CN101615706B - 电池包及其控制方法 - Google Patents

电池包及其控制方法 Download PDF

Info

Publication number
CN101615706B
CN101615706B CN2009101499707A CN200910149970A CN101615706B CN 101615706 B CN101615706 B CN 101615706B CN 2009101499707 A CN2009101499707 A CN 2009101499707A CN 200910149970 A CN200910149970 A CN 200910149970A CN 101615706 B CN101615706 B CN 101615706B
Authority
CN
China
Prior art keywords
voltage
charging current
setting
time diffusion
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101499707A
Other languages
English (en)
Other versions
CN101615706A (zh
Inventor
西山祥一
平塚贤
铃木浩之
田中健彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Northeast China
Murata Manufacturing Co Ltd
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN101615706A publication Critical patent/CN101615706A/zh
Application granted granted Critical
Publication of CN101615706B publication Critical patent/CN101615706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种电池包,包括:一个或多个单元块,其中以串联和/或并联连接一个或多个蓄电池单元,以及控制部分,用于测量一个或多个单元块的电压,以基于测量结果来检测单元块的异常性。控制部分基于所测量的电压计算一个或多个单元块的电压的时间微分,从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小,以及在第一时间微分和第二时间微分的差小于规定值的情况下,确定对应于第二时间微分的单元块为异常。

