劑為矽膠 。該奈米碳管層的長度、寬度和厚度不限,可根據實際 需要選擇。本技術方案提供的奈米碳管層的長度為1〜10 厘米,寬度為卜10厘米,厚度為1微米〜2毫米。可以理解 ,奈米碳管層的熱回應速度與其厚度有關。在相同面積 的情況下,奈米碳管層的厚度越大,熱回應速度越慢; 反之,奈米碳管層的厚度越小,熱回應速度越快。 0971303(^單编號 A0101 第6頁/共17頁 1013399290-0 1380730 月18日核正替&頁 [0014]所述奈米竣管層包括相互纏繞的奈米碳管,請來閱圖3。 所述之奈米碳管之間通過凡德瓦爾力相互吸引纏繞, 形成網路狀結構。該奈米碟管層令,奈米碳管為均勻分 佈,無規則排列,使得該奈米碳管層呈各向同性;奈米 碳管相互纏繞,故該奈米碳管層具有很好的柔韌性,可 彎曲折疊成任意形狀而不破裂,請參閱圖4。該奈米碳管 層中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多 壁奈米碳管中的一種或多種〃所述單壁奈米碳管的直徑 為0.5奈米〜10奈米,雙壁奈米碳管的直徑為丨〇奈米 奈米’多壁奈来碳管的直徑為丨.5奈米〜5〇奈米。該奈米 碳管的長度大於50微米。本實施例中,奈米碳管的長度 優選為200〜900微米。 [0015] 本實施例中,加熱層16採用厚度為1〇〇微米的奈米碳管層 。該奈米碳管層的長度為5厘米,奈米碳管層的寬度為3 厘米。利用奈米碳管層本身的黏性,將該奈米碳管層設 置於基底18的表面。 [0016] 所述第一電極12和第二電極u由導電材料組成,該第一 電極12和第二電極14的形狀不限,可為導電薄膜、金屬 片或者金屬引線。優選地,第一電極12和第二電極14均 為一層導電薄膜。該導電薄膜的厚度為〇 5奈米〜1〇〇微米 。β玄導電薄膜的材料可為金屬、合金、姻錫氧化物(ιτο )、銻錫氧化物(ΑΤΟ)、導電銀膠、導電聚合物或導電 性奈米碳管等。該金屬或合金材料可為鋁、銅、鎢、鉬 、金、鈦、鈥、鈀、鉋或其任意組合的合金❶.本實施例 中,所述第一電極12和第二電極14的材料為金屬鈀膜, 09713030(^^^^ A0101 第 7 頁 / 共 17 頁 1013399290-0 1380730 [0017] [0018] [0019] [0020] 18日俊正雜頁I 厚度為5奈米。所述金屬把與奈米碳管具有較好的潤濕效 果,有利於所述第—電極12及第二電極14與所述加熱層 16之間形成良好的電接觸,減少歐姆接觸電阻。 所述之第-電極12和第二電極14可設置在加熱㈣的同 一表面上也可設置在加熱層16的不同表面上。其中,第 -電極12和帛二電極14間隔設置,以使加熱層16應用於 面熱源10時接入一定的阻值避免短路現象產生。由於作 為加熱層16的奈米碳管層本身有报好的黏附性,故第一 電極12和第二電極14直接就可與奈米碳管層之間形成很 好的電接觸。 另,所述之第一電極12和第二電極14也可通過一導電黏 結劑(圖未示)設置於該加熱層16的表面上,導電黏結劑 在實現第一電極12和第二電極14與加熱層16電接觸的同 時’還可將所述第一電極12和第二電極14更好地固定於 加熱層16的表面上。本實施例優選的導電黏結劑為銀膠 〇 可以理解,第一電極12和第二電極14的結構和材料均不 限,其設置目的係為了使所述加熱層1 6中流過電流。故 ’所述第一電極12和第二電極14只需要導電,並與所述 加熱層16之間形成電接觸都在本發明的保護範圍内。 所述絕緣保護層15為一可選擇結構,其材料為一絕緣材 料,如:橡膠、樹脂等。所述絕缘保護層15厚度不限, 可根據實際情況選擇《所述絕緣保護層15覆蓋於所述第 一電極12、第二電極14和加熱層16之上,可使該面熱源 09713030(^^^^ A〇101 1013399290-0 Ι38Θ730[Description of the Invention] [0001] The present invention relates to a surface heat source, and more particularly to a surface heat source based on a carbon nanotube. [Prior Art] [0002] Heat _ plays an important role in people's production, life, and scientific research. The surface heat source is a heat source, which is characterized in that the surface heat source has a planar structure, and the object to be heated is placed above the planar structure to heat the object, so that the surface heat source can simultaneously heat various parts of the object to be heated, and the heating surface is wide. Uniform heating and high efficiency. Surface heat sources have been successfully used in industrial fields, scientific research fields or living areas, such as electric heaters, infrared therapeutic devices, and electric heaters. The front front heat source generally includes a heating layer and at least two electrodes disposed on a surface of the heating layer and electrically connected to a surface of the heating layer. When the electrode connected to the heating layer is supplied with a low voltage current, the heat is immediately released from the heating layer. Commercially available surface heat sources are usually electrothermally converted using a heating wire made of metal as a heating layer. However, the strength of the heating wire is not high and it is easy to break, especially when it is bent or folded into a certain angle, so the application is limited. In addition, the heat generated by the heating wire made of metal is radiated outward at a normal wavelength, and the electrothermal conversion efficiency is not high, which is disadvantageous for saving energy. [0004] The invention of non-metallic carbon fiber conductive materials has brought about a breakthrough in the development of surface heat sources. A heating layer using carbon fibers is usually coated with a water-repellent insulating layer on the outside of the carbon fibers as an electrothermal conversion element instead of the metal heating wire. Since the carbon fiber has better toughness, this solves the electric heating to a certain extent. 