CN101631506A - 放射发生器和放射组织的方法 - Google Patents
放射发生器和放射组织的方法 Download PDFInfo
- Publication number
- CN101631506A CN101631506A CN200680050277A CN200680050277A CN101631506A CN 101631506 A CN101631506 A CN 101631506A CN 200680050277 A CN200680050277 A CN 200680050277A CN 200680050277 A CN200680050277 A CN 200680050277A CN 101631506 A CN101631506 A CN 101631506A
- Authority
- CN
- China
- Prior art keywords
- circle
- microwave applicator
- sleeve
- outer conductor
- inner wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title description 19
- 239000004020 conductor Substances 0.000 claims abstract description 41
- 239000012212 insulator Substances 0.000 claims abstract description 22
- 238000005260 corrosion Methods 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims 2
- 210000001519 tissue Anatomy 0.000 description 30
- 238000011282 treatment Methods 0.000 description 17
- 206010028980 Neoplasm Diseases 0.000 description 13
- 238000012856 packing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 206010068771 Soft tissue neoplasm Diseases 0.000 description 4
- 238000002679 ablation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000004872 soft tissue Anatomy 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 101710112752 Cytotoxin Proteins 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010317 ablation therapy Methods 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 206010020741 Hyperpyrexia Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/02—Radiation therapy using microwaves
- A61N5/04—Radiators for near-field treatment
- A61N5/045—Radiators for near-field treatment specially adapted for treatment inside the body
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00029—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
- A61B2018/00077—Electrical conductivity high, i.e. electrically conducting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
- A61B2018/00083—Electrical conductivity low, i.e. electrically insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00172—Connectors and adapters therefor
- A61B2018/00178—Electrical connectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/183—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
- A61B2018/1838—Dipole antennas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1869—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1892—Details of electrical isolations of the antenna
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Electromagnetism (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Plasma & Fusion (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Surgical Instruments (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
双极微波发生器发出微波放射至待治疗组织。发生器从一个薄的同轴电缆而形成,同轴电缆具有被绝缘体所环绕的内导体,而绝缘体被一个外导体或保护物所环绕。内导体的一部分伸出绝缘体和外导体。在外导体的端部的圈具有阶部和环绕延伸的内导体部分的套筒。调整垫圈被粘附于延伸的内导体的端部。绝缘尖端封闭调整垫圈、延伸的内导体和圈的套筒。圈的套筒和延伸的内导体作为双极微波天线的两个臂。调整垫圈面对圈的阶部,而且其尺寸和形状与阶部相配合以平衡和调整发生器。
Description
相关申请的交叉引用
本申请涉及一个共同拥有的同审国际专利申请WO 2006/002943,其关于一个放射发生器和放射组织的方法,且其全部被作为参考引入本文。
技术领域
本发明一般地涉及医疗技术,而更确切地涉及微波放射发生器以及使用放射微波的组织热溶蚀治疗方法。
背景技术
热溶蚀治疗可被定义为有意地降低体组织温度(体温过低)或升高体组织温度(体温过高),以达到细胞毒素效果所需的温度或达到取决于特定治疗的治疗温度。微波热溶蚀基于这样一个原理,即由于水分子和微波放射之间的相互作用而由微波形成了产生热的电磁光谱的部分。产生的热用作细胞毒素机制。该治疗典型地包括将一个发生器引入如肿瘤的组织。从发生器释放微波以围绕发生器的尖端形成场。在发生器周围产生的微波放射场内而不是由探针自身的传导所产生了水分子的加热。因此加热不依赖于通过组织的传导,而且细胞毒素的温度标准迅速达到。
微波热溶蚀技术在肝、脑、肺、骨等的肿瘤的治疗中是有用的。
美国专利4,494,539公开了一个使用微波的外科手术方法,其中从一个单极电极放射微波至组织,单极电极粘附于一个用于放射微波的同轴线缆上。通过使用由微波在组织上反应产生的热能,随后在组织上施行凝结、止血或治疗。这样,该组织可被容易、安全且少血的方式所治疗。因此,该方法可被用于具有大量血容量的薄壁组织器官的手术,或用于在薄壁组织肿瘤上凝结或治疗。根据本方法,可以施行被通常认为很困难的肝癌手术。还公开了一个微波放射发生器。
美国专利6,325,796公开了一个微波溶蚀组件和方法,其包括一个具有近位接触端的相对薄的加长探针。该探针限定了一个插入路径,即从接触端向其穿透端延伸的路径。一个溶蚀导管包括一个同轴传输线以及一个天线装置,天线装置与用于产生足够强的电场以产生组织溶蚀的传输线相连结。同轴传输线包括一个内导体和一个外导体,它们由绝缘材料所分隔。传输线的近位端连结于微波能量源。天线装置和传输线每个都具有横向的横断面形状,当加长探针在组织上定位时,该形状适于通过插入路径而滑动接收。继续这样的滑动前进直至天线装置被移至在穿透端上方的位置,而且进一步进入至与组织直接接触。
但是,现有技术的缺陷包括,对于人类皮肤的插入和穿透而言,以及对于待治疗的软组织区域传送而言,它们不是最佳的机械结构。典型地,已知的放射发生器系统不具有当应用这些技术所期望的加强的物理刚度。
此外,迄今为止现有这样的放射发生器不具有放射发出部件,放射发出部件产生优化软组织肿瘤治疗的微波场模式。
同样地,考虑到应用在一些发生器和治疗中的能量标准,存在非目标健康组织的非预期燃烧的问题,这是由于发生器或其所粘附的元件具有高温所致。
进一步地,虽然已知发生器的尺寸小,而且使用了液体冷却技术,但是在应用中具有足够冷却力并且具有治疗软组织肿瘤的能量标准的小尺寸装置,这仍然很困难。
因此,需要对软组织肿瘤进行治疗的方法,以及需要克服本领域现有技术中上述任一或所有问题的放射发生器,其能够提供改善的效力。
发明内容
根据本发明的一个方面,提供了发出微波放射至组织中的双极微波发生器,该组件包括:具有端部的外导体;设置在外导体内的内导体,且其包括伸出外导体端部的部件;设置在外导体端部的圈,且其具有围绕内导体的伸出部件的部分的套筒部分;围绕圈的套筒部分和内导体的伸出部件的绝缘尖端,从而圈的套筒部分和内导体的伸出部件的至少一部分作为双极微波发生器的相应的臂。
具体的实施例将在从属权利要求中阐述。
简言之,本发明是一个用于烧蚀组织的微波发生器。该发生器是传送微波放射至正治疗的组织内的双极微波天线。该发生器从一个薄的同轴电缆而形成,同轴电缆具有被绝缘体所环绕的内导体,而绝缘体被外导体或保护物所环绕。同轴电缆的端部被切边,以便绝缘体和内导体的一部分伸出外导体,并且内导体的一部分超出绝缘体。发生器进一步包括在其中形成孔的环形圈。圈的一端被粘附于外导体上,而形成套筒的另一端伸出绝缘体的一端且环绕伸出的内导体的一部分。优选在圈的两端之间在其外表面上形成阶部。具有接收内导体的中心孔的固体间隔件与圈的一端邻接而且环绕伸出的内导体。调整元件被粘附于伸出的内导体的端部,而且邻接相对于圈的间隔件的一端。调整元件面对在圈内的阶部,而且阶部以及调整元件的尺寸和形状相配合以平衡和调整发生器。由绝缘材料制成的中空尖端具有一个开放端和一个封闭端。尖端围绕调整元件、间隔件和伸出的内导体。尖端还围绕圈的套筒,从而限定由双极尖端所环绕的圈的外表面。尖端的开放端与圈中的阶部邻接。硬套筒环绕同轴电缆且相对于尖端从圈延伸。套筒相对于尖端与圈的阶部邻接,且其内径大于同轴电缆,因此在同轴电缆外部和套筒的内表面之间限定了一个环形空间。套筒进一步包括一个或多个排出孔,其允许在环绕同轴电缆的环形空间和发生器的外部之间的流体连通。