Description

电池包及其控制方法
技术领域
本发明涉及电池包和用于检测电池单元的内部短路的电池包控制方法。
背景技术
在近几年中,例如笔记本个人电脑(PC),蜂窝电话和个人数字助理(PDA)的便携式电子装置已被普遍使用,并且由于锂离子蓄电池(secondarybattery)例如高电压、高能量密度和质量轻之类的优点,它们已被广泛用作这些装置的电源。
如果当锂离子蓄电池被充电时它们被过度充电到在预定电压以上的一电压,或者当它们被放电时过度放电到低于预定电压的一电压,则可能使得锂离子蓄电池的电池单元损坏或异常地发热。因此,包含锂离子蓄电池的电池包通常配备有用于防止电池被过度充电或过度放电的保护电路。
通常,这样的保护电路测量蓄电池的充电和放电电流以及每块电池单元的电压,以基于测量结果检测例如过度充电、过度放电或异常单元平衡(balance)之类的异常性(abnormality)。当根据检测结果确定电池单元为异常时,保护电路执行例如禁止蓄电池充电和放电之类的保护操作。
此外,当包含蓄电池的电池包经受重复异常充电和放电,或经受使单元内部变形的外部压力时,或当外来物质进入电池单元时,可能在电池单元中发生由于短路引起的异常性。当由于内部短路引起的异常性发生时,基于以上讨论的检测处理和检测结果的保护操作可能不充分,并且在电池单元内部的短路电路可导致例如电池包起火的严重事件。
为了解决上述问题,最近已经提出了各种方案以检测由于内部短路引起的电池单元的异常性。例如,日本专利第3437823号公开了一种方法,在该方法中测量单元块的电压,以及根据最大电压和最小电压之间的差异是否持续为预定阈值或多于规定的时间来检测由于电池单元中短路引起的异常性。
发明内容
但是,电池包的特性根据环境温度的改变和电池的损坏等级而改变。因此,即使考虑在环境温度的改变和电池单元的损坏等级来确定规定的时间,也可能在电压差等于或大于规定时间的阈值之前,由内部短路发热或起火。
因此,希望提供一种电池包和用于该电池包的控制方法,该控制方法检测内部短路引起的电池单元的异常性而不受环境温度等改变的影响。
根据本发明的第一实施例,提供了一种电池包,包括:一个或多个单元块,其中以串联和/或并联连接一个或多个蓄电池单元;以及控制部分,用于测量一个或多个单元块的电压,以基于测量结果来检测单元块的异常性。控制部分基于所测量的电压计算一个或多个单元块的电压的时间微分,从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小,以及在第一时间微分和第二时间微分的差小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
根据本发明第二实施例,提供一种电池包,包括:一个或多个单元块,其中以串联和/或并联连接一个或多个蓄电池单元;以及控制部分,用于测量一个或多个单元块的电压和充电电流,以基于测量结果来检测单元块的异常性。控制部分基于所测量的电压和充电电流,计算一个或多个单元块的电压和充电电流的时间微分以及电压和充电电流的二阶时间微分,在电压的时间微分小于规定值、电压的二阶时间微分小于规定值并且充电电流的二阶时间微分不小于规定值的情况下,确定单元块为异常,以及在充电电流的时间微分大于规定值、充电电流的二阶时间微分大于规定值并且电压的二阶时间微分不大于规定值的情况下,确定单元块为异常。
根据本发明第三实施例,提供一种电池包,包括:一个或多个单元块,其中以串联和/或并联连接一个或多个蓄电池单元;以及控制部分,用于测量一个或多个单元块的电压和充电电流,以基于测量结果来检测单元块的异常性。控制部分基于所测量的电压和充电电流计算一个或多个单元块的电压的时间微分以及电压和充电电流的二阶时间微分,从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小,以及在第一时间微分和第二时间微分的差小于规定值,电压的二阶时间微分小于规定值并且充电电流的二阶时间微分不小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
根据本发明的第四实施例,提供一种用于电池包的控制方法,包括以下步骤:测量一个或多个单元块的电压,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;基于所测量的电压计算一个或多个单元块的电压的时间微分;从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小;以及在第一时间微分和第二时间微分的差小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
根据本发明的第五实施例,提供一种用于电池包的控制方法,包括以下步骤:测量一个或多个单元块的电压和充电电流,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;基于所测量的电压和充电电流,计算一个或多个单元块的电压和充电电流的时间微分以及电压和充电电流的二阶时间微分;在电压的时间微分小于规定值、电压的二阶时间微分小于规定值并且充电电流的二阶时间微分不小于规定值的情况下,确定单元块为异常;以及在充电电流的时间微分大于规定值、充电电流的二阶时间微分大于规定值并且电压的二阶时间微分不大于规定值的情况下,确定单元块为异常。
根据本发明的第六实施例,提供一种用于电池包的控制方法,包括以下步骤:测量一个或多个单元块的电压和充电电流,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;基于所测量的电压和充电电流计算一个或多个单元块的电压的时间微分以及电压和充电电流的二阶时间微分;从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小;以及在第一时间微分和第二时间微分的差小于规定值,电压的二阶时间微分小于规定值,并且充电电流的二阶时间微分不小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