09713_(P No. 01, page 3/17 pages, 1013399290-0, 1380730, October 18, 101, the nuclear replacement is not high. The disadvantage of breaking. However, since the carbon fiber is still radiated outward at a common wavelength, the problem of low electrothermal conversion rate is not solved. To solve the above problem, the heating layer using carbon fiber generally includes a plurality of carbon fiber heat source lines. The carbon fiber heat source line is a conductive and durable wire wrapped with chemical fiber or cotton wire. The outer surface of the chemical fiber or cotton wire is dip coated with a waterproof flame-retardant insulating material. The conductive core wire is coated with a plurality of carbon fibers and a plurality of surfaces coated with far-infrared paint. The cotton thread is wound. The cotton wire coated with the far-infrared coating is added to the conductive core wire to enhance the strength of the core wire, and the heat emitted by the carbon fiber after the energization can be radiated outward at the infrared wavelength. [0005] However, the use of carbon fiber paper as a heating layer has the following disadvantages: First, the carbon fiber is not strong enough, the flexibility is not good enough, it is easy to break, and it is necessary to add cotton. The strength of high carbon fiber limits its proper range; secondly, the carbon fiber itself has low electrothermal conversion efficiency, and it is necessary to add a cotton wire coated with far infrared paint to improve the electrothermal conversion efficiency, which is not conducive to energy conservation and environmental protection; The carbon fiber heat source line is further formed into a heating layer, which is not conducive to large-area production, which is not conducive to the uniformity requirement, and is not conducive to the fabrication of the micro-surface heat source. [0006] In view of this, it is provided that the strength is large and the electrothermal conversion efficiency is higher. High, conducive to energy saving and uniform heating, controllable size, can be made into a large area or micro surface heat source. [Summary] [0007] - a surface heat source, comprising: a substrate; a heating layer, The heating layer is disposed on a surface of the substrate; at least two electrodes are spaced apart and electrically contacted with the heating layer respectively, wherein the heating layer comprises a carbon nanotube layer, and the _3〇3# single number A〇101 Page 4 of 17 Page 1013399290-0 1380730 101. October 18th The nuclear replacement sheet carbon nanotube layer comprises a plurality of intertwined carbon nanotubes. [0008] Compared with the prior art, The surface heat source has the following advantages: First, the carbon nanotubes in the carbon nanotube layer are disorderly arranged, have good toughness, can be bent and folded into any shape without cracking, and thus have a long service life. Secondly, the carbon nanotubes in the carbon nanotube layer are evenly distributed, the carbon nanotube layer has a uniform thickness and electrical resistance, the heat is uniform, and the electric heat conversion efficiency of the carbon nanotubes is high, so the surface heat source has a rapid temperature rise. The thermal hysteresis is small and the heat exchange speed is fast. Third, the diameter of the carbon nanotubes is small, so that the carbon nanotube layer has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. [Embodiment] [0009] The surface heat source of the present technical solution will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , the embodiment of the present invention provides a surface heat source 10 including a substrate 18 , a reflective layer 17 , a heating layer 16 , a first electrode 12 , and a second surface . The electrode 14 and an insulating protective layer 15. The reflective layer 17 is disposed on the surface of the substrate 18. The heating layer 16 is disposed on the surface