在操作中,向同轴电缆供给来自源的微波能,而且传送至尖端。伸出圈的端部的内导体的部分形成了双极的一个臂,而且释放微波放射。另外,沿着同轴电缆的内导体流动且在圈的孔内流动的微波能,引入了沿着圈的套筒的外表面流动的电流,圈被尖端所环绕。依次地,这使得从圈的套筒释放微波放射,圈的套筒作为双极的第二臂。以这种方式,沿着发生器的实际长度而释放微波能,而不是仅仅从尖端集中。通过沿着发生器的长度而分布微波放射的释放,可以应用更高的能量标准。
为了使同轴电缆和发生器不会过热,从源引入冷却流至环形空间,环形空间由同轴电缆的外部和套筒的内部限定。冷却流沿着这个环形区域流动,而且从同轴电缆吸热。冷却流在从同轴电缆吸热后,通过在套筒中的一个或多个孔而从环形空间排出,且灌注到临近组织。
尖端的封闭端优选形成一个刃或一个点以便微波发生器可被直接插入至正治疗的组织内。此外,尖端、圈和硬套筒为发生器提供了强度和硬度,从而便于将其插入组织。
本发明进一步提供了治疗诸如肿瘤的目标组织的方法,肿瘤由软组织形成和/或由软组织嵌入。方法包括在肿瘤内插入微波发生器,向发生器供给电磁能,从而在肿瘤内放射了电磁能。
附图说明
现参照附图以示例的方式描述本发明的实施例,其中:
图1是根据本发明的一个实施例的放射发生器的局部剖视图;
图2A是图1的放射发生器的放射尖端的轴向剖视图,且图2B是图1的放射发生器的放射尖端的端部正面图;
图3是图1放射发生器的管的局部横向剖视图;
图4A是图1放射发生器的调整垫圈的横向剖视图,而图4B是其轴向剖视图;
图5A是图1放射发生器的圈的轴向剖视图,而图5B是其端部正面图;
图6A是可被粘附于图1放射发生器的把手部件的轴向剖视图,而图6B是其横向剖视图;
图7示出了沿图1放射发生器的管经过的同轴电缆的部分;
图8是关于施用给图1放射发生器的频率的S11图;
图9A是图1的放射发生器在使用时周围分布的电场图,图9B示出了图1放射发生器在使用时周围的SAR值;
图10A-E示出了图1放射发生器的优选的顺序组装;
图11是应用图1放射发生器的治疗系统的示意图;
图12是本发明的另一个实施例的拆分的示意图;
图13-18示出了图12的放射发生器的优选的顺序组装;
图19是图12的放射发生器的局部剖视图。
具体实施方式
在下述描述中,使用了相同的标号表示相同的元件,而且给出毫米(mm)尺寸。进一步地,本领域的技术人员理解,与本发明相应所应用的电子系统,即用以产生、传送和控制放射在人体部分应用的电子系统,可以在迄今为止的现有技术中被描述。具体地,可以使用为公开的国际专利申请WO 95/04385,WO 99/56643和WO 00/49957(除了在下文中所描述的修订外)所共同拥有的这样的系统。为了简洁,以下省略这些系统的全部细节。
图1是根据本发明的一个实施例的放射发生器的局部剖视图。放射发生器,通常标注为102,包括与微波源(未示出)相连接的同轴电缆104的远端部分,铜圈106,粘附于同轴电缆104的绝缘零件的一端110的调整垫圈108,以及尖端112。优选地,发生器102进一步包括金属管114。管114被牢固地粘附于圈106上。在电缆104的外导体118和管114的内表面之间限定了一个环形空间116,使冷却流进入(以箭头A的方向),接触发生器102的加热零件,而且通过管114的径向孔120以箭头B方向流出,从而从放射发生器102提取了热能。
在发生器102的组装中,垫圈108焊接到电缆104的中心导体124的一小段长度122,该长度122伸出电缆104的绝缘体126的端部110。圈106焊接到电缆104的外导体118的小圆柱部件128。随后,管114可被通过如Loctite 638保留化合物的粘合剂而在其标识为130和132的接触面上胶合,管114优选是不锈钢,但也可以是其他适合的材料,如钛或任一其他医用级材料。尖端112也优选通过同样的粘合剂而在其内表面上,被胶合至圈106和绝缘体126的外表面上。
当组装时,发生器102形成了沿其长度是坚硬且稳定的单一部件,其包括管114的大约250mm级别,从而发生器适合插入各种软组织中。通过与圈106、电缆104的外导体118和管114的端部接触,空间116和孔120使得冷却流提取了发生器102的热。在其他方面中,圈106协助保证了发生器的硬度。从中去除外导体118的电缆104的露出端部件134与绝缘尖端112一起被供给预定频率的放射源。露出端部件134与绝缘尖端112用作向组织放射微波用于医疗治疗的放射天线。发生器102用作双极天线,而不是单极装置,因为其分布式的球面直接热区,因此发出放射的模式非常有益于特定组织的治疗,如恶性的或肿瘤的组织。
图2A是图1的放射发生器102的尖端112的轴向剖视图,且图2B是图1的放射发生器102的尖端112的端部正面图。可见,尖端112具有内圆柱壁202,204和邻接壁206,208,它们分别用于在组装时接收和邻接垫圈108和圈106。优选地,尖端112由氧化锆陶瓷合金制成。更优选地,它是具有氧化钇的部分稳定的氧化锆(PSZ),其中氧化钇作为稳定氧化剂。甚至更优选地,尖端112由Technox 2000制成,这是一种英国斯塔福德的动力陶瓷公司市售的PSZ,其相对于其他PSZ具有非常均匀的链,而且具有25的绝缘常数(k)。本领域技术人员可知,绝缘常数的选择一定程度地决定了放射微波能源的性能。
需要注意的是,发生器102的横向尺寸非常小。具体地,发生器102的尺寸优选小于或等于大约2.4mm。而且,尖端112被指定其尺寸和以特定材料形成,以在操作微波频率下执行有效的组织溶蚀,操作微波频率在这种情况下是2.45千兆赫(GHz)。本发明的发生器102因此适于插入和治疗肝、脑、肺、血管以及骨的癌和/或非癌组织。
使用在生产尖端12中所用的传统碾磨技术而形成了尖端112的端210。端210可被形成一个非常好的点,如针或钉,或其也被形成具有端刃,如凿子,即其具有在长度上横向尺寸。后者的结构具有优势,即其适于将发生器至组织中或通过组织,也就是说,穿透或刺破例如是皮肤的组织表面。
在使用中,尖端112优选涂有例如是硅或防腐涂层(paralene)的非粘性层,以便于尖端相对于组织移动。
图3是管114的局部横向剖视图。如上,管114优选由不锈钢制成。特定地,管114优选由13规格薄壁304焊接硬拉的不锈钢所制成。管114也优选大约是215mm。可见,两组径向孔120,120′分别设在从管114的端部302起的长度分别为12mm和13mm处。这些径向孔120,120′正如提到的使得冷却流流出。尽管示出了两组孔,但是在所描述的不同实施例中可以使用一、三、四或更多组的孔。另外,尽管示出了每组两个孔,但是只要管114的结构硬度可以接收,就可以提供每组三个、四个、五个或更多孔。在这个实施例中,孔120,120′的直径是0.5mm,但是可以理解这个直径可以在0.1-0.6mm的范围内有较大的不同,而这取决于孔的组数和/或每组的孔数,用以提供一个有效的流速。尽管在替换的实施例中,从端部302起的距离是12或13mm,但是为了控制需要烧蚀的轨迹的长度,从端部302起的这个距离范围可以是3-50mm。
进一步地,在一个以不同方式使用的实施例中,管114可以被省略。此时,治疗包括通过适合的外科或其他技术传送发生器至如肿瘤组织的治疗地。例如,在脑肿瘤的情况下,发生器留在在肿瘤内,封闭进入创口,而且在头骨表面设置无菌连接器用以随后与微波源相连,微波源用于日后的后续治疗。
图4A是调整垫圈108的横向剖视图,而图4B是其轴向剖视图。垫圈108优选由铜制成,尽管也可使用其他金属。垫圈108具有内圆柱表面402,而使其焊接到电缆104的中心导体124(图1)。尽管垫圈小,其尺寸还是很关键。垫圈108调整发生器102,以使其影响了有效的组织治疗,如溶蚀,发生器102是从两个位点放射能量的双极放射发生器。
图5A是圈106的轴向剖视图,而图5B是圈106的端部正面图。圈106优选由铜制成,而且其优选是镀金的以防止冷却流的任何腐蚀性影响。圈106可被传统加工技术所生产,如数控加工。
图6A是把手部件602的轴向剖视图,而图6B是把手部件602沿B-B线的横向剖视图,把手部件602可被粘附于放射发生器102的管114上。把手部件602优选由制成管114的同样材料所制成,即不锈钢。把手部件602包括用于插入管114的前位通道604,和用于在组装时插入同轴电缆104的后位通道606。具有内索610的横向接口608通过连接器而与后续讨论的冷却流的源相连接。连接器可由塑料制成。一旦组装,把手部件602的设置使冷却流以箭头C的方向进入至管114(未示出)。
图7示出了沿管114经过的同轴电缆104的部分。电缆104优选包括如SJS 070LL-253-Strip电缆的低损耗的同轴电缆。优选是SMA雌型连接器的连接器702连接电缆104至微波源(未示出),或至同轴电缆(未示出)的中间部分,其依次连接至微波源。
图8是关于施用给图1放射发生器的频率的S11图。这体现了从发生器102的界面和被治疗的组织的反射微波能与给发生器102的总输入能的比率。可见,发生器102的设计使得在2.45GHz的传送微波时,反射能最小化,且因此传送给组织的能量最大化。
图9A是图1的放射发生器102在使用时周围分布的电场图。临近发生器102的较黑区域表示高电场点。在图9A中,垫圈108的位置被标识为902,而尖端-圈的连接点的位置被标识为904。两个有限的实质上为圆柱的高电场区域906,908,分别在位置902和904处围绕发生器102而形成。
图9B体现了图1放射发生器102在使用时周围的特定的吸收率(SAR)值分布。临近发生器102的较黑区域标识了SAR的点。在图9B中,垫圈108的位置被标识为902,而尖端-圈的连接点的位置被标识为904,而圈-管的连接点的位置被标识为905。两个有限的实质上为圆柱的高电场区域906,908,分别在位置902与904和905之间处围绕发生器102而形成。
图10A-E体现了形成图1放射发生器的优选的顺序组装。在图10A中,同轴电缆104与外导体118和背部切边的内导体126一起示出,正如图7所示。
如图10B所示,管114随后在电缆104上滑动。接下来,圈106在电缆104上滑动(图10C),且如前被固定粘附在管114和电缆104上。然后,如图10D所示,通过焊接,垫圈108被粘附于内导体124上。最后,尖端112在电缆104和圈106的部分上滑动,而且如前被固定在那里。图10E示出了完整的发生器102。这导致了结构的高坚硬性和机械稳定性。
图11是应用图1放射发生器102的治疗系统1102的示意图。通过同轴电缆1108,微波源1104被连接至在把手部件602上的内连接器1106。在这个实施例中,微波源的供给最大是80瓦特。然而这对于大尺寸的发生器也要更大,如对于5mm直径的放射发生器,最大是200瓦特。