如上所述,根据本发明的第一和第四实施例,测量一个或多个的单元块的电压,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;基于所测量的电压计算一个或多个单元块的电压的时间微分;从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小;以及在第一时间微分和第二时间微分的差小于规定值的情况下,确定对应于第二时间微分的单元块为异常。从而,可确定在对应于第二时间微分的单元块中由于内部短路引起的异常性。
根据本发明的第二和第五实施例,测量一个或多个的单元块的电压和充电电流,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;基于所测量的电压和充电电流,计算一个或多个单元块的电压和充电电流的时间微分以及电压和充电电流的二阶时间微分;在电压的时间微分小于规定值、电压的二阶时间微分小于规定值并且充电电流的二阶时间微分不小于规定值的情况下,确定单元块为异常;以及在充电电流的时间微分大于规定值、充电电流的二阶时间微分大于规定值并且电压的二阶时间微分不大于规定值的情况下,确定单元块为异常。
根据本发明的第三和第六实施例,测量一个或多个的单元块的电压和充电电流,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;基于所测量的电压和充电电流计算一个或多个单元块的电压的时间微分以及电压和充电电流的二阶时间微分;从一个或多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小;以及在第一时间微分和第二时间微分的差小于规定值,电压的二阶时间微分小于规定值,并且充电电流的二阶时间微分不小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
附图说明
图1是示出适用于本发明的实施例的电池包的示例性配置的框图;
图2是示出在恒流恒压充电方法中的充电特性的例子的示意图;
图3是示出在恒流充电时间段中,单元块的电压、电压微分和电压微分差的波形的示意图;
图4是示出在充电电流改变的情况下,电压、电压微分和电压微分差的波形的示意图;
图5是图示适用于本发明的实施例的、用于检测由于内部短路引起的异常性的方法的流程图;
图6是示出在恒压充电时间段中,单元块的充电电流的微分的波形的示意图;
图7是示出在恒流充电时间段中,单元块的二阶电压和充电电流微分的波形的示意图;
图8是示出在充电电流改变的情况下,二阶电压和充电电流微分的波形的示意图;
图9是示出在恒压充电时间段中,单元块的二阶充电电流和电压微分的波形的示意图;以及
图10是图示适用于本发明的修改实施例的、用于检测由于内部短路引起的异常性的方法的流程图。
具体实施方式
以下将参考附图描述本发明的实施例。在本发明的实施例中,测量蓄电池的电压和充电电流,并且根据所测量的电压和充电电流来计算电压和充电电流的时间微分。基于所计算的时间微分,在蓄电池的电池单元中检测由于内部短路引起的异常性的发生。
图1示出了适用于本发明的实施例的电池包1的示例性配置。当使用外部电子装置时,分别将电池包1的正端子11和负端子12连接到用于放电的电子装置的正端子和负端子。当对电池包1充电时,将电池包1装配在充电器上,并且当使用电子装置时,分别将电池包1的正端子11和负端子12连接到用于充电的充电器的正端子和负端子。
电池包1主要包括蓄电池2、控制部分3和开关电路4。在图1所示的电池包1的配置的描述中,只描述了关于本发明的实施例的重要的部分,而未描述其他部分以避免描述的复杂性。蓄电池2是其中以串联和/或并联连接多个电池单元的、例如锂离子蓄电池之类的蓄电池。在该例子中,将电池单元连接在两个平行的行中,每行包括3个以串联连接的电池单元。在蓄电池2中,每个包括以并联连接的电池单元的单元块10以串联连接。
控制部分3测量蓄电池2的单元块10的电压。控制部分3还使用电流检测电阻5来测量电流的幅度和方向。在预定的间隔规律地执行这些测量。然后,控制部分3基于单元块10的电压和蓄电池2的充电和放电电流的测量结果,执行用于检测电池单元中的短路的处理。稍后将详细描述用于检测内部短路的方法。
当基于测量结果检测到异常性时,控制部分3还通过将控制信号发送到开关电路4来防止过度充电和过度放电。
当电池包1被安装在例如个人计算机(PC)之类的电子装置中时,通信端子13和14用于基于预定的通信标准,向电子装置发送例如指示电池包1的异常性的信息之类的各种信息。通信标准的例子包括例如主要用于电源管理的系统管理总线(SMBus)标准。
当检测到由于在单元块10中的短路引起的异常性时,控制部分3向电子装置发送指示异常性的信息,其中电池包1经由通信端子13和14装配到所述电子装置。
开关电路4包括充电控制FET 15a和放电控制FET 16a。当电池电压变为过度充电的检测电压时,基于来自控制部分3的控制信号来关断充电控制FET15a以执行控制,使得没有充电电流流过。在关断充电控制FET 15a之后,仅可经由寄生二极管15b执行放电。
当电池电压变为过度放电的检测电压时,基于来自控制部分3的控制信号关断放电控制FET 16a以执行控制,使得没有放电电流流过。在关断放电控制FET 16a之后,仅可经由寄生二极管16b执行充电。
对用于检测由于电池包1的电池单元中的短路引起的异常性的处理进行了描述。通常,通过恒流恒压充电(CCCV)方法对蓄电池2进行充电。在CCCV充电方法中,如图2所示,以恒流执行充电,直到蓄电池2的电压到达预定的电压,此后,以恒压执行充电。然后,当充电电流到达规定的终止电流时完成充电。
在通过CCCV充电方法对蓄电池2进行充电的情况下,在恒流充电时间段中,以恒定充电电流对蓄电池2充电,其中在充电开始后立即开始所述恒流充电时间段,并且当蓄电池2的电压达到预定电压时结束。
在该时间段中,没有内部短路的正常的单元块10的电压单调递增,并且至少不减少。具有内部短路的异常的单元块10的电压在内部短路发生的时刻减少。因此,在单元块10的电压减少的时刻可考虑发生了内部短路。
但是,例如,由于某些原因在恒流充电期间,从充电器供应到蓄电池2的充电电流减小的情况下,单元块10的电压也减少。因此,难以确定电压减少是由内部短路还是由充电电流的变化造成的。
