发明内容
在上述图像显示设备中,从背光发出的光被外部的相邻对象反射,并且检测返回的光。然而,在许多情况下,在显示平面中背光的光强不均匀(例如,显示平面的中心部分具有比周围部分的光强更高的光强)。因此,由相邻对象反射的光的光强在中心部分和周围部分中是变化的。此外,尽管接收反射光的感光元件沿显示平面排列,但是通常在每个感光元件中感光灵敏度是变化的。因此,从感光元件获得的图像拾取信号受到从背光发出的光的显示平面中的光分布、以及各感光元件中的感光灵敏度的变化的强烈影响。
在此情况下,当图像拾取信号被二进制化以确定相邻对象的位置时,由于由背光的光强的不均匀性和每个感光元件的感光灵敏度的变化导致的图像拾取信号的误差,可能不适当地执行二进制化。结果,存在未精确地检测相邻对象的风险,并且出现位置检测误差。即,在包括现有技术的光学型触摸面板的图像显示设备中,难以以高精度检测手指等。
有鉴于此,期望提供一种图像输入/输出设备、通过使用图像输入/输出设备输入图像的方法、以及在这样的图像输入/输出设备中校正感光级的方法,所述图像输入/输出设备能够以高精度检测如手指的相邻对象。
根据本发明实施例,提供了一种图像输入/输出设备,包括:输入/输出面板,包括基于图像信号在显示平面上显示图像的多个显示元件,并且包括沿所述显示平面安排的多个感光元件,所述感光元件用于接收从显示平面发出然后从外部相邻对象反射的光;校正部分,利用平面内校正表校正来自感光元件的感光信号,在所述平面内校正表中,校正系数分别与显示平面上的位置相关联,所述校正系数的显示平面内的值分布轮廓(profile)基于从显示平面发出的光的显示平面内的光强分布轮廓、和感光元件的显示平面内的感光灵敏度分布轮廓这两者而定义;以及图像处理部分,基于由所述校正部分校正的感光信号,获得关于外部相邻对象的位置、形状和大小的一个或多个的信息。
在根据本发明实施例的图像输入/输出设备中,输入/输出面板配置有具有触摸面板的所谓显示平面,其能够用多个显示元件显示图像并用多个感光元件检测外部相邻对象。这里,外部相邻对象是例如手指,并且所述外部相邻对象反射从显示平面发出的光。该反射光由感光元件接收,并转换为感光信号。该感光信号通过校正部分使用平面内校正表校正。该平面内校正表以这样的方式配置,使得校正系数分别与显示平面上的位置相关联,所述校正系数的显示平面内的值分布轮廓基于从显示平面发出的光的显示平面内的光强分布轮廓、和感光元件的显示平面内的感光灵敏度分布轮廓这两者而定义。从而,对感光信号执行对应于显示平面内的光强分布轮廓和感光灵敏度分布轮廓的校正。
具体地,在所述校正系数的值分布轮廓定义为作为所述光强分布轮廓和所述感光灵敏度分布轮廓的合成的合成分布轮廓的倒数(inversion)、并且所述校正部分通过将感光信号分别与校正系数相乘校正来自感光元件的感光信号的情况下,可能获得具有均匀级别的感光信号,其中抵消了来自发出的光的显示平面内的光强分布轮廓、和感光元件的显示平面内的感光灵敏度分布轮廓的影响。
根据本发明实施例,提供了一种输入图像的方法,包括:通过沿显示平面安排的多个感光元件接收光,所述光从显示平面发出然后从外部相邻对象反射;利用具有显示平面内的值分布轮廓的校正系数校正来自感光元件的感光信号,所述值分布轮廓定义为合成分布轮廓的倒数,所述合成分布轮廓是从显示平面发出的光的显示平面内的光强分布轮廓和感光元件的显示平面内的感光灵敏度分布轮廓的合成;以及基于由校正部分校正的感光信号,获得关于外部相邻对象的位置、形状和大小的一个或多个的信息。