注射泵1110操作用于供应冷却流1114的注射器1112,冷却流1114通过导管1116和粘附于把手部件602上的连接器1118到达把手部件602的里面。流体的压力不大,但是被泵压以在实施例中提供通过管114的1.5-2.0ml/分钟的流速。然而,在其他实施例中,当放射发生器102被施以较高压力时,可以应用较高流速,以提供合适的冷却。冷却流优选是盐,尽管如乙醇的其他液体或气体也可使用。在特定实施例中,也可使用具有如细胞毒素的第二效用的冷却液,以改善肿瘤的治疗。在示出的实施例中,冷却流1114以图1所示的箭头B流出管114,流出的温度比图1所示的流入管114内的箭头A处的温度高10℃。因此,大量的热从同轴电缆被提取。冷却流1114例如可在室温下进入管114。作为替换,冷却流1114可被任一适合的技术而预冷至室温下。
可见,冷却系统是开放的灌注冷却系统,其冷却连接到放射发生器102的同轴电缆。也就是说,在从同轴电缆吸收热后,冷却流灌注放射发生器102附近的组织。
本发明的放射发生器的使用方法可被传统地应用在不同软组织肿瘤的治疗上。具体地,发生器102被以腹腔镜地、穿刺地或外科地插入至人体内。在必要时有定位传感器和/或如超声的图像工具的协助下,发生器随后被用户移动至正确的位置,以使得尖端112嵌入至待治疗的组织内。接通微波能,在用户的控制下因而使得组织在预定时间段内溶蚀。在多数情况下,发生器102在治疗中是静止的。然而,当应用微波放射时,在例如血管治疗的一些情况下,发生器102可被移动,例如以相对于目标组织的温和滑动。
如上,如图9A和9B所示,放射发生器102是双极天线。伸出圈106的内导体124的部分作为双极天线的一个臂。另外,沿着内导体124内和在圈的孔口内的微波能传送,引入了在圈106的外表面部分流动的电流,圈106的外表面部分设置在尖端112的下面。这个引入的电流使圈的封闭外表面释放出微波放射,因此形成了双极天线的第二臂。发生器的双极结构有效地散播了微波放射,微波放射由发生器102沿天线的大的横向,也就是轴向长度而传送,而不是仅仅从发生器102的尖端而集中放射传送。因此,本发明的发生器102可相对于现有技术具有更高的能量标准,即最大为80瓦特。
本发明的一个替换实施例被示于图12-19。图12是替换的放射发生器1202的拆分示意图。可见,发生器1202包括具有外导体1206的同轴电缆1204,外导体1206依次环绕绝缘体1208和内或中心导体1210。发生器1202进一步包括圈1212。圈1212通常是管状以使得沿其限定一个孔口,而且圈具有第一端1212a和第二端1212b。圈1212还具有三个零件或部件。圈1212的第一部件1214具有适合于同轴电缆1204的外导体1206的内径。圈1212的第二部件1216具有适合于同轴电缆1204的绝缘体1208的内径。第二部件1216限定了围绕圈1212内的环形表面或凸缘(未示出)。第二部件1216的外径优选大于第一部件1214的外径,因此围绕在圈1212的外部而限定了一个阶部或凸缘。圈1212的第三部件1218同样具有适合于同轴电缆1204的绝缘体1208的内径。第三部件1218的外径小于第二部件1216的外径。因此第三部件1218限定了一个外圆柱表面或套筒。
发生器1202进一步包括间隔件1220。间隔件1220优选是具有中心孔1222的圆柱形,中心孔1222的尺寸可以接收同轴电缆1204的内导体1210。间隔件1220的外径优选与圈1212的第三部件1218的外径相匹配。发生器1202还包括调整元件1224和尖端1226。调整元件1224可是碟形的,其具有中心孔1228以围绕同轴电缆1204的内导体1210而匹配。尖端1226是中空的加长部件,其具有开放端1230和封闭端1232。封闭端1232可以形成一个切断元件,如套针点或刀刃,用以切开或穿透组织。发生器1202还包括硬套筒1234。套筒1234的内径稍大于同轴电缆1204的外径。如下,因此在同轴电缆1204的外表面和套筒1234的内表面之间形成了一个环形空间。套筒1234进一步包括一个或多个排出孔1236,排出孔1236通过套筒而延伸。
图13-18体现了发生器1202的优选组装次序。如图13所示,同轴电缆1204被切边,因此伸出外导体1206的一端1206a的绝缘体1208具有了长度“m”,而伸出绝缘体1208的一端1208a的内导体1210具有了长度“1”。圈1212在暴露的内导体1210和在暴露的绝缘体1208上滑动,以使得第一部件1214环绕外导体1206,而第二部件1216和第三部件1218环绕着绝缘体1208的暴露部分。在圈1212的第二部件1216形成的内表面或凸缘邻接外导体1206的端部1206a,因此阻止了圈1212进一步向同轴电缆1204滑动。例如通过焊接圈1212至同轴电缆1204的外导体1206上,而优选将圈1212固定粘附于同轴电缆1204上。在一个优选的实施例中,如图14的虚线所示,圈1212的第三部件1218通过暴露绝缘体1208的端部1208a而延伸。
接下来,在内导体的暴露部分滑动间隔件1220,而且间隔件1220与圈1212的第二端1212b相接触。在优选实施例中,间隔件1220不是被固定粘附于圈1212或内导体1210上。间隔件1220的尺寸使得内导体1210的小部1210a(图15)依然保持暴露。调整元件1224随后在这个内导体1210的保留暴露部1210a上滑动。调整元件1224优选是固定粘附于内导体1210上,例如通过焊接。因此,调整元件1224与圈1212一起使得间隔件保持在位置上。
适当利用调整元件1224,如图16所示,下一步是装配尖端1226。尖端1226的开放端1230在调整元件1224、间隔件1224和圈1212的第三部件1218上滑动。尖端1226的开放端1230与圈1212的第二部件或阶部1216邻接。尖端1226优选是固定粘附于圈1212上,例如通过粘合。适当利用尖端1226,下一步是装配套筒1234(图17)。套筒1234在同轴电缆1204上滑动,而且滑动至圈1212的第一部件1214。套筒1234相对于尖端1226与圈1212的阶部1216邻接。
本领域的技术人员应该理解发生器1202可以不同的方式或不同的次序组装。
如图18所示,在装配上,尖端1226、圈1212的第二部件1216和套筒1234,所有的都优选具有相同的外径,因此使得发生器1202具有平滑的外表面。
优选地,套筒1234由不锈钢制成,而且圈1212由镀金的铜制成。尖端1226和间隔件1220由绝缘材质制成。在示出的实施例中,尖端1226和间隔件1220由簇生(itrium)稳定的氧化锆制成,例如由英国斯塔福德的动力陶瓷公司市售的Technox品牌的陶瓷材料,其具有25的绝缘常数。尖端1226可进一步包括复合涂层,如用于粘结的聚酰亚胺的底层和非粘性的防腐涂层(paralene)上表层。替换地,硅或一些其他适合的材料也可用于防腐涂层(paralene)。除了应用在尖端外,复合涂层也可应用于圈和至少不锈钢套筒的部分。
本领域的技术人员应该理解,在放射发生器1202的结构上可应用替换的材料。
图19是放射发生器1202的局部剖视示意图。可见,至少第一部件1214的部分超越且粘附到外导体1206。绝缘体1208通过圈1212内而部分地延伸。具体地,绝缘体1208的端部1208a向后与圈1212的第二部件1212b的距离是预定的。内导体1210通过而且在圈1212上所完全延伸。套筒1234在圈1212的第一部件1214上滑动而且连接于其上。如图所示,套筒1234的内径大于同轴电缆1204的外径,因此在同轴电缆1204的外表面和套筒1234内形成了一个环形空间1238。如箭头A所示,诸如盐的冷却流被泵入这个环形空间1238。冷却流从给发生器1202供给放射的同轴电缆吸收热。如箭头B所示,冷却流随后通过套筒1234的孔1236而被排出。
在优选的实施例中,孔1236与尖端1226的封闭端1232的距离足够远,以便排出的冷却流不进入正被放射发生器1202所加热的组织部分中。相反,排出的冷却流优选在这个加热区域外散布在组织上。取决于待治疗的组织,在尖端1226的封闭端1232和孔1236之间的距离可以大约为30mm。
间隔件1220的第一端1220a与圈1212的第二端1212b邻接,而间隔件1220的第二端1220b与调整元件1224邻接。因此,在绝缘体的端部1208a和圈的第二端1212b之间在圈1212内限定了一个空间,其通常标识为1240。在示出的实施例中,空间1240被充以空气。本领域的技术人员应该理解,在该空间内可以充以其他材料,如固体绝缘体,或它也可被抽成真空。尖端1226的内表面优选与调整元件1224、间隔件1220以及圈1212的第三部件1218的形状相符合,以使得沿着尖端1226的内表面没有缝隙。
如上所示,放射发生器1202的操作使得,在圈1212的第三部件1218的外表面上引入电流,其在尖端1226的绝缘材料内而被封闭。这个引入的电流导致从圈1212的这个表面放射微波能,从而形成了双极的一个臂。伸出圈1212的内导体1210的部分是双极的另一个臂。伸出圈1212的内导体1210的长度,以及圈1212的第三部件1218的长度,它们一起相当于双极的两个臂,它们的长度选择为在绝缘尖端1226内的波长的大约四分之一,其在示出的实施例中大约为6mm。虽然如此,本领域的技术人员应该理解,其他因素,如组织通透性,调整元件的操作等都会影响双极臂的最终长度。例如,在示出实施例中,两个臂的长度大约为5mm。
另外,调整元件1224与圈的第二部件或阶部1216相配合,以平衡由双极所释放的放射。具体地,选择调整元件1224和阶部1216的尺寸,以便在圈的孔口处向电缆反射回的微波能的总和最小化。施行这样最优化设计的技术对于本领域的技术人员是众所周知的。
在使用中,放射发生器1202被粘附于微波放射源上,粘附的方式与图1的发生器102相连接的方式相同。同轴电缆也以上述同样的方式而被粘附于冷却流的源上。关于本发明,是绝缘尖端、圈和不锈钢套一起配合而使得在治疗程序中使用的发生器具有必要的硬度和机械强度。发生器在任一其强度上并不依赖于同轴电缆。事实上,一个具有很小的或没有硬度的弹性同轴电缆可被用于本发明的放射发生器上。
前述的是本发明说明性实施例的详细描述。可以做出不同的修订或添加,而不会偏离本发明的精神和范围。例如,其中列举的材料是非穷尽的,而且可以针对系统和方法中任一部件而使用任一可被接收的材料。另外,对于不同部件的形状可作修订。相应地,本说明书只是举例说明,而不是在其他方面限制本发明的范围。
Claims (15)
1.发出微波放射至组织中的双极微波发生器,该组件包括:
具有端部的外导体;
设置在外导体内的内导体,且其包括伸出外导体端部的部件;
设置在外导体一端的圈,且其具有围绕内导体的伸出部件的部分的套筒部分;以及
绝缘尖端,其围绕圈的套筒部分和内导体的伸出部件,
从而圈的套筒部分和内导体的伸出部件的至少一部分作为双极微波发生器的相应的臂。
2.根据权利要求1所述的双极微波发生器,其中:其进一步包括在绝缘尖端内设置的绝缘间隔件,绝缘间隔件环绕伸出圈的套筒部分的内导体的至少一部分。
3.根据权利要求1或2所述的双极微波发生器,其中:圈具有粘附于外导体的端部的第一端。