因此,在本发明的实施例中,控制部分3计算在恒流充电时间段中单元块10的电压的时间微分,以基于电压的时间微分之间的差来检测内部短路。以下术语“电压的时间微分”将被简单称为“电压微分”。
例如,考虑其中在构成蓄电池2的多个单元块10的一预定单元块10中发生内部短路的情况。图3示出在恒流充电时间段中,单元块10的电压和电压微分的波形。水平轴代表时间,而垂直轴代表每个单元块10的电压和电压微分。
如图3所示,在恒流充电时间段中,正常单元块(以下偶尔称为“正常块”)的电压恒定地增加或保持恒定,并且至少不减少。因此,正常块的电压微分一直为正或“0”。
同时,其中内部短路将发生的异常单元块(以下偶尔称为“异常块”)的电压与正常块的电压大体相同,并且异常块的电压微分为正或“0”,直到内部短路发生。然后,当内部短路电路发生时,异常块的电压在内部短路发生的时刻X1减少。因此,在内部短路发生的时刻X1具有内部短路的异常块的电压微分变为负。
考虑其中计算两个单元块的电压微分之间的差的情况。如果两个单元块为正常块,则正常块的相应的电压微分通常为相同的正值或“0”。因此,考虑单元块10的电压微分之间的差通常为“0”。
如果两个单元块中的一个为异常块,同时,在内部短路发生的时刻异常块的电压微分变为负。因此,考虑单元块10的电压微分之间的差为负。
因此,在本发明的实施例中,从所计算的单元块10的电压微分提取考虑为正常块的微分的最大微分dVmax/dt和考虑为异常块的微分的最小微分dVmin/dt。
然后,计算最大微分和最小微分之间的差,即电压微分差dVmax/dt-dVmin/dt。然后,基于公式(1),将所计算的电压微分差与规定值比较:
dVmin/dt-dVmax/dt<规定值      ......(1)
如果所计算的电压微分差小于规定值,则可确定具有最小微分值dVmin/dt的单元块10为异常块并且内部短路已经发生。
如果所有单元块10均为正常,例如,单元块10的电压微分通常相同,因而如以上所讨论的,电压微分差通常为“0”。因此,虽然理想地可设置规定值为“0”,但是实际上考虑噪声等级等来优选地设置规定值。此外,由于如果正常块10为正常则电压微分差通常相同,因此可将恒定值选择为不管环境温度的如何改变等而预先设置的规定值。
可计算单元块10的电压微分,以确定在单元块10的电压微分变为负的时刻在单元块10中是否已经发生内部短路。但是,由于正常单元块10的电压微分一直为正并且不小于“0”,所以可使用更大的值以通过计算正常单元块和具有内部短路的单元块之间的电压微分差来确定是否已经发生了内部短路。
因此,与仅基于单元块10的电压微分确定异常性的情况相比,通过计算电压微分差可更准确地检测由于内部短路引起的异常性。
此外,如上所述通过使用单元块10之间的电压微分差,可防止由于充电电流的变化引起的对内部短路的错误检测。例如,考虑如图4所示的其中蓄电池2的充电电流变化的情况。
在其中以串联连接单元块10的蓄电池2中,通常相同的充电电流流过全部的单元块10。当在时刻Y1充电电流减少时,不管单元块10是否为正常,单元块10的电压都减少。
此时,单元块10的电压的变化量通常相同,并且单元块10的电压微分通常为相同的负值。也就是说,使用单元块的电压微分计算的单元块10之间的电压微分差通常为“0”。
因此,在充电电流变化的情形下,电压微分差不会变为小于规定值,防止由充电电流的变化造成的内部短路引起的对异常性的错误检测。
将参考图5中所示的流程图对适用于本发明的实施例的、用于检测由于内部短路引起的异常性的方法做出描述。除非另外说明,以下描述的处理在控制部分3的控制下执行。在步骤S1,基于所测量的每个电源块10的电压来计算每个单元块10的电压微分dV/dt。
在步骤S2,从所计算的单元块10的电压微分选择最大微分dVmax/dt和最小微分dVmin/dt,以计算电压微分差dVmin/dt-dVmax/dt,其为所选择的微分之间的差。然后,基于以上公式(1),电压微分差dVmin/dt-dVmax/dt与预先以设置的规定值比较。
如果电压微分差小于规定值,则确定在具有最小微分dVmin/dt的单元块10中已经发生由于内部短路引起的异常性,并且处理前进到步骤S3。在步骤S3中,执行异常性治疗(treatment)处理,以便控制开关电路4从而禁止蓄电池2的充电和放电,或例如对充入蓄电池2中的能量进行放电。此外,将指示蓄电池2的异常性的信息经由通信端子13和14发送到装配电池包1的电子装置。从而终止一系列的处理。
另一方面,如果在步骤S2中电压微分差不小于规定值,则确定单元块10为正常。处理返回步骤S1,在步骤S1中,计算每个单元块10的电压微分差。以预定的间隔循环执行步骤S1和S2的处理。
如上所述,在本发明的实施例中,可通过计算单元块10的电压微分并将基于电压微分计算的电压微分差与规定值进行比较,来检测由于内部短路引起的异常性。此外,通过基于电压微分差来检测由于内部短路引起的异常性,可防止由于充电电流改变引起的对异常性的错误检测。
以下将描述本发明的修改实施例。如关于以上讨论的实施例所描述的,在恒流充电时间段中,在单元块10中发生内部短路的情况下,即使在充电期间如图3所示在已经发生内部短路的时刻电压减少,因此,电压微分dV/dt从正值改变到负值。
但是,在由于一些原因充电电流减少的情况下,如图4所示电压也减少,并且因此,电压微分dV/dt变为负。
同时,在恒压充电时间段中,如图2所示充电电流逐渐减少,其中当蓄电池2的电压已经达到预定电压时进入所述恒压充电时间段,并且在所述恒压充电时间段中以恒定电压执行充电。但是,如图6所示在恒压充电时间段中,在时刻X3发生内部短路的情况下,例如,虽然以恒定电压执行充电并且充电电流减少,但是电流增加。
因此,在恒定电压充电时间段中为负的充电电流微分dI/dt,在已经发生内部短路的时刻X3变为正。
在充电电流微分dI/dt从负值改变为正值的时刻,可确定内部短路的发生。但是,由于一些原因在充电电流增加的情况下,充电电流微分dI/dt也可从负值改变到正值。
因此,在使用电压和充电电流微分的情况下,难以确定电压和充电电流微分的改变是由于内部短路还是由于充电电流的变化引起的。
因此,在本发明的修改实施例中,单元块10的二阶电压微分和充电电流微分用于检测用于在内部块10中的内部短路引起的异常性。