在根据本发明实施例的输入图像的方法中,利用具有显示平面内的值分布轮廓的校正系数对来自每个感光元件的感光信号执行校正,所述值分布轮廓定义为合成分布轮廓的倒数,所述合成分布轮廓是从显示平面发出的光的显示平面内的光强分布轮廓和感光元件的显示平面内的感光灵敏度分布轮廓的合成。结果,从感光信号中消除了来自发出的光的显示平面中的光强分布轮廓、和感光元件的感光灵敏度分布轮廓的影响。
在根据本发明实施例的图像输入/输出设备中,利用平面内校正表校正来自感光元件的感光信号,在所述平面内校正表中,校正系数分别与显示平面上的位置相关联,所述校正系数的显示平面内的值分布轮廓基于从显示平面发出的光的显示平面内的光强分布轮廓、和感光元件的显示平面内的感光灵敏度分布轮廓这两者而定义,并且基于由校正部分校正的感光信号,获得关于外部相邻对象的位置、形状和大小的一个或多个的信息。因此,通过适当设置校正系数,可能对对应于显示平面中的光强分布轮廓和感光灵敏度分布轮廓的感光信号执行适当的校正。具体地,在所述校正系数的值分布轮廓定义为作为所述光强分布轮廓和所述感光灵敏度分布轮廓的合成的合成分布轮廓的倒数,并且所述校正部分通过将感光信号分别与校正系数相乘校正来自感光元件的感光信号的情况下,可能获得具有均匀级别的感光信号,其中抵消了来自发出的光的显示平面内的光强分布轮廓、和感光元件的显示平面内的感光灵敏度分布轮廓的影响。因此,可能以高精度检测如手指的相邻对象。
在根据本发明实施例的输入图像的方法中,利用具有显示平面内的值分布轮廓的校正系数对来自每个感光元件的感光信号执行校正,所述值分布轮廓定义为合成分布轮廓的倒数,所述合成分布轮廓是从显示平面发出的光的显示平面内的光强分布轮廓和感光元件的显示平面内的感光灵敏度分布轮廓的合成。结果,可能获得具有均匀级别的感光信号,其中抵消了来自发出的光的显示平面内的光强分布轮廓、和感光元件的显示平面内的感光灵敏度分布轮廓的影响。因此,可能以高精度检测如手指的相邻对象。
从下面的描述将更完整地显现本发明的其他和另外的目的、特征和优点。
具体实施方式
将参照附图详细描述本发明的优选实施例。
图1图示根据本发明实施例的图像输入/输出设备1的示意性配置。图2图示根据实施例的图像输入/输出设备1的配置。图3图示输入/输出面板的一部分的放大截面图。如图1所示,根据实施例的图像输入/输出设备1包括显示器10和使用显示器10的电子设备主体20。显示器10包括输入/输出面板11、显示信号处理部分12、感光信号处理部分13以及图像处理部分14。电子设备主体20包括控制部分21。
如图2所示,输入/输出面板11配置有其中多个像素16以矩阵排列的液晶显示面板,并且包括显示元件11a和感光元件11b。显示元件11a是通过利用从作为光源的背光发出的光,在显示平面上显示图、字母等的图像的液晶元件。感光元件11b是接收光和将其输出为电信号的如光电二极管的感光元件。当从背光发出的光被如手指的外部相邻对象反射并返回时,所述外部相邻对象在输入/输出面板11的外部,感光元件11b接收反射并返回的光,并输出感光信号。此后,外部相邻对象是与显示平面接触或接近显示平面的对象。在每个像素16中安排根据实施例的感光元件11b,并且多个感光元件11b在平面中排列。
如图2和3所示,输入/输出面板11具有这样的配置,其中具有彼此被间壁(partition wall)32隔开的结构的多个发光感光单元CWR在一对透明基底30和31之间以矩阵排列。每个发光感光单元CWR具有发光单元CW(CW1、CW2、CW3、...)和包括在发光单元CW中的感光单元CR(CR1、CR2、CR3、...)。发光单元CW由作为显示元件11a的液晶单元形成,并且感光单元CR包括感光元件PD作为感光元件11b。在感光单元CR中,在背光侧的透明基底30和感光元件PD之间排列屏蔽层33,使得从背光发出的光LB不进入感光元件PD。在不被来自背光的光LB影响的情况下,每个感光元件PD仅检测从位于背光的相对侧的透明基底31的方向进入的光。