4.根据权利要求1、2或3所述的双极微波发生器,其中:其进一步包括在绝缘尖端内设置且粘附于内导体的一端上的调整元件。
5.根据权利要求4所述的双极微波发生器,其中:
圈进一步包括与套筒部分邻接的阶部,而且
调整元件和阶部相配合以平衡双极微波发生器的相应的臂。
6.根据权利要求5所述的双极微波发生器,其中:调整元件实质是碟状的。
7.根据权利要求5或6所述的双极微波发生器,其中:其进一步包括与圈邻接的硬套筒,而且其围绕并与外导体的至少一个部分是间隔的,以使得在外导体和硬套筒之间限定了一个空间。
8.根据权利要求7所述的双极微波发生器,其中:一个或多个孔通过硬套筒而延伸,一个或多个孔提供了从硬套筒内的空间到硬套筒外的区域的流体连通路径。
9.根据前述任一权利要求所述的双极微波发生器,其中:
圈由铜制成,而且
尖端由簇生(itrium)稳定的氧化锆制成。
10.根据权利要求8所述的双极微波发生器,其中:
套由不锈钢制成,
圈由铜制成,而且
尖端由簇生(itrium)稳定的氧化锆制成。
11.根据前述任一权利要求所述的双极微波发生器,其中:给发生器供给大约为2.45GHz频率的微波能和最高为80瓦特的能量标准。
12.根据权利要求2或任一关于权利要求2的从属权利要求所述的双极微波发生器,其进一步包括设置在外导体和内导体之间的绝缘体,其中:
间隔件与圈的套筒的一端邻接,而且绝缘体在套筒内终止,以便在环绕内导体的圈的套筒内限定一个缝隙。
13.根据权利要求10或任一关于权利要求10的从属权利要求所述的双极微波发生器,其中缝隙被充以空气。
14.根据权利要求5或任一关于权利要求5的从属权利要求所述的双极微波发生器,其中
绝缘尖端具有与圈邻接的开放端和相对于开放端的封闭端,而且
封闭端的形状适于切开或穿透组织。
15.根据前述任一权利要求所述的双极微波发生器,其中:绝缘尖端和圈中的至少一个涂有聚酰亚胺的内层和防腐涂层(paralene)的外层。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0600018A GB2434314B (en) | 2006-01-03 | 2006-01-03 | Microwave applicator with dipole antenna |
GB0600018.6 | 2006-01-03 | ||
PCT/EP2006/012144 WO2007076924A2 (en) | 2006-01-03 | 2006-12-15 | Radiation applicator and method of radiating tissue |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101631506A true CN101631506A (zh) | 2010-01-20 |
CN101631506B CN101631506B (zh) | 2011-12-28 |
Family
ID=35841437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800502779A Expired - Fee Related CN101631506B (zh) | 2006-01-03 | 2006-12-15 | 放射发生器和放射组织的方法 |
Country Status (12)
Country | Link |
---|---|
US (3) | US20080294155A1 (zh) |
EP (1) | EP1968469B8 (zh) |
JP (1) | JP5318581B2 (zh) |
KR (1) | KR20080092402A (zh) |
CN (1) | CN101631506B (zh) |
AU (1) | AU2006332213B2 (zh) |
BR (1) | BRPI0620875A2 (zh) |
CA (1) | CA2635316A1 (zh) |
GB (1) | GB2434314B (zh) |
IL (1) | IL192469A0 (zh) |
TW (1) | TW200740407A (zh) |
WO (1) | WO2007076924A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104323856A (zh) * | 2014-11-11 | 2015-02-04 | 南京维京九洲医疗器械研发中心 | 无磁水冷微波消融针制造方法 |
CN108352224A (zh) * | 2015-10-16 | 2018-07-31 | 美国专利创新有限公司 | 低电磁场电外科电缆 |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
US7128739B2 (en) | 2001-11-02 | 2006-10-31 | Vivant Medical, Inc. | High-strength microwave antenna assemblies and methods of use |
GB2403148C2 (en) | 2003-06-23 | 2013-02-13 | Microsulis Ltd | Radiation applicator |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
GB2415630C2 (en) | 2004-07-02 | 2007-03-22 | Microsulis Ltd | Radiation applicator and method of radiating tissue |
US7799019B2 (en) | 2005-05-10 | 2010-09-21 | Vivant Medical, Inc. | Reinforced high strength microwave antenna |
US7826904B2 (en) | 2006-02-07 | 2010-11-02 | Angiodynamics, Inc. | Interstitial microwave system and method for thermal treatment of diseases |
US10363092B2 (en) | 2006-03-24 | 2019-07-30 | Neuwave Medical, Inc. | Transmission line with heat transfer ability |
US11389235B2 (en) | 2006-07-14 | 2022-07-19 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US10376314B2 (en) | 2006-07-14 | 2019-08-13 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
GB0624658D0 (en) | 2006-12-11 | 2007-01-17 | Medical Device Innovations Ltd | Electrosurgical ablation apparatus and a method of ablating biological tissue |
US7998139B2 (en) * | 2007-04-25 | 2011-08-16 | Vivant Medical, Inc. | Cooled helical antenna for microwave ablation |
US8353901B2 (en) | 2007-05-22 | 2013-01-15 | Vivant Medical, Inc. | Energy delivery conduits for use with electrosurgical devices |
US9023024B2 (en) * | 2007-06-20 | 2015-05-05 | Covidien Lp | Reflective power monitoring for microwave applications |
US20090005766A1 (en) * | 2007-06-28 | 2009-01-01 | Joseph Brannan | Broadband microwave applicator |
US20090082762A1 (en) * | 2007-09-20 | 2009-03-26 | Ormsby Theodore C | Radio frequency energy transmission device for the ablation of biological tissues |
US8221409B2 (en) * | 2007-12-21 | 2012-07-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Thermally insulated irrigation catheter assembly |
US8945111B2 (en) | 2008-01-23 | 2015-02-03 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
US8965536B2 (en) | 2008-03-03 | 2015-02-24 | Covidien Lp | Intracooled percutaneous microwave ablation probe |
US9198723B2 (en) | 2008-03-31 | 2015-12-01 | Covidien Lp | Re-hydration antenna for ablation |
US8059059B2 (en) * | 2008-05-29 | 2011-11-15 | Vivant Medical, Inc. | Slidable choke microwave antenna |
US8251987B2 (en) | 2008-08-28 | 2012-08-28 | Vivant Medical, Inc. | Microwave antenna |
US8394086B2 (en) * | 2008-09-03 | 2013-03-12 | Vivant Medical, Inc. | Microwave shielding apparatus |
US8403924B2 (en) | 2008-09-03 | 2013-03-26 | Vivant Medical, Inc. | Shielding for an isolation apparatus used in a microwave generator |
US9113924B2 (en) | 2008-10-17 | 2015-08-25 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