首先,对在恒流充电时间段中用于检测内部短路的方法进行描述。例如,在图7所示的时刻X2在预定的单元块10中发生内部短路的情况下,该单元块10的二阶电压微分d2V/dt2变为小于规定值。同时,由于在恒定电流执行充电,所以在此时二阶充电电流微分d2I/dt2不小于规定值。虽然理想地可将规定值设置为“0”,但是如在以上实施例中实际上可考虑噪声等级等来设置规定值。
也就是说,在内部短路发生的情况下,二阶电压和充电电流微分和规定值满足由公式(2)表示的关系:
d2V/dt2<规定值并且d2I/dt2≥规定值   ......(2)
另一方面,如图8所示,在时刻Y2充电电流减少的情况下,单元块10的二阶电压微分d2V/dt2变为小于规定值。同时,由于充电电流降低,所以在此时二阶充电电流微分d2I/dt2小于规定值。
也就是说,在充电电流降低的情况下,二阶电压和充电电流微分和规定的值满足由公式(3)表示的关系:
d2V/dt2<规定值并且d2I/dt2<规定值     ......(3)
因此,在恒流充电时间段中,可通过基于公式(2)将二阶电压和充电电流微分与规定值比较,来确定是否在单元块10中已经发生了内部短路。通过只在满足公式(2)的情况下确定由于内部短路引起的异常性,可防止由于充电电流的变化引起的对异常性的错误检测。
现在,对在恒压充电时间段中用于检测内部短路的方法进行描述。例如,在图9所示的恒压充电时间段中的时刻X3,在预定的单元块10中发生内部短路的情况下,该单元块10的二阶电流微分d2I/dt2变为大于规定值。同时,由于以恒定电压执行充电,所以在此时二阶充电电压微分d2V/dt2不大于规定值。
也就是说,在内部短路发生的情况下,二阶电压和充电电流微分和规定值满足由公式(4)表示的关系:
d2I/dt2>规定值并且d2V/dt2≤规定值    ......(4)
另一方面,如图8所示,在时刻Y3充电电流增加的情况下,二阶充电电流微分d2I/dt2变为大于规定值。同时,由于充电电流的增加增大电压,所以在此时二阶电压微分d2V/dt2大于规定值。
也就是说,在充电电流增加的情况下,二阶电压和充电电流微分和规定的值满足由公式(5)表示的关系:
d2I/dt2>规定值并且d2V/dt2>规定值  ......(5)
因此,在恒流充电时间段中,可通过基于公式(4)将二阶充电电流和电压微分与规定值比较,来确定是否在单元块10中已经发生了内部短路。通过只在满足公式(4)的情况下确定由于内部短路引起的异常性,可防止由于充电电流的变化引起的对异常性的错误检测。
将参考图10中所示的流程图对适用于本发明的修改实施例的、用于检测由于内部短路引起的异常性的方法做出描述。除非另外说明,以下描述的处理在控制部分3的控制下执行。
在步骤S11,基于所测量的每个电源块10的电压和充电电流来计算每个单元块10的电压微分dV/dt和充电电流微分dI/dt。在步骤S12,基于在步骤S11计算的电压微分dV/dt和充电电流微分dI/dt来计算二阶电压微分d2V/dt2和二阶充电电流微分d2I/dt2
在步骤S13,将电压微分dV/dt与预先已经设置的规定值比较。如果确定电压微分dV/dt小于规定值,则处理前进到步骤S14。
在步骤S14中,基于公式(2)将二阶电压微分d2V/dt2和二阶充电电流微分d2I/dt2各自与规定值相比。如果满足公式(2),即,如果二阶电压微分d2V/dt2小于规定值并且二阶充电电流微分d2I/dt2不小于规定值,则确定由于内部短路引起的异常性已经发生,并且处理前进到步骤S17。
另一方面,在不满足公式(2)的情况下,确定单元块10是正常的,并且处理返回步骤S11。
同时,如果确定电压微分dV/dt不小于规定值,则处理前进到步骤S15。在步骤S15中,充电电流微分dI/dt与已被预先设置的规定值比较。如果确定充电电流微分dI/dt大于规定值,则处理前进到步骤16。
同时,如果确定充电电流微分dI/dt不大于预定值,则处理返回步骤S11。
在步骤16中,基于公式(4)将二阶充电电流微分d2I/dt2和二阶电压微分d2V/dt2各自与规定值相比。如果满足公式(4)则,即,如果二阶充电电流微分d2I/dt2大于规定值并且二阶电压微分d2V/dt2不大于规定值,则确定由于内部短路引起的异常性已经发生,并且处理前进到步骤S17。
另一方面,在不满足公式(4)的情况下,确定单元块10是正常的,并且处理返回步骤S11。
在步骤S17,执行例如控制开关电路4的异常性治疗处理,以便禁止对蓄电池2充电和放电,或者例如对充入蓄电池2中的能量进行放电。此外,经由通信端子13和14将指示蓄电池2的异常性的信息发送到装配电池包1的电子装置。从而终止一系列的处理。
如上已经描述的在本发明的修改实施例中,可通过计算每个单元块10的二阶电压微分和二阶充电电流微分并将二阶电压微分和二阶充电电流微分与规定值比较,可检测由于内部短路引起的异常性。此外,通过基于二阶电压微分和二阶充电电流微分检测由于内部短路引起的异常性,可防止由于充电电流的改变引起的对异常性的错误检测。
在以上关于本发明的实施例描述的将电压微分差与规定值比较之后,可额外执行关于本发明的修改实施例中描述的将二阶电压微分和二阶充电电流微分与规定值的比较。
具体地,基于以上公式(1),将从基于每个单元块10的电压计算的电压微分中提取的电压微分差,或最大微分dVmax/dt和最小微分dVmin/dt之间的差与规定值比较。基于以上公式(2),将已经基于单元块10的电压和充电电流计算的二阶电压微分d2V/dt2和二阶充电电流微分d2I/dt2与规定值相比。
然后,如果基于公式(1)电压微分差小于规定值,并且基于公式(2)二阶电压微分小于规定值并且二阶充电电流微分不小于规定值,则确定在具有最小微分的单元块10中已经发生了由于内部短路引起的异常性。
这样,可更准确地检测由于内部单元块10中的短路引起的异常性。
虽然通过其实施例和修改实施例已经描述了本发明,但是本发明不限于这些实施例。相反,可以各种方式修改并应用本发明,而不背离本发明的范围和精神。例如,蓄电池不限于锂离子蓄电池,也可以使用例如镍氢电池和镍-镉电池之类的其他蓄电池。
本申请包含关于于2008年6月24号向日本专利局提交的日本优先权专利申请JP 2008-164282中公开的主题,其全部内容通过引用合并与此。