of the reflective layer 17. The first electrode 12 and the second electrode 14 are spaced apart from each other and are in electrical contact with the heating layer 16 for flowing a current through the heating layer 16. The insulating protective layer 15 is disposed on the surface of the heating layer 16, and covers the first electrode 12 and the second electrode 14 to prevent the heating layer 16 from adsorbing external impurities. [0011] The substrate 18 is not limited in shape, and has a surface for supporting the heating layer 16 or the reflective layer 17. Preferably, the substrate 18 is a plate-shaped substrate, and the material thereof may be a hard material such as ceramics, glass, resin, quartz, etc., and a flexible material such as plastic or flexible fiber may also be selected. When it is flexible 1013399290-0 09713030 (^ single number A〇101 page 5 / 17 pages 1380730 _- 101 years. October 18th to verify the replacement page material, the surface heat source 10 can be bent as needed during use The shape of the substrate 18 is not limited, and may be changed according to actual needs. The preferred substrate 18 of the present embodiment is a ceramic substrate. [0012] The reflective layer 17 is provided for reflecting the heating layer 16 The heat, thereby controlling the direction of heating, for single-sided heating, and further improving the efficiency of heating. The material of the reflective layer 17 is a white insulating material, such as: metal oxide, metal salt or ceramic, etc. This embodiment The reflective layer 17 is a layer of aluminum oxide having a thickness of 100 μm to 0.5 mm. The reflective layer 17 may be formed on the surface of the substrate 18 by sputtering or other methods. It is understood that the reflective layer 17 may also be The substrate 18 is disposed away from the surface of the heating layer 16, that is, the substrate 18 is disposed between the heating layer 16 and the reflective layer 17, further enhancing the effect of the reflective layer 17 reflecting heat. The reflective layer 17 is a The structure chosen. The heating layer 16 can be directly disposed on the surface of the substrate 18, and the heating direction of the surface heat source 10 is not limited, and can be used for double-sided heating. [0013] The heating layer 16 is disposed on the surface of the substrate 18 for heating. The heating layer 16 includes a carbon nanotube layer which itself has a certain viscosity and can be disposed on the surface of the substrate 18 by its own adhesiveness, or can be disposed on the surface of the substrate 18 by a bonding agent. The bonding agent is tannin. The length, width and thickness of the carbon nanotube layer are not limited, and can be selected according to actual needs. The length of the carbon nanotube layer provided by the technical solution is 1 to 10 cm, and the width is 10 cm, thickness is 1 micron to 2 mm. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the greater the thickness of the carbon nanotube layer, the slower the thermal response speed; Conversely, the smaller the thickness of the carbon nanotube layer, the faster the thermal response speed. 0971303 (^单单 A0101 page 6 / page 17 1013399290-0 1380730 month 18 nuclear replacement & page [0014] The nanotube layer includes intertwined carbon nanotubes Please refer to Figure 3. The carbon nanotubes are attracted to each other by van der Waals force to form a network structure. The nano tube layer makes the carbon nanotubes uniformly distributed and irregularly arranged. The carbon nanotube layer is isotropic; the carbon nanotubes are intertwined, so the carbon nanotube layer has good flexibility and can be bent and folded into any shape without breaking, please refer to Fig. 4. The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nanometer. Meters ~ 10 nm, the diameter of the