US8118808B2 (en) | 2009-03-10 | 2012-02-21 | Vivant Medical, Inc. | Cooled dielectrically buffered microwave dipole antenna |
WO2010132368A1 (en) | 2009-05-11 | 2010-11-18 | Colby Leigh E | Therapeutic tooth bud ablation |
US10022202B2 (en) | 2013-03-15 | 2018-07-17 | Triagenics, Llc | Therapeutic tooth bud ablation |
WO2014143014A1 (en) | 2013-03-15 | 2014-09-18 | Triagenics, Llc | Therapeutic tooth bud ablation |
WO2010138919A2 (en) | 2009-05-28 | 2010-12-02 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
EP2459096B1 (en) | 2009-07-28 | 2014-10-22 | Neuwave Medical, Inc. | Ablation device |
US8328801B2 (en) * | 2009-08-17 | 2012-12-11 | Vivant Medical, Inc. | Surface ablation antenna with dielectric loading |
TWI397399B (zh) * | 2009-08-26 | 2013-06-01 | Univ Nat Cheng Kung | 兩段式電磁熱療法治療裝置 |
US9113925B2 (en) * | 2009-09-09 | 2015-08-25 | Covidien Lp | System and method for performing an ablation procedure |
US8069553B2 (en) * | 2009-09-09 | 2011-12-06 | Vivant Medical, Inc. | Method for constructing a dipole antenna |
US9113926B2 (en) | 2009-09-29 | 2015-08-25 | Covidien Lp | Management of voltage standing wave ratio at skin surface during microwave ablation |
US8556889B2 (en) | 2009-09-29 | 2013-10-15 | Covidien Lp | Flow rate monitor for fluid cooled microwave ablation probe |
GB2474233A (en) | 2009-10-06 | 2011-04-13 | Uk Investments Associates Llc | Cooling pump comprising a detachable head portion |
US8551083B2 (en) | 2009-11-17 | 2013-10-08 | Bsd Medical Corporation | Microwave coagulation applicator and system |
US9993294B2 (en) | 2009-11-17 | 2018-06-12 | Perseon Corporation | Microwave coagulation applicator and system with fluid injection |
US8882759B2 (en) | 2009-12-18 | 2014-11-11 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
KR101173455B1 (ko) | 2010-01-26 | 2012-08-14 | 서울대학교산학협력단 | 복수의 서로 다른 크기의 슬롯을 구비한 어플리케이터 |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US12076074B2 (en) | 2010-04-26 | 2024-09-03 | Medtronic Holding Company Sàrl | Electrosurgical device and methods |
US9173700B2 (en) * | 2010-04-26 | 2015-11-03 | 9234438 Canada Inc. | Electrosurgical device and methods |
CN103025262B (zh) | 2010-05-03 | 2019-12-17 | 纽韦弗医疗设备公司 | 能量递送系统 |
US8740893B2 (en) | 2010-06-30 | 2014-06-03 | Covidien Lp | Adjustable tuning of a dielectrically loaded loop antenna |
WO2012051433A2 (en) | 2010-10-13 | 2012-04-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US9017319B2 (en) | 2011-01-05 | 2015-04-28 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9770294B2 (en) | 2011-01-05 | 2017-09-26 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9011421B2 (en) | 2011-01-05 | 2015-04-21 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US8932281B2 (en) * | 2011-01-05 | 2015-01-13 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9198724B2 (en) | 2011-04-08 | 2015-12-01 | Covidien Lp | Microwave tissue dissection and coagulation |
US20120310230A1 (en) * | 2011-06-01 | 2012-12-06 | Angiodynamics, Inc. | Coaxial dual function probe and method of use |
US9078665B2 (en) | 2011-09-28 | 2015-07-14 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
WO2013096803A2 (en) | 2011-12-21 | 2013-06-27 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US9414881B2 (en) | 2012-02-08 | 2016-08-16 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US9095360B2 (en) * | 2012-04-06 | 2015-08-04 | Wisconsin Alumni Research Foundation | Feeding structure for dual slot microwave ablation probe |
US9901398B2 (en) | 2012-06-29 | 2018-02-27 | Covidien Lp | Microwave antenna probes |
US9192439B2 (en) | 2012-06-29 | 2015-11-24 | Covidien Lp | Method of manufacturing a surgical instrument |
US9529025B2 (en) | 2012-06-29 | 2016-12-27 | Covidien Lp | Systems and methods for measuring the frequency of signals generated by high frequency medical devices |
US9333035B2 (en) | 2012-09-19 | 2016-05-10 | Denervx LLC | Cooled microwave denervation |
WO2014141207A2 (en) | 2013-03-15 | 2014-09-18 | Baylis Medical Company Inc. | Electrosurgical mapping tools and methods |
US9901399B2 (en) * | 2012-12-17 | 2018-02-27 | Covidien Lp | Ablation probe with tissue sensing configuration |
US9888956B2 (en) | 2013-01-22 | 2018-02-13 | Angiodynamics, Inc. | Integrated pump and generator device and method of use |
US9877707B2 (en) | 2013-03-07 | 2018-01-30 | Kyphon SÀRL | Systems and methods for track coagulation |
JP6363169B2 (ja) * | 2013-03-29 | 2018-07-25 | コビディエン エルピー | ステップダウン同軸マイクロ波アブレーションアプリケータ及び同を製造するための方法 |
US9872719B2 (en) | 2013-07-24 | 2018-01-23 | Covidien Lp | Systems and methods for generating electrosurgical energy using a multistage power converter |
US9655670B2 (en) | 2013-07-29 | 2017-05-23 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