Claims (2)

1.一种电池包,包括:
多个单元块,其中以串联和/或并联连接一个或多个蓄电池单元;以及
控制部分,用于测量多个单元块的电压和充电电流,以基于测量结果来检测单元块的异常性,
其中所述控制部分:
基于所测量的电压和充电电流计算多个单元块的电压的时间微分以及电压和充电电流的二阶时间微分;
从多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小;以及
在第一时间微分和第二时间微分的差小于规定值,电压的二阶时间微分小于规定值,并且充电电流的二阶时间微分不小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
2.一种用于电池包的控制方法,包括以下步骤:
测量多个单元块的电压和充电电流,在该单元块中以串联和/或并联连接一个或多个蓄电池单元;
基于所测量的电压和充电电流计算多个单元块的电压的时间微分以及电压和充电电流的二阶时间微分;
从多个单元块的电压的时间微分提取第一时间微分和第二时间微分,其中所述第一时间微分最大,而所述第二时间微分最小;以及
在第一时间微分和第二时间微分的差小于规定值,电压的二阶时间微分小于规定值,并且充电电流的二阶时间微分不小于规定值的情况下,确定对应于第二时间微分的单元块为异常。
CN2009101499707A 2008-06-24 2009-06-24 电池包及其控制方法 Active CN101615706B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP164282/08 2008-06-24
JP2008164282A JP4591560B2 (ja) 2008-06-24 2008-06-24 電池パックおよび制御方法