double-walled carbon nanotubes is 丨〇 nanometer's diameter of the multi-walled nai carbon tube is 丨.5 nm ~ 5 〇 nanometer. The length of the carbon nanotubes is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm. [0015] In the present embodiment, the heating layer 16 is a carbon nanotube layer having a thickness of 1 μm. The carbon nanotube layer has a length of 5 cm and the carbon nanotube layer has a width of 3 cm. The carbon nanotube layer is placed on the surface of the substrate 18 by the viscosity of the carbon nanotube layer itself. [0016] The first electrode 12 and the second electrode u are composed of a conductive material, and the shapes of the first electrode 12 and the second electrode 14 are not limited and may be a conductive film, a metal piece or a metal lead. Preferably, the first electrode 12 and the second electrode 14 are each a conductive film. The conductive film has a thickness of 〇 5 nm to 1 μm. The material of the β-thin conductive film may be a metal, an alloy, a tin oxide, a tin oxide, a conductive silver paste, a conductive polymer or a conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, titanium, tantalum, palladium, planer or any combination thereof. In the present embodiment, the materials of the first electrode 12 and the second electrode 14 It is a metal palladium film, 09713030 (^^^^ A0101 page 7 / page 17 1013399290-0 1380730 [0018] [0019] [0020] 18th Junzheng page I thickness is 5 nm. The metal The invention has better wetting effect with the carbon nanotubes, and is favorable for forming good electrical contact between the first electrode 12 and the second electrode 14 and the heating layer 16, and reducing the ohmic contact resistance. The electrode 12 and the second electrode 14 may be disposed on the same surface of the heating (four) or on different surfaces of the heating layer 16. The first electrode 12 and the second electrode 14 are spaced apart to apply the heating layer 16 When the surface heat source 10 is connected to a certain resistance value, the short circuit phenomenon is prevented. Since the carbon nanotube layer as the heating layer 16 itself has a good adhesion, the first electrode 12 and the second electrode 14 can directly interact with the nanometer. Good electrical contact is formed between the carbon tube layers. In addition, the first electrode 12 and the second electrode are described. 14 can also be disposed on the surface of the heating layer 16 by a conductive adhesive (not shown). The conductive bonding agent can also make the first electrode 12 and the second electrode 14 electrically contact with the heating layer 16 The first electrode 12 and the second electrode 14 are better fixed on the surface of the heating layer 16. The preferred conductive adhesive of the embodiment is a silver paste. The structure and material of the first electrode 12 and the second electrode 14 are understood. It is not limited, and the purpose of the setting is to make a current flow in the heating layer 16. Therefore, the first electrode 12 and the second electrode 14 only need to conduct electricity and form electrical contact with the heating layer 16 The insulating protective layer 15 is an optional structure, and the material is an insulating material, such as rubber, resin, etc. The thickness of the insulating protective layer 15 is not limited, and may be selected according to actual conditions. The insulating protective layer 15 covers the first electrode 12, the second electrode 14, and the heating layer 16, so that the surface heat source 09713030 (^^^^ A〇101 1013399290-0 Ι38Θ730