ITMO20130234A1 (it) * | 2013-08-08 | 2015-02-09 | Hs Hospital Service Spa | Antenna per un dispositivo a microonde per l¿ablazione di tessuti |
US10390881B2 (en) | 2013-10-25 | 2019-08-27 | Denervx LLC | Cooled microwave denervation catheter with insertion feature |
US20150209107A1 (en) | 2014-01-24 | 2015-07-30 | Denervx LLC | Cooled microwave denervation catheter configuration |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
CN104905874A (zh) * | 2015-06-16 | 2015-09-16 | 翟博 | 一种具有活检功能的微波消融针及其刺头的制造方法 |
US10660691B2 (en) | 2015-10-07 | 2020-05-26 | Angiodynamics, Inc. | Multiple use subassembly with integrated fluid delivery system for use with single or dual-lumen peristaltic tubing |
ES2860903T3 (es) | 2015-10-26 | 2021-10-05 | Neuwave Medical Inc | Sistemas de suministro de energía |
US10441339B2 (en) | 2015-11-17 | 2019-10-15 | Medtronic Holding Company Sárl | Spinal tissue ablation apparatus, system, and method |
US10531917B2 (en) | 2016-04-15 | 2020-01-14 | Neuwave Medical, Inc. | Systems and methods for energy delivery |
TWI577413B (zh) * | 2016-05-26 | 2017-04-11 | 和鑫生技開發股份有限公司 | 近端治療裝置及其放射源 |
US10905492B2 (en) | 2016-11-17 | 2021-02-02 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
EP3573561B1 (en) * | 2017-01-26 | 2023-05-31 | Broncus Medical Inc. | Bronchoscopic-based microwave ablation system and method |
US11672596B2 (en) | 2018-02-26 | 2023-06-13 | Neuwave Medical, Inc. | Energy delivery devices with flexible and adjustable tips |
GB2576481B (en) * | 2018-05-30 | 2022-07-20 | Creo Medical Ltd | Electrosurgical instrument |
US11524538B2 (en) | 2018-07-01 | 2022-12-13 | Ree Automotive Ltd | Wheel suspension and transmission gear assembly |
GB2575485A (en) * | 2018-07-12 | 2020-01-15 | Creo Medical Ltd | Electrosurgical instrument |
JP7374135B2 (ja) * | 2018-07-19 | 2023-11-06 | ザ・ユニバーシティ・オブ・シドニー | アブレーション焼灼巣形成装置 |
EP3695798A1 (en) * | 2019-02-13 | 2020-08-19 | National University of Ireland Galway | An ablation probe |
US11832879B2 (en) | 2019-03-08 | 2023-12-05 | Neuwave Medical, Inc. | Systems and methods for energy delivery |
EP3979938B1 (en) * | 2019-06-06 | 2024-07-24 | TriAgenics, Inc. | Ablation probe systems |
AU2020324453B2 (en) * | 2019-08-07 | 2024-03-07 | Biocompatibles Uk Limited | Microwave ablation probe |
WO2023180355A1 (en) | 2022-03-24 | 2023-09-28 | Huber+Suhner Ag | Cable assembly |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1112593B (de) | 1959-11-14 | 1961-08-10 | Philips Patentverwaltung | HF-Strahler fuer Diathermie- und Therapiezwecke |
US3461261A (en) | 1966-10-31 | 1969-08-12 | Du Pont | Heating apparatus |
US3871359A (en) | 1973-06-25 | 1975-03-18 | Interscience Technology Corp | Impedance measuring system |
SE441640B (sv) | 1980-01-03 | 1985-10-21 | Stiftelsen Inst Mikrovags | Forfarande och anordning for uppvermning medelst mikrovagsenergi |
SE417780B (sv) | 1980-01-22 | 1981-04-06 | Por Microtrans Ab | Dielektrisk uppvermningsanordning |
US4557272A (en) * | 1980-03-31 | 1985-12-10 | Microwave Associates, Inc. | Microwave endoscope detection and treatment system |
US4446874A (en) | 1981-12-30 | 1984-05-08 | Clini-Therm Corporation | Microwave applicator with discoupled input coupling and frequency tuning functions |
GB8300779D0 (en) | 1983-01-12 | 1983-02-16 | Univ Glasgow | Microwave thermographic apparatus for bio-medical use |
CA1244889A (en) | 1983-01-24 | 1988-11-15 | Kureha Chemical Ind Co Ltd | HYPERTHERMIA DEVICE |
US4612940A (en) * | 1984-05-09 | 1986-09-23 | Scd Incorporated | Microwave dipole probe for in vivo localized hyperthermia |
US4891483A (en) | 1985-06-29 | 1990-01-02 | Tokyo Keiki Co. Ltd. | Heating apparatus for hyperthermia |
US5564417A (en) | 1991-01-24 | 1996-10-15 | Non-Invasive Technology, Inc. | Pathlength corrected oximeter and the like |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
US5540737A (en) | 1991-06-26 | 1996-07-30 | Massachusetts Institute Of Technology | Minimally invasive monopole phased array hyperthermia applicators and method for treating breast carcinomas |
US6277112B1 (en) | 1996-07-16 | 2001-08-21 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US6142992A (en) | 1993-05-10 | 2000-11-07 | Arthrocare Corporation | Power supply for limiting power in electrosurgery |
US5697882A (en) | 1992-01-07 | 1997-12-16 | Arthrocare Corporation | System and method for electrosurgical cutting and ablation |
US5227730A (en) | 1992-09-14 | 1993-07-13 | Kdc Technology Corp. | Microwave needle dielectric sensors |