Publications (2)

Publication Number Publication Date
CN101615706A CN101615706A (zh) 2009-12-30
CN101615706B true CN101615706B (zh) 2012-09-26

Family

ID=41430553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101499707A Active CN101615706B (zh) 2008-06-24 2009-06-24 电池包及其控制方法

Country Status (4)

Country Link
US (2) US8203306B2 (zh)
JP (1) JP4591560B2 (zh)
KR (1) KR20100002151A (zh)
CN (1) CN101615706B (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966998B2 (ja) * 2009-06-18 2012-07-04 パナソニック株式会社 充電制御回路、電池パック、及び充電システム
US8866444B2 (en) 2010-06-08 2014-10-21 Tesla Motors, Inc. Methodology for charging batteries safely
US8219333B2 (en) * 2010-06-29 2012-07-10 O2Micro, Inc Battery management systems for protecting batteries from fault conditions
JP5554204B2 (ja) * 2010-10-15 2014-07-23 株式会社マキタ 工具用バッテリ
CN102088122B (zh) * 2010-12-28 2013-02-13 深圳市理邦精密仪器股份有限公司 锂二次电池组的充电方法及充电装置
JP6272031B2 (ja) * 2011-01-18 2018-01-31 ティアックス エルエルシーTiax Llc 並列接続バッテリのための差動電流モニタリング
JP2013004778A (ja) 2011-06-17 2013-01-07 Toshiba Corp 半導体記憶装置
WO2013002202A1 (ja) * 2011-06-29 2013-01-03 三洋電機株式会社 電池劣化判定装置
DE102013216972A1 (de) 2013-08-27 2015-03-05 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung einer elektrochemischen Zelle
WO2015029831A1 (ja) * 2013-08-30 2015-03-05 日本碍子株式会社 二次電池システムの異常発生部位を特定する装置、方法及びプログラム
WO2015029832A1 (ja) * 2013-08-30 2015-03-05 日本碍子株式会社 二次電池システムの異常発生部位を特定する装置、方法及びプログラム
JP5652562B1 (ja) * 2013-09-19 2015-01-14 株式会社豊田自動織機 Mosfetスイッチ素子の異常診断装置及び方法
DE102013112923A1 (de) * 2013-11-22 2015-05-28 H-Tech Ag Batteriemanagementsystem zur Steuerung einer Energiespeicheranordnung und Verfahren zum Laden und Entladen einer Energiespeicheranordnung
US10790679B2 (en) * 2014-09-26 2020-09-29 Mitsumi Electric Co., Ltd. Battery protection circuit and device, battery pack, and battery protection method
CN104614632B (zh) * 2015-01-19 2017-11-28 清华大学 一种电池微短路的识别方法
CN104614630B (zh) * 2015-01-19 2017-11-28 清华大学 一种电池微短路的识别方法
CN104614631B (zh) * 2015-01-19 2018-01-23 清华大学 一种电池微短路的识别方法
CN104617330B (zh) * 2015-01-19 2017-01-25 清华大学 电池微短路的识别方法
WO2017013823A1 (ja) * 2015-07-21 2017-01-26 ソニー株式会社 充電方法、電池装置、充電装置、劣化診断方法、電池パック、電動車両及び蓄電装置
DE102015218326A1 (de) * 2015-09-24 2017-03-30 Robert Bosch Gmbh Verfahren zum Überwachen einer Batterie
KR101989491B1 (ko) * 2015-11-30 2019-06-14 주식회사 엘지화학 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법
CN105552465B (zh) * 2015-12-03 2018-05-08 北京交通大学 一种基于时间和温度的锂离子电池优化充电方法
CN107923949B (zh) * 2016-01-28 2021-07-09 松下知识产权经营株式会社 管理装置以及蓄电系统
CN105939040A (zh) * 2016-06-20 2016-09-14 深圳天珑无线科技有限公司 一种电池的充电电路、充电方法及电子设备
TWI607226B (zh) * 2016-07-27 2017-12-01 致茂電子股份有限公司 電池檢測裝置及其方法
CN107664750A (zh) * 2016-07-27 2018-02-06 致茂电子(苏州)有限公司 电池检测装置及其方法
CN106410893B (zh) * 2016-09-22 2018-12-21 中国运载火箭技术研究院 一种空间飞行器锂电池自动充电控制方法
WO2018131427A1 (ja) * 2017-01-16 2018-07-19 パナソニックIpマネジメント株式会社 検査装置、検査方法、検査プログラム、管理装置、及び蓄電システム
JP6991778B2 (ja) * 2017-08-07 2022-01-13 日置電機株式会社 検査装置および閾値算出方法
WO2020021888A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
DE102018216356A1 (de) * 2018-09-25 2020-03-26 Bayerische Motoren Werke Aktiengesellschaft Detektion abnormaler Selbstentladung von Lithiumionenzellen und Batteriesystem
CN114175440A (zh) * 2019-08-22 2022-03-11 松下知识产权经营株式会社 管理装置以及蓄电系统
CN112666477B (zh) * 2019-10-15 2022-06-03 东莞新能德科技有限公司 电池内短路判断方法、电子装置以及存储介质
KR102283957B1 (ko) * 2019-11-06 2021-07-29 정대원 배터리 내부단락검출 알고리즘이 포함된 배터리 관리 시스템과 이를 이용한 배터리 관리 시스템 화재예방방법
CN110687457B (zh) * 2019-11-13 2021-12-03 东软睿驰汽车技术(沈阳)有限公司 一种电池包异常的检测方法、装置、存储介质及电子设备
CN111430825B (zh) * 2020-03-31 2021-12-17 潍柴动力股份有限公司 锂电池的内短路处理方法和装置
CN111913113A (zh) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 电芯内短路识别方法、装置、存储介质及电子设备
CN112958487B (zh) * 2021-02-01 2022-06-07 中国电子科技集团公司第十八研究所 一种一次锂原电池筛选配组方法
WO2022265025A1 (ja) * 2021-06-14 2022-12-22 日置電機株式会社 短絡検出装置及び短絡検出方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674398A (zh) * 2004-03-23 2005-09-28 日产自动车株式会社 电池组容量调整装置及其容量调整方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694660B1 (fr) * 1992-08-05 1994-10-07 Merlin Gerin Dispositif de détection de défaillance d'éléments de batterie.
JPH082149B2 (ja) * 1992-08-20 1996-01-10 株式会社マキタ 充電装置
US6255803B1 (en) * 1999-08-10 2001-07-03 Matsushita Electric Industrial Co., Ltd. Method for detecting minor short in cells and method for detecting cell short in cells
JP3437823B2 (ja) 1999-08-10 2003-08-18 松下電器産業株式会社 微小短絡セル検出方法、セルショート検出方法、微小短絡セル検出装置およびセルショート検出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674398A (zh) * 2004-03-23 2005-09-28 日产自动车株式会社 电池组容量调整装置及其容量调整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2002-204534A 2002.07.19