图1中图示的显示信号处理部分12连接到输入/输出面板11的前一级。显示信号处理部分12是驱动输入/输出面板11使得输入/输出面板11显示基于显示数据的图像的电路。
如图2所示,显示信号处理部分12包括显示信号保持控制部分40、发光侧扫描器41、显示信号驱动器42和感光侧扫描器43。显示信号保持控制部分40在例如SRAM(静态随机存取存储器)的场存储器中存储和保持从显示信号产生部分44输出的每个屏幕(每个一场的显示)的显示信号。显示信号保持控制部分40还控制发光侧扫描器41和驱动每个发光单元CW的显示信号驱动器42以及驱动每个感光单元CR的感光侧扫描器43,使得发光侧扫描器41、显示信号驱动器42以及感光侧扫描器43彼此结合操作。具体地,显示信号保持控制部分40基于在场存储器中保持的显示信号和控制信号,将发光时序控制信号输出到发光侧扫描器41,将感光时序控制信号输出到感光侧扫描器43,并且将一条水平线的显示信号输出到显示信号驱动器42。利用控制信号和显示信号执行线序操作。
发光侧扫描器41具有响应于从显示信号保持控制部分40输出的发光时序控制信号、选择要驱动的发光单元CW的功能。具体地,发光侧扫描器41通过与输入/输出面板11中的每个像素16连接的用于发光的栅极线,将发光选择信号提供到每个像素16,并且控制发光设备选择开关。即,当提供电压并且用发光选择信号接通某个像素16的发光元件选择开关时,在该像素16中执行以对应于从显示信号驱动器42提供的电压的亮度的发光。
显示信号驱动器42具有响应于从显示信号保持控制部分40输出的一条水平线的显示信号、提供显示数据到要驱动的发光单元CW的功能。具体地,显示信号驱动器42通过与输入/输出面板11中的每个像素16连接的数据供应线,将对应于显示数据的电压提供到通过上述发光侧扫描器41选择的像素16。发光侧扫描器41和显示信号驱动器42彼此结合线序操作。从而,在输入/输出面板11上显示对应于任意显示数据的图像。
感光侧扫描器43具有响应于从显示信号保持控制部分40输出的感光时序控制信号、选择要驱动的感光单元CR的功能。具体地,感光侧扫描器43通过与输入/输出面板11中的每个像素16连接的用于感光的栅极线,将感光选择信号提供到每个像素16,并且控制感光元件选择开关。即,类似于上述感光侧扫描器41的操作,当提供电压并且用感光选择信号接通某个像素16的感光元件选择开关时,将从该像素16检测的感光信号输出到感光信号接收器45。从而,例如,感光单元CR可能基于从某个发光单元CW发出的光,接收并检测由外部相邻对象反射的光,该外部相邻对象与显示面板接触或接近。感光侧扫描器43将感光块控制信号输出到感光信号接收器45和感光信号保持部分46,并且控制有助于感光操作的这些块。在根据实施例的图像显示设备中,上述用于发光的栅极线和用于感光的栅极线分开连接到每个发光感光单元CWR。从而,发光侧扫描器41和感光侧扫描器43相互独立地操作。
图1中图示的感光信号处理部分13(校正部分)连接到输入/输出面板11的随后级。感光信号处理部分13是通过从感光元件11b获取感光信号执行放大等,并且通过利用平面内(in-plane)校正表13a校正感光信号的电路。当对背光的平面内的发光强度(在从显示平面发出的光的显示平面内的光强分布轮廓)和每个感光元件11b的感光灵敏度(在多个感光元件的平面内的感光灵敏度分布轮廓)执行补偿时,使用所述平面内校正表13a。即,感光信号处理部分13生成拾取图像,其中移除了来自背光的显示平面内的光强分布轮廓的变化和每个感光元件11b的感光灵敏度的变化的影响。平面内校正表13a存储在感光信号处理部分13中安排的存储器(附图中未图示)中。然而,平面内校正表13a可存储在其他块中。