US5620479A (en) | 1992-11-13 | 1997-04-15 | The Regents Of The University Of California | Method and apparatus for thermal therapy of tumors |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5536267A (en) | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5728143A (en) | 1995-08-15 | 1998-03-17 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5458597A (en) | 1993-11-08 | 1995-10-17 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US5810742A (en) | 1994-10-24 | 1998-09-22 | Transcan Research & Development Co., Ltd. | Tissue characterization based on impedance images and on impedance measurements |
US5630426A (en) | 1995-03-03 | 1997-05-20 | Neovision Corporation | Apparatus and method for characterization and treatment of tumors |
US6106524A (en) | 1995-03-03 | 2000-08-22 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US5800484A (en) | 1995-08-15 | 1998-09-01 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus with expanded electrodes |
US5735847A (en) | 1995-08-15 | 1998-04-07 | Zomed International, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5810804A (en) * | 1995-08-15 | 1998-09-22 | Rita Medical Systems | Multiple antenna ablation apparatus and method with cooling element |
US5807272A (en) | 1995-10-31 | 1998-09-15 | Worcester Polytechnic Institute | Impedance spectroscopy system for ischemia monitoring and detection |
US6016452A (en) | 1996-03-19 | 2000-01-18 | Kasevich; Raymond S. | Dynamic heating method and radio frequency thermal treatment |
US6289249B1 (en) * | 1996-04-17 | 2001-09-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Transcatheter microwave antenna |
US6047216A (en) * | 1996-04-17 | 2000-04-04 | The United States Of America Represented By The Administrator Of The National Aeronautics And Space Administration | Endothelium preserving microwave treatment for atherosclerosis |
US5904709A (en) * | 1996-04-17 | 1999-05-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Microwave treatment for cardiac arrhythmias |
WO1998006446A2 (en) | 1996-08-15 | 1998-02-19 | Deka Products Limited Partnership | Medical irrigation pump and system |
US5873849A (en) | 1997-04-24 | 1999-02-23 | Ichor Medical Systems, Inc. | Electrodes and electrode arrays for generating electroporation inducing electrical fields |
US6223085B1 (en) * | 1997-05-06 | 2001-04-24 | Urologix, Inc. | Device and method for preventing restenosis |
US6009347A (en) | 1998-01-27 | 1999-12-28 | Genetronics, Inc. | Electroporation apparatus with connective electrode template |
US6027502A (en) | 1998-01-29 | 2000-02-22 | Desai; Ashvin H. | Surgical apparatus providing tool access and replaceable irrigation pump cartridge |
US7776014B2 (en) | 1998-01-29 | 2010-08-17 | Peter Visconti | Disposable surgical suction/irrigation trumpet valve tube cassette |
US6558378B2 (en) | 1998-05-05 | 2003-05-06 | Cardiac Pacemakers, Inc. | RF ablation system and method having automatic temperature control |
US6171305B1 (en) | 1998-05-05 | 2001-01-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method having high output impedance drivers |
US6050994A (en) | 1998-05-05 | 2000-04-18 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using controllable duty cycle with alternate phasing |
US6059778A (en) | 1998-05-05 | 2000-05-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using unipolar and bipolar techniques |
US6312425B1 (en) | 1998-05-05 | 2001-11-06 | Cardiac Pacemakers, Inc. | RF ablation catheter tip electrode with multiple thermal sensors |
US6635055B1 (en) | 1998-05-06 | 2003-10-21 | Microsulis Plc | Microwave applicator for endometrial ablation |
JP2000005180A (ja) | 1998-06-25 | 2000-01-11 | Olympus Optical Co Ltd | 音響インピーダンス測定装置 |
EP1139897B1 (de) | 1998-12-18 | 2005-05-04 | Celon AG Medical Instruments | Elektrodenanordnung für ein chirurgisches instrument zur elektrothermischen koagulation im gewebe |
US6478793B1 (en) | 1999-06-11 | 2002-11-12 | Sherwood Services Ag | Ablation treatment of bone metastases |
US6287302B1 (en) | 1999-06-14 | 2001-09-11 | Fidus Medical Technology Corporation | End-firing microwave ablation instrument with horn reflection device |
US6770070B1 (en) | 2000-03-17 | 2004-08-03 | Rita Medical Systems, Inc. | Lung treatment apparatus and method |
AU2001251134B2 (en) | 2000-03-31 | 2006-02-02 | Angiodynamics, Inc. | Tissue biopsy and treatment apparatus and method |
JP2004520865A (ja) | 2000-07-25 | 2004-07-15 | リタ メディカル システムズ インコーポレイテッド | 局在化インピーダンス測定を使用する腫瘍の検出および処置のための装置 |
US6840935B2 (en) | 2000-08-09 | 2005-01-11 | Bekl Corporation | Gynecological ablation procedure and system using an ablation needle |
JP2002109971A (ja) | 2000-09-27 | 2002-04-12 | Mitsubishi Cable Ind Ltd | 高発泡ブラスチック絶縁同軸ケーブル |
ITPI20010006A1 (it) * | 2001-01-31 | 2002-07-31 | Cnr Consiglio Naz Delle Ricer | Antenna interstiziale con choke miniaturizzato per applicazioni di ipertemia a microonde in medicina e chirurgia |
US7008421B2 (en) | 2002-08-21 | 2006-03-07 | Resect Medical, Inc. | Apparatus and method for tissue resection |