Also Published As

Publication number Publication date
JP2010008067A (ja) 2010-01-14
US20120146586A1 (en) 2012-06-14
US8629656B2 (en) 2014-01-14
JP4591560B2 (ja) 2010-12-01
US20090315520A1 (en) 2009-12-24
US8203306B2 (en) 2012-06-19
CN101615706A (zh) 2009-12-30
KR20100002151A (ko) 2010-01-06

Similar Documents

Publication Publication Date Title
CN101615706B (zh) 电池包及其控制方法
CN101960690B (zh) 充电设备和充电方法
US9035618B2 (en) Battery pack and method of controlling the same
CN100416911C (zh) 用于电池单元热保护和电池组过充电/充电不足保护的双用热敏电阻
CN1316710C (zh) 蓄电池或超级电容的充放电均衡方法与装置
CN101453043B (zh) 二次电池充电方法和装置
US8975870B2 (en) Charging device
US7902794B2 (en) Over-voltage protected battery charger with bypass
CN103545564B (zh) 充电电池单元及其缺陷检测方法
CN201918748U (zh) 电子设备的充电电路
KR20140065951A (ko) 배터리 관리 시스템 및 그 구동 방법
EP2568526A1 (en) Battery pack
CN102545335A (zh) 一种均衡充放电电路及均衡充放电方法
KR20110134751A (ko) 배터리 팩 및 이의 제어 방법
KR20070101496A (ko) 다병렬 및 다직렬 리튬 2차전지 팩의 충방전 모니터링시스템
CN111009948A (zh) 可主动调整充放电电流的锂电池保护板及其电流调整方式
KR20120013774A (ko) 배터리 팩 및 이의 제어 방법
KR20140025652A (ko) 배터리 팩 및 이의 제어 방법
CN102868199A (zh) 电池组平衡方法、电池组平衡装置以及包括该装置的系统
CN107528353B (zh) 一种串联电池电压均衡方法及均衡电路
WO2010055995A1 (ko) 만충전 용량 비교를 통한 배터리 보호 장치 및 방법
CN203466560U (zh) 智能锂电池保护板
KR20110108719A (ko) 배터리 팩, 및 배터리 팩의 제어 방법
CN111684647A (zh) 电池组
CN201117764Y (zh) 一种检测单串锂离子电池组过充、过放保护电压的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180410

Address after: Kyoto Japan

Patentee after: Murata Manufacturing Co.,Ltd.

Address before: Fukushima

Patentee before: Murata, Northeast China

Effective date of registration: 20180410

Address after: Fukushima

Patentee after: Murata, Northeast China

Address before: Tokyo, Japan

Patentee before: Sony Corp.