如图2所示,感光信号处理部分13包括感光信号接收器45和感光信号保持部分46。感光信号接收器45具有响应于从感光侧扫描器43输出的感光块控制信号、获得从每个感光单元CR输出的一条水平线的感光信号的功能。在感光信号接收器45中获得的一条水平线的感光信号输出到感光信号保持部分46。
感光信号保持部分46具有响应于从感光侧扫描器43输出的感光块控制信号,将从感光接收器45输出的感光信号重建为每个屏幕(一场的每个显示)的感光信号,并且将感光信号存储和保持在例如SRAM的场存储器中的功能。在感光信号保持部分46中存储的感光信号的数据输出到图像处理部分14中的位置检测部分47(图1)。感光信号保持部分46可由除了存储器以外的存储元件制成。例如,感光信号可作为模拟数据(电荷)保持在电容元件中。
图像处理部分14(图1)连接到感光信号处理部分13的随后级。图像处理部分14从感光信号处理部分13获取校正的拾取图像,并且执行二进制化、噪声移除、加标记等,然后获得外部相邻对象的点信息,即,指示外部相邻对象的重心和中心坐标、以及外部相邻对象的区域(大小和形状)的信息。更具体地,图像处理部分14中的位置检测部分47(图2)基于从感光信号保持部分46输出的感光信号的数据执行信号处理,并且指定在感光单元CR中检测的对象所处的位置等。从而,可能指定与显示平面接触或接近的手指等的位置。此时,因为位置检测部分47使用校正的拾取图像,所以减少了当检测外部相邻对象等的位置时的确定误差。
电子设备主体20(图1)将显示数据输出到显示器10中的显示信号处理部分12,并且从图像处理部分14输入点信息。控制部分21通过使用点信息改变显示图像。
如图2所示,控制部分21(图1)包括显示信号产生部分44。显示信号产生部分44例如基于在附图中未图示的由CPU(中央处理单元)等产生并提供的图像数据,产生用于显示图像(场)的显示信号,并且将显示信号输出到显示信号保持控制部分40。
接下来,将描述形成平面内校正表13a的方法。图4说明形成平面内校正表13a的处理流程。这里,如图5所示,将描述对于配置有在多个(这里,4个)发光感光单元CWR中包括的多个(这里,4个)感光元件11b的组15被认为是一个校正部分并且执行校正的情况。
具有均匀反射率的表面的参考反射板(图中未图示)位于面向输入/输出面板11,使得覆盖输入/输出面板11的整个表面(S10)。在此情况下,作为显示元件11a的所有发光单元CW(液晶单元)用来自显示信号产生部分(图2)的参考图像显示信号,设置在白色显示状态(即,最高灰度级状态),从而从输入/输出面板11的显示平面发出几乎所有来自背光的光。从显示平面发出的光被参考反射板反射,并且每个感光元件11b接收反射的光。然而,在此情况下,在发光单元CW中,R、G和B的所有发光单元处于最高灰度级,从而可以执行字面意义上的白色显示(严格意义上的白色显示)。替代地,仅一个特定颜色(例如,R)的发光单元可处于最高灰度级(扩展意义的白色显示),并且其他颜色(例如,G和B)的发光单元可处于最低灰度级(扩展意义的黑色显示)。液晶单元典型地透射红外光,而不依赖于液晶的状态(开/关状态)。因此,当在每个感光元件上安排红外光选择透射滤光片时,即使液晶单元处于黑色显示状态,通过利用在背光中包括的红外光,也可执行如上所述的反射和感光。