US6497704B2 (en) | 2001-04-04 | 2002-12-24 | Moshe Ein-Gal | Electrosurgical apparatus |
US7070597B2 (en) | 2001-10-18 | 2006-07-04 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US6878147B2 (en) * | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
US7128739B2 (en) * | 2001-11-02 | 2006-10-31 | Vivant Medical, Inc. | High-strength microwave antenna assemblies and methods of use |
US6706040B2 (en) * | 2001-11-23 | 2004-03-16 | Medlennium Technologies, Inc. | Invasive therapeutic probe |
GB2387544B (en) * | 2002-10-10 | 2004-03-17 | Microsulis Plc | Microwave applicator |
JP4138469B2 (ja) * | 2002-12-06 | 2008-08-27 | アルフレッサファーマ株式会社 | マイクロ波手術器 |
JP4138468B2 (ja) * | 2002-12-06 | 2008-08-27 | アルフレッサファーマ株式会社 | マイクロ波手術器 |
US20040267340A1 (en) | 2002-12-12 | 2004-12-30 | Wit Ip Corporation | Modular thermal treatment systems with single-use disposable catheter assemblies and related methods |
JP4231743B2 (ja) | 2003-07-07 | 2009-03-04 | オリンパス株式会社 | 生体組織切除装置 |
US7311703B2 (en) * | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
GB2406521B (en) * | 2003-10-03 | 2007-05-09 | Microsulis Ltd | Treatment of hollow anatomical structures |
EP1684655A2 (en) | 2003-11-18 | 2006-08-02 | SciMed Life Systems, Inc. | System and method for tissue ablation |
US20050245920A1 (en) * | 2004-04-30 | 2005-11-03 | Vitullo Jeffrey M | Cell necrosis apparatus with cooled microwave antenna |
GB2415630C2 (en) * | 2004-07-02 | 2007-03-22 | Microsulis Ltd | Radiation applicator and method of radiating tissue |
-
2006
- 2006-01-03 GB GB0600018A patent/GB2434314B/en not_active Expired - Fee Related
- 2006-12-15 BR BRPI0620875-4A patent/BRPI0620875A2/pt not_active IP Right Cessation
- 2006-12-15 AU AU2006332213A patent/AU2006332213B2/en not_active Ceased
- 2006-12-15 WO PCT/EP2006/012144 patent/WO2007076924A2/en active Application Filing
- 2006-12-15 EP EP06829673.0A patent/EP1968469B8/en active Active
- 2006-12-15 CA CA002635316A patent/CA2635316A1/en not_active Abandoned
- 2006-12-15 JP JP2008547872A patent/JP5318581B2/ja active Active
- 2006-12-15 CN CN2006800502779A patent/CN101631506B/zh not_active Expired - Fee Related
- 2006-12-15 US US12/158,831 patent/US20080294155A1/en not_active Abandoned
- 2006-12-15 KR KR1020087019019A patent/KR20080092402A/ko not_active Application Discontinuation
- 2006-12-18 TW TW095147386A patent/TW200740407A/zh unknown
- 2006-12-27 US US11/646,141 patent/US20070203551A1/en not_active Abandoned
-
2008
- 2008-06-26 IL IL192469A patent/IL192469A0/en unknown
-
2015
- 2015-11-13 US US14/940,354 patent/US9907613B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104323856A (zh) * | 2014-11-11 | 2015-02-04 | 南京维京九洲医疗器械研发中心 | 无磁水冷微波消融针制造方法 |
WO2016074344A1 (zh) * | 2014-11-11 | 2016-05-19 | 南京维京九洲医疗器械研发中心 | 无磁水冷微波消融针制造方法 |
US10874458B2 (en) | 2014-11-11 | 2020-12-29 | Nanjing Vison-China Medical Devices R & D Center | Manufacturing method for non-magnetic water-cooled microwave ablation needle |
CN108352224A (zh) * | 2015-10-16 | 2018-07-31 | 美国专利创新有限公司 | 低电磁场电外科电缆 |
CN108352224B (zh) * | 2015-10-16 | 2022-06-14 | 美国专利创新有限公司 | 低电磁场电外科电缆 |
Also Published As
Publication number | Publication date |
---|---|
WO2007076924A2 (en) | 2007-07-12 |
GB2434314B (en) | 2011-06-15 |
TW200740407A (en) | 2007-11-01 |
JP5318581B2 (ja) | 2013-10-16 |
IL192469A0 (en) | 2009-02-11 |
AU2006332213A1 (en) | 2007-07-12 |
AU2006332213B2 (en) | 2013-01-10 |
GB0600018D0 (en) | 2006-02-08 |
BRPI0620875A2 (pt) | 2011-11-29 |
US20080294155A1 (en) | 2008-11-27 |
KR20080092402A (ko) | 2008-10-15 |
JP2009521967A (ja) | 2009-06-11 |
EP1968469B8 (en) | 2017-01-11 |
US9907613B2 (en) | 2018-03-06 |
US20070203551A1 (en) | 2007-08-30 |
CA2635316A1 (en) | 2007-07-12 |
US20160262832A1 (en) | 2016-09-15 |
EP1968469B1 (en) | 2016-11-02 |
CN101631506B (zh) | 2011-12-28 |
GB2434314A (en) | 2007-07-25 |
WO2007076924A3 (en) | 2007-08-30 |
EP1968469A2 (en) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101631506B (zh) | 放射发生器和放射组织的方法 | |
EP2377481B1 (en) | Directional reflector assembly | |
EP1768596B1 (en) | Radiation applicator for radiating tissue | |
US8628527B2 (en) | Directive window ablation antenna with dielectric loading | |
EP2286754B1 (en) | Surface ablation antenna with dielectric loading | |
US20170100193A1 (en) | Electrosurgical devices with directional radiation pattern | |
JP2009521967A5 (zh) | ||
CN109069201A (zh) | 用于递送rf和微波能量的电外科探针 | |
EP3243473B1 (en) | Ablation instruments with a member having a triangular cross-section | |
MX2008008716A (es) | Aplicador de radiacion y metodo para irradiar un tejido | |
AU2014202676A1 (en) | Directive window ablation antenna with dielectric loading |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111228 Termination date: 20141215 |
|
EXPY | Termination of patent right or utility model |