1.101年.10月18日接正替換頁I 10在絕緣狀態下使用,同時還可避免所述加熱層16中的 奈米碳管吸附外界雜質。本實施例中,該絕緣保護層J 5 的材料為橡膠,其厚度為〇 5〜2毫米。 [0021] 本技術方案實施例的面熱源1〇在使用時,可先將面熱源 10的第一電極12和第二電極14連接導線後接入電源。在 接入電源後熱源10中的奈米碳管層即可賴射出一定波長 範圍的電磁波。所述面熱源20可與待加熱物體的表面直 接接觸。或者,由於本實施例中作為加熱層16的奈米碳 管層中的奈米兔官具有良好的導電性能,且該奈米碳管 層本身已經具有一定的自支撐性及穩定性,所述面熱源 20可與待加熱物體相隔一定的距離設置。 [0022] 本技術方案實施例中的面熱源1〇在奈米碳管層的面積大 小一定時,可通過調節電源電壓大小和奈米碳管層的厚 度,可輻射出不同波長範圍的電磁波。電源電壓的大小 一定時,奈米碳管層的厚度和面熱源1〇輻出電磁波的波 長成反比。即當電源電麼大小一定時,奈米碳管層的厚 度越厚,面熱源10輻出電磁波的波長越短,該面熱源1〇 可產生一可見光熱轄射;奈米碳管層的厚度越薄,面熱 源10輻出電磁波的波長越長’該面熱源10可產生一紅外 線熱輻射。奈米碳管層的厚度一定時,電源電壓的大小 和面熱源10輻出電磁波的波長成反比。即當奈米破管層 的厚度一定時,電源電壓越大,面熱源10輻出電磁波的 波長越短,該面熱源1〇可產生一可見光熱輻射;電源電 壓越小,面熱源10輻出電磁波的波長越長,該面熱源1〇 可產生一紅外熱辕射。 09713030(^ 單編號 A0101 第9頁/共17頁 1013399290-0 1380730 101年10月18日梭正替換頁 [0023] 奈米碳管具有良好的導電性能以及熱穩定性,且作為一 理想的黑體結構,具有比較高的熱輻射效率。將該面熱 源10暴露在氧化性氣體或者大氣的環境中,其中奈米碳 管層的厚度為5毫米,通過在10伏~30伏調節電源電壓, 該面熱源10可輻射出波長較長的電磁波。通過溫度測量 儀發現該面熱源10的溫度為50°C~500°C。對於具有黑體 結構的物體來說,其所對應的溫度為200°C〜450°C時就能 發出人眼看不見的熱輻射(紅外線),此時的熱輻射最 穩定、效率最高。應用該奈米碳管層製成的發熱元件, 可應用於電加熱器、紅外治療儀、電暖器等領域。 [0024] 進一步地,將本技術方案實施例中的面熱源10放入一真 空裝置中,通過在80伏〜150伏調節電源電壓,該面熱源 10可輻射出波長較短的電磁波。當電源電壓大於150伏時 ,該面熱源10陸續會發出紅光、黃光等可見光。通過溫 度測量儀發現該面熱源10的溫度可達到1 500°C以上,此 時會產生一普通熱輻射。隨著電源電壓的進一步增大, 該面熱源10還能產生殺死細菌的人眼看不見的射線(紫 外光),可應用於光源、顯示器件等領域。 [0025] 所述之面熱源具有以下優點:第一,由於奈米碳管具有 較好的強度及韌性,奈米碳管層的強度較大,奈米碳管 層的柔性好,不易破裂,使其具有較長的使用壽命。第 二,奈米碳管層中的奈米碳管均勻分佈,奈米碳管層具 有均勻的厚度及電阻,發熱均勻,奈米碳管的電熱轉換 效率高,故該面熱源具有升溫迅速、熱滯後小、熱交換 速度快、輻射效率高的特點。第三,奈米碳管的直徑較 09713030(^單编號 A〇101 第10頁/共Π頁 1013399290-0 13807301.101. On October 18th, the replacement page I 10 is used in an insulated state, and at the same time, the carbon nanotubes in the heating layer 16 can be prevented from adsorbing foreign impurities. In this embodiment, the insulating protective layer J 5 is made of rubber and has a thickness of 〇 5 to 2 mm. [0021] When the surface heat source 1〇 of the embodiment of the present invention is used, the first electrode 12 and the second electrode 14 of the surface heat source 10 may be connected to a power source after being connected to a power source. The carbon nanotube layer in the heat source 10 after being connected to the power source can emit electromagnetic waves of a certain wavelength range. The surface heat source 20 can be in direct contact with the surface of the object to be heated. Or, since the nanotube in the carbon nanotube layer as the heating layer 16 in the embodiment has good electrical conductivity, and the carbon nanotube layer itself has a certain self-supporting property and stability, The surface heat source 20 can be disposed at a certain distance from the object to be heated. [0022] The surface heat source 1 in the embodiment of the present invention can radiate electromagnetic waves of different wavelength ranges by adjusting the magnitude of the power supply voltage and the thickness of the carbon nanotube layer when the area of the carbon nanotube layer is constant. When the power supply voltage is constant, the thickness of the carbon nanotube layer is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source. That is, when the power supply is of a certain size, the thicker the thickness of the carbon nanotube layer, the shorter the wavelength of the electromagnetic wave radiated from the surface heat source 10, the heat source of the surface can generate a visible light heat ray; the thickness of the carbon nanotube layer The thinner the surface, the longer the wavelength of the electromagnetic wave radiated by the surface heat source 10'. The surface heat source 10 generates an infrared heat radiation. When the thickness of the carbon nanotube layer is constant, the magnitude of the power supply voltage is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source 10. That is, when the thickness of the nano tube breaking layer is constant, the larger the power source voltage is, the shorter the wavelength of the electromagnetic wave radiated by the surface heat source 10 is, the surface heat source 1 〇 can generate a visible light heat radiation; the smaller the power source voltage, the surface heat source 10 is radiated. The longer the wavelength of the electromagnetic wave, the surface heat source 1 〇 can generate