接下来,读取从每个感光元件11b输出的感光信号(S12)。在实施例中使用的感光元件11b安排在每个像素16中。因此,为了减少存储平面内校正表13a的存储器的容量,彼此紧邻安排的多个感光元件11b构成如上所述的一组,并且对每组获得校正系数。作为示例,如图5所示,在列方向和行方向排列的像素16中,在列方向和行方向彼此紧邻的4(2×2)个像素16构成一组。从而,在多个像素16中安排的感光元件11b分别分为多个组,并且每组形成感光元件组。4(2×2)个感光元件11b(像素16)可构成如图5所示的一个组。其他数量(例如,3×3,2×4,4×4等)的感光元件11b可构成一个组。
接下来,计算并获得从构成每个组的感光元件11b输出的感光信号的平均强度。即,对每个组获得反射光的感光强度的平均值,并且将获得的值认为是组平均值。此外,从计算获得的多个组平均值中的最大值被认为是最大组平均值(S14)。
在S14获得的每个组平均值除以最大组平均值,以获得归一化的值,并且通过倒数计算获得归一化的值的倒数(S16)。结果被认为是校正系数。在此情况下,因为上述归一化的值可以总是1.0或更少,所以作为归一化的值的倒数的校正系数可以总是1.0或更多。为此,与校正系数在1.0或更少的范围内的情况相比,存储所需的存储器的容量是小的。此外,因为通常认为在背光的显示平面中的光强分布轮廓的变化和每个感光元件11b的感光灵敏度的变化并不非常大,所以每个组平均值大约稍微低于最大组平均值。自然地,作为倒数计算的结果获得的校正系数的值在相对窄的范围内,该范围大约稍微高于1.0。因此,如下所述,从此观点看,存储所需的存储器的容量也是小的。以此方式,通过对每组执行S16的计算获得所有组的校正系数。从而,获得例如如图6所示的平面内校正表13a,并且将其记录在上述存储器中(S18)。
图6中的平面内校正表13a图示下述情况,其中在显示平面的行方向和列方向中,即,在x轴方向和y轴方向中,如下形成各组。在x轴方向中,形成X组(X=1,2,3...N)。在y轴方向中,形成Y组(Y=1,2,3...M)。对每组获得校正系数(C11,C21,...CNM)。图7图示在三维曲线图中指示平面内校正表13a的示例。在图7的示意视图中,底面对应于输入/输出面板11的显示平面,并且高度方向指示校正系数。以此方式,在实施例中,不是对每个感光元件获得校正系数,而是将多个感光元件分组,并且对每组获得校正系数。因此,减少了校正系数的数量,并且存储所需的存储器容量是小的。
接下来,将描述根据实施例的图像输入/输出设备1的操作。图8说明当图像输入/输出设备1执行平面内校正时的处理流程。图9A到9E图示感光信号、平面内校正表13a和校正的感光信号。这里,图9A图示平面内的不均匀状态的示例,并且垂直轴指示不均匀的程度,而水平轴指示平面内方向。图9B图示在从显示平面发出的光的显示平面内的光强分布轮廓(曲线A)和多个感光元件11b的平面内的感光灵敏度分布轮廓(曲线B)的合成分布(曲线C)的示例。在图9B中,垂直轴指示不均匀的程度,而水平轴指示平面内方向。图9C图示当存在用曲线C指示的合成分布时,从感光元件11b输出的感光信号的示例。在图9C中,垂直轴指示不均匀的程度,而水平轴指示平面内方向。图9D图示用于补偿用曲线C指示的合成分布的平面内校正表13a的示例。在图9D中,垂直轴指示校正系数,而水平轴指示平面内方向。图9E图示用曲线E指示的通过将从感光元件11b输出的信号的强度乘以平面内校正表中的值获得的补偿信号的强度的示例。在图9E中,垂直轴指示信号强度,而水平轴指示平面内方向。
从电子设备主体20输出的显示数据输入到显示信号处理部分12。显示信号处理部分12驱动输入/输出面板11,使得基于显示数据将图像显示在输入/输出面板11上。
输入/输出面板11通过利用从背光发出的光在显示元件11a上显示图像。同时,输入/输出面板11驱动感光元件11b。当如手指的外部相邻对象与显示元件11a接触或接近时,在显示元件11a上显示的图像被外部相邻对象反射,并且在感光元件11b中检测该反射的光。通过该检测从感光元件11b输出感光信号(S20)。此时,在图9A中,用曲线A指示背光的平面内的光强的不均匀状态。用图9A中的曲线B指示以矩阵排列的感光元件11b的平面内的感光灵敏度的不均匀状态。用图9B中的曲线C指示这样的曲线A和曲线B的合成分布。从而,由于用曲线C指示的平面内的不均匀状态,从感光元件11b输出的感光信号D的信号强度在平面内变化(曲线A和曲线B)。
感光信号处理部分13输入感光信号,并且执行如放大的处理,并且通过利用从上述存储单元读取的平面内校正表13a处理感光信号(S22)。具体地,感光信号处理部分13通过图9D中的平面内校正表13a的值计算(乘以)输入感光信号,并且执行平面内校正,使得将如图9C图示的感光信号D的强度平面内的不均匀状态校正为如图9E图示的感光信号F的强度平面内的均匀状态。以此方式,感光信号处理部分13从通过平面内校正而校正的感光信号D获得拾取图像。
接下来,图像处理部分14输入平面内校正的拾取图像,并且对拾取的图像执行二进制化(S24)。即,图像处理部分14存储之前设置的阈值。例如,图像处理部分14比较并确定拾取的图像数据的信号强度小于、还是等于或大于阈值,并且执行设置“0”或“1”的二进制化。从而,接收由外部相邻对象反射的光的部分设置为“1”,而另一部分设置为“0”。
图像处理部分14从二进制化的拾取图像移除隔离点(S26)。即,在上述二进制化的情况下,图像处理部分14通过移除与对应于外部相邻对象的部分隔离的“1”的部分,移除噪声。
此后,图像处理部分14执行加标记(S28)。即,在上述二进制化的情况下,图像处理部分14对设置为“1”的部分执行加标记。然后,图像处理部分14将设置为“1”的区域检测为外部相邻对象的区域,并且获得该区域的重心或中心坐标。这样的数据输出到控制部分21,作为点信息。
接下来,控制部分21使用从图像处理部分14输入的点信息,并且执行如改变显示图像的必要处理。例如,在屏幕上显示某个操作菜单的情况下,控制部分21检测通过用户的手指选择操作菜单中的哪个按钮,并且执行对应于选择的按钮的命令。
以此方式,根据实施例,平面内校正表13a用于补偿用于显示图像的背光的平面内的光强分布轮廓的变化和每个感光元件11b的感光灵敏度的变化,并且校正来自感光元件的感光信号,所述感光元件接收从背光发出并被外部相邻对象反射的光。从而,图像输入/输出设备1基于校正的感光信号,以高精度执行图像处理。结果,精确地检测外部相邻对象。
根据实施例,因为校正系数可以总是1.0或更大,所以与校正系数在1.0或更小的范围内的情况相比,存储所需的存储器的容量小。此外,因为校正系数在大约稍大于1.0的相对窄的范围内,所以减少了用于表示校正系数的位数,并且这也有助于存储所需的存储器的容量的减少。
根据实施例,在多个像素16中,彼此紧邻的像素16构成一组,并且通过利用在每组中安排的感光元件11b,对每组获得校正系数。从而,获得平面内校正表13a。因此,减少了平面内校正表13a的数据量,并且与通过获得每个像素16的校正系数获得平面内校正表13a的情况相比,存储器容量小。