an infrared thermal ray. 09713030 (^ Single No. A0101 Page 9 / Total 17 Page 1013399290-0 1380730 October 18, 2011 Shuttle replacement page [0023] Nano carbon tube has good electrical conductivity and thermal stability, and as an ideal black body The structure has a relatively high heat radiation efficiency. The surface heat source 10 is exposed to an oxidizing gas or an atmosphere, wherein the thickness of the carbon nanotube layer is 5 mm, and the power supply voltage is adjusted by 10 volts to 30 volts. The surface heat source 10 can radiate electromagnetic waves having a long wavelength. The temperature of the surface heat source 10 is found to be 50 ° C to 500 ° C by a temperature measuring instrument. For an object having a black body structure, the corresponding temperature is 200 ° C. At ~450 °C, it can emit heat radiation (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient. The heating element made of the carbon nanotube layer can be applied to electric heaters and infrared. Further, the surface heat source 10 in the embodiment of the present technical solution is placed in a vacuum device, and the surface heat source 10 can be radiated by adjusting the power supply voltage at 80 volts to 150 volts. Shorter wavelength When the power supply voltage is greater than 150 volts, the surface heat source 10 will emit visible light such as red light and yellow light. The temperature of the surface heat source 10 can reach above 1 500 ° C by a temperature measuring instrument, and an ordinary one is generated. Thermal radiation. As the power supply voltage is further increased, the surface heat source 10 can also generate rays (ultraviolet light) that are invisible to the human eye that can kill bacteria, and can be applied to fields such as light sources, display devices, and the like. The heat source has the following advantages: First, since the carbon nanotube has good strength and toughness, the strength of the carbon nanotube layer is large, and the carbon nanotube layer has good flexibility and is not easily broken, so that it has a long use. Second, the carbon nanotubes in the carbon nanotube layer are evenly distributed, the carbon nanotube layer has a uniform thickness and electrical resistance, the heat is uniform, and the electrothermal conversion efficiency of the carbon nanotube is high, so the surface heat source has a temperature rise. Rapid, low thermal hysteresis, fast heat exchange rate, high radiation efficiency. Third, the diameter of the carbon nanotubes is more than 09713030 (^ single number A〇101 page 10 / total page 1013399290-0 1380730
101年.10月18日按正替換頁I 小’使得奈米碳管層具有較小的厚度,可製備微型面熱 源,應用於微型器件的加熱。 [0026] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0027] 圖1為本技術方案實施例的面熱源的結構示意圖。 [0028] 圖2為圖1沿Π*~Ι[線的剖面示意圖。 [0029] 圖3為本技術方案實施例的奈米碳管層的掃描電鏡照片。 [0030] 圖4為本技術方案實施例的奈米碳管層的照片。 【主要元件符號說明】 [0031] 面熱源:1 0 [0032] 第一電極:12 [0033] 第二電極:14 [0034] 絕緣保護層:15 [0035] 加熱層:16 [0036] 反射層:17 [0037] 基底 09713030(^ 單編號 Α0101 第11頁/共17頁 1013399290-0On October 18th, October 18th, according to the replacement page I small, the carbon nanotube layer has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0027] FIG. 1 is a schematic structural view of a surface heat source according to an embodiment of the present technical solution. 2 is a cross-sectional view of the line along the line Π*~Ι[. 3 is a scanning electron micrograph of a carbon nanotube layer according to an embodiment of the present technology. 4 is a photograph of a carbon nanotube layer according to an embodiment of the present technology. [Main component symbol description] [0031] Surface heat source: 1 0 [0032] First electrode: 12 [0033] Second electrode: 14 [0034] Insulating protective layer: 15 [0035] Heating layer: 16 [0036] Reflective layer :17 [0037] Substrate 09713030 (^ Single Number Α 0101 Page 11 / Total 17 Page 1013399290-0