例如,平面内校正表13a中的校正系数可取为大约小数点后的3位,并存储。可用较粗的精度(例如,小数点后一位)获得校正系数。具体地,平面内校正表13a典型地通过6位设置。然而,当用粗精度通过4位设置平面内校正表13a时,减少了平面内校正表13a的数据量,并且减少了上述存储单元的存储器容量。
此外,根据实施例,在将图像输入/输出设备1递送给用户之前在存储器中获得并记录平面内校正表13a的情况下,节约当用户形成平面内校正表13a时的工时。然而,在平面内校正表13a的形成对用户是可选的情况下,即使输入/输出面板11随时间的经过变化,也可能适当地形成对应于随时间的变化的平面内校正表13a,并且即使在长时间持续使用后,也能一直以高精度获得适当校正的拾取图像。
在实施例中,当形成平面内校正表13a时,如图4中的S14和S16所示,获得各组中检测的组平均值和最大组平均值,并且通过利用组平均值和最大组平均值的计算获得校正系数。然而,不限制为通过该计算获得校正系数。例如,可通过最大组平均值以外的任意常数获得校正系数。该任意常数可以是例如值1。在此情况下,校正系数简单的为组平均值的倒数。替代地,替代最大组平均值,预期接近最大组平均值的值可用作上述常数。在此情况下,校正系数是通过将该常数除以每个组平均值获得的值。平面内校正表13a可具有任何值,只要它补偿(抵消)如图9A中的曲线A和曲线B所示的平面内的不均匀状态,即,平面内校正表13a具有曲线C的分布的逆分布(反分布)。
在平面内校正表13a中的校正系数的数量设置得小(粗略设置)、并且在平面内校正表13a中不存在对应于感光元件组的校正系数的情况下,基于另一组的现有校正系数执行数据插值,并且对没有平面内校正表13a的对应校正系数的感光元件组获得校正系数。以此方式,可通过使用通过该插值获得的校正系数执行校正。例如,组的校正系数可用紧邻组的校正系数插值。从而,防止在彼此紧邻的组中的校正系数迅速变化,并且平面内校正表13a的逐渐变化是可能的。此外,减少了存储平面内校正表13a所需的存储器容量。
在实施例中,在以矩阵安排的感光元件11b中,彼此紧邻的多个感光元件11b构成一组,并且对每组获得校正系数。从而,获得平面内校正表13a。然而,也可能对每个像素16中安排的每个感光元件11b获得校正系数,并且使得多个校正系数在一起。从而,获得平面内校正表13a。在此情况下,与对每组获得校正系数的情况相比,在平面中精细地获得校正系数。因此,获得具有较高精度的平面内校正的图像。
下述的修改也是可能的。
修改1
根据修改1的图像输入/输出设备包括安排在显示器10中的显示信号处理部分12、输入/输出面板11、感光信号处理部分13和图像处理部分14,以及安排在使用显示器10的电子设备主体20中的控制部分21。
在上述实施例中,当在根据实施例的图像输入/输出设备中形成平面内校正表13a时,使用具有均匀亮度的参考图像。然而,在修改1中,在输入/输出面板11上显示任意参考图像,并且通过使用任意参考图像形成平面内校正表13a。该参考图像任意具有在一帧内有多个亮度级的模式。
在这样的图像输入/输出设备的配置中,显示信号处理部分12连接到输入/输出面板11的前一级和感光信号处理部分13的前一级。显示信号处理部分12向输入/输出面板11输出用于基于显示数据显示参考图像的驱动信号。显示信号处理部分12向感光信号处理部分13输出要在输入/输出面板11上显示的参考图像的亮度数据。
在输入/输出面板11中,当通过参考反射板反射参考图像时,感光元件11接收参考图像的反射光,并且将感光信号输出到感光信号处理部分13。感光信号处理部分13还连接到输入/输出面板11的随后级。当形成面板内校正表13a时,从输入/输出面板11向感光信号处理部分13提供感光信号。感光信号处理部分13将反(inverted)光强表中的系数乘以感光信号,其中从对应于从输入/输出面板11获得的感光信号的参考图像的亮度数据获得反光强表。从而,从感光信号消除在平面内具有不均匀亮度的参考图像的影响。
此后,感光信号处理部分13执行图4中的S14到S18指示的处理,从而获得平面内校正表13a。
根据修改1的图像输入/输出设备的操作与实施例中描述的图像输入/输出设备的操作相同。因此,省略描述。
当形成平面内校正表13a时,在图像输入/输出设备中,使用从参考图像的亮度数据获得的反光强表中的系数,所述参考图像对应于从输入/输出面板11获得的感光信号,所述参考图像从显示信号处理部分12输出到感光信号处理部分13。然后,执行校正,使得从输入/输出面板11获得的感光信号消除具有平面内不均匀亮度的参考图像的影响。
为此,图像输入/输出设备获得平面内校正表13a,而不使用上述实施例中的具有不均匀亮度的参考图像。因此,不需要存储具有均匀亮度的参考图像,仅当形成平面内校正表13a时需要所述参考图像。
在输入/输出面板11上显示的参考图像连续改变的情况下,显示信号处理部分12获得每帧的图像数据的逆表格,并且将逆表格输出到感光信号处理部分13。感光信号处理部分13通过使用从输入/输出面板11输入的感光信号以及当在输入/输出面板11中获得感光信号时从图像数据获得的逆表格执行校正。此后,执行如图4中的S14到S18的处理。可以此方式获得平面内校正表13a。
修改2
图10图示根据修改2的图像输入/输出设备2的配置。图像输入/输出设备2与根据实施例的图像输入/输出设备1的不同在于,在电子设备主体20中安排图像处理部分14。即,在根据修改2的图像输入/输出设备2中,显示信号处理部分12、输入/输出面板11以及感光信号处理部分13安排在显示器10中,而控制部分21和图像处理部分14安排在电子设备主体20中。即使在这样的图像输入/输出设备2中,也获得与根据实施例的图像输入/输出设备1中相同的效果。
在实施例以及修改1和修改2中描述的图像输入/输出设备1和2中,描述了液晶显示面板用作输入/输出面板11的配置。然而,根据本发明的图像输入/输出设备可配置有有机电致发光(EL)面板等作为输入/输出面板。当施加正向方向的偏压时,有机EL元件发光。当施加反向方向的偏压时,有机EL元件接收光并产生电流。为此,有机EL元件包括显示元件11a和感光元件11b。在输入/输出面板11的配置中,有机EL元件安排在每个像素16中。通过响应于显示数据施加正向方向的偏压到每个有机EL元件,有机EL元件发光并显示图像。通过施加反向方向的偏压到其他有机EL元件,有机EL元件接收反射光。此时,在对当有机EL元件通过施加正向方向的偏压来执行发光时在显示平面中的光强分布轮廓、和当有机EL元件通过施加反向方向的偏压执行感光时在平面内的感光灵敏度分布轮廓执行实施例中所述的平面内校正方法时,可能校正平面内的这些分布。
到目前为止,用实施例和修改描述了本发明。然而,本发明不限于此,并且可进行各种修改。例如,描述了对应于如图2和3所示的一个发光单元提供一个感光单元的情况。然而,可对应于多个发光单元提供一个感光单元。
本发明包含涉及于2008年7月7日向日本专利局提交的日本优先权专利申请JP 2008-176685中公开的主题内容,在此通过引用并入其全部内容。
本领域技术人员应当理解,取决于设计要求和其他因素可出现各种修改、组合、子组合和更改,只要它们在权利要求或其等效物的范围内。