CN104614631B - 一种电池微短路的识别方法 - Google Patents

一种电池微短路的识别方法 Download PDF

Info

Publication number
CN104614631B
CN104614631B CN201510026114.8A CN201510026114A CN104614631B CN 104614631 B CN104614631 B CN 104614631B CN 201510026114 A CN201510026114 A CN 201510026114A CN 104614631 B CN104614631 B CN 104614631B
Authority
CN
China
Prior art keywords
electromotive force
battery
short circuit
micro
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510026114.8A
Other languages
English (en)
Other versions
CN104614631A (zh
Inventor
张明轩
欧阳明高
卢兰光
何向明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510026114.8A priority Critical patent/CN104614631B/zh
Publication of CN104614631A publication Critical patent/CN104614631A/zh
Application granted granted Critical
Publication of CN104614631B publication Critical patent/CN104614631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电池内短路的识别方法,该方法基于等效参数原理,利用微短路时电池单体的电动势E或电动势E的导数出现异常的现象,对发生微短路的电池单体进行识别;根据发生微短路的电池单体的信息熵H判断所发生的微短路为外短路还是内短路。本发明提供了一种准确且快速的识别电池微短路的方法,该方法解决了现有技术中由于电池微短路现象不明显而难以识别的问题。

Description

一种电池微短路的识别方法
技术领域
本发明属于电池技术领域,具体涉及一种识别电池微短路的方法。
背景技术
在能源危机与环境污染的双重压力下,汽车动力系统电动化逐渐成为未来汽车的技术发展主流。锂离子电池因其能量密度和循环寿命方面的优势,是电动汽车动力来源的主要选择之一。然而,锂离子动力电池的安全性事故偶有发生,锂离子动力电池的安全性问题将会威胁人民群众的生命财产安全,并阻碍电动汽车的大规模产业化。电池单体的小规模内短路和小规模的外短路可以统称为微短路。多数在电池正常使用过程中的安全问题都与微短路相关,不仅在电动汽车领域如此,在其他使用电池的领域也是如此,如数码产品、飞机等。
目前,微短路的预测和发现依然是电池安全问题中的一个难点。微短路的发生具有一定的偶然性和随机性,造成微短路的成因很多,各种不同情况或原因可能引发不同程度的微短路。微短路的短路阻值较大,在非绝热状态下,所引起的温升一般不会大于5℃,在发生的初期现象极不明显,因此现有的电气管理或温度管理等外部措施难以有效识别微短路。
发明内容
有鉴于此,确有必要提供一种能够准确且快速的识别电池微短路的方法。
一种电池微短路的识别方法,包括以下步骤:
S1,提供一个包括多个电池单体的电池组;
S2,采集所述电池组中每个电池单体的端电压Ui及端电流Ii
S3,根据所述端电压Ui及端电流Ii,计算所述每个电池单体的电动势Ei相对于基准电动势E的电动势偏差量ΔEi
S4,对所述电动势偏差量ΔEi或所述电动势偏差量的导数d(ΔEi)/dt进行异常分析;
S5,若某一电池单体m的电动势偏差量ΔEi或电动势偏差量的导数d(ΔEi)/dt为异常,则判定该电池单体m为微短路电池单体,否则返回步骤S2。
与现有技术相比,本发明所提供的电池微短路的识别方法能够准确且快速的识别电池微短路,该识别方法对于使用电池组的产品安全性能的提高具有关键作用。
附图说明
图1为本发明电池内短路的识别流程图。
图2为串联电池单体的偏差模型图。
图3为正常电池单体的一阶RC模型电路图。
图4为微短路电池单体的一阶RC模型电路图。
图5为微短路电池单体与正常电池单体电动势偏差量ΔEi对照图。
图6为微短路电池单体与正常电池单体电动势偏差量导数d(ΔEi)/dt的对照图。
图7为微短路电池单体与正常电池单体电动势偏差量导数d(ΔEi)/dt的对照图。
主要元件符号说明
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的电池内短路的识别方法作进一步的详细说明。
请参阅图1,本发明第一实施例提供一种电池微短路的识别方法,包括以下步骤:
S11,提供一个包括多个电池单体的电池组;
S12,采集所述电池组中每个电池单体的端电压Ui及端电流Ii
S13,根据所述端电压Ui及端电流Ii,计算所述每个电池单体的电动势Ei相对于基准电动势E的电动势偏差量ΔEi
S14,对所述电动势偏差量ΔEi进行异常值查找;
S15,若某一电池单体m的电动势偏差量ΔEi为异常值,则判定该电池单体m为微短路电池单体,否则返回步骤S12;
S16,根据电动势偏差量ΔEi的历史数据计算出所述微短路电池单体m的信息熵H;
S17,将该信息熵H与预设阈值比较,若所述信息熵H大于该预设阈值,判定所述微短路电池单体发生外短路,若所述信息熵H小于该预设阈值,则判定所述微短路电池单体发生内短路。
本发明第一实施例中步骤S11~S15用于判断电池组中的电池单体是否发生微短路,步骤S16~S17用于进一步判断发生微短路的电池单体所发生的微短路的类型。若仅需要获知电池单体是否发生微短路,则只需进行到步骤S15即可结束,若需要获知微短路电池单体所发生的微短路的类型,则需进行到步骤S17。
步骤S11中,所述电池组的种类不限,如锂离子电池、镍氢电池、铅酸电池等,本实施例中所识别的是锂离子电池。所述电池组包括n个电池单体,依次编号为1,2,3…n,其中n为大于1的整数。所述n个电池单体可以通过串联、并联或串并联的方式构成一个电池组。
步骤S12中,分别对所述电池组中n个电池单体的端电压Ui及端电流Ii进行采集,其中i代表所述n个电池单体中任意的一个电池单体。
步骤S13中,若所述电池组由相同型号的多个电池单体构成,可以利用分频模型计算每个电池单体的电动势Ei与内阻Zi分别相对于基准电动势E与基准内阻Z的偏差量。所述分频模型包含高频部分与低频部分,其中高频部分由精确的电池等效电路模型构成,计算频率较高,以此来得到基准电动势E和基准内阻Z;低频部分由简化的电池等效电路模型构成,计算频率较低,用来计算每个单体的电动势Ei和内阻Zi。计算频率的选择会因具体地电池组的不同而有所差异,一般地,低频模型通常选择一阶或二阶RC等效电路模型,高频模型通常选择三阶或更高阶数的电路模型。将电池单体的电动势Ei和基准电动势E带入公式ΔEi=Ei-E即可获得电动势偏差量ΔEi;将电池单体的内阻Zi和基准内阻Z带入公式ΔZi=Zi-Z即可获得内阻偏差量ΔZi
请参见图2,若所述电池组由多个电池单体串联构成,还可以通过下述方法计算电动势偏差量ΔEi,具体包括以下步骤:
S311,计算所述多个电池单体端电压的平均值U;
S312,根据ΔUi=Ui-U计算各所述每个电池单体的端电压偏差量ΔUi
S313,利用所述端电压偏差量ΔUi与端电流Ii计算每个电池单体的电动势偏差量ΔEi
步骤S311中,可以直接将各电池单体的端电压Ui相加取平均值,也可以先去掉最大值和最小值,然后再取平均值。可以理解,在计算平均值的过程中可以适当添加一些现有的数据处理手段,进一步提高求取平均值的准确性。
步骤S313中,可以利用图2所示的偏差模型进行参数识别,获得电动势偏差量ΔEi以及内阻偏差量ΔZi。根据该偏差模型,所述端电压偏差量ΔUi、端电流Ii、电动势偏差量ΔEi以及内阻偏差量ΔZi之间存在以下关系:ΔUi=ΔEi-Ii·ΔZi
步骤S14中,本实施例中利用标准差法对所述电动势偏差量ΔEi的异常值进行查找,其具体步骤为:
S41,对于同一时刻的每个电池单体的电动势偏差量ΔEi,去除最大值Emax和最小值Emin后计算标准差Estdev以及平均值Emean
S42,计算所述最小值Emin与所述平均值Emean的差值Ed1
S43,判断该差值Ed1的绝对值是否大于3倍的标准差Estdev,若大于则认为该最小值所对应的电池单体的电动势偏差量ΔEi为异常值。
步骤S42中,对于微短路识别,通常情况下取最小值Emin与平均值Emean的差值Ed1进行判断,除此之外,也可以用最大值Emax和与平均值Emean的差值Ed2进行显著性判断。
步骤S43中,若所述差值Ed1的绝对值大于3倍的标准差Estdev即可判定该最小值为异常值,该步骤中也可以根据实际情况对异常值的判定标准进行调整,例如可以将3倍的标准差提高为5倍的标准差,即将差值Ed1的绝对值与5倍的标准差Estdev进行比较。
可以理解,本实施例中仅提供了一种异常值的识别方法,也可以采用其他的识别方法对电动势偏差量ΔEi中的异常值进行识别。
步骤S15可以初步判断所述电池单体是否发生了微短路。所述微短路是指电池单体的小规模内短路或小规模的外短路。与正常电池单体相比,发生微短路的电池单体的电动势Ei和内阻Zi均会减小,可以利用这种现象对微短路电池单体进行识别。
请参见图3,该图为正常电池单体的一阶RC模型,其中R为电池直流内阻,Rp为极化内阻,Cp为极化电容,E为电动势,U为端电压,I为端电流。采用复数的方法对电路进行分析,并令则有:
U=E-I×z0 (1)
请参见图4,该图为发生微短路电池单体的一阶RC模型,其中RISCr为微短路电阻。可以证明有:
将(2)式和(1)式对比,可以发现(1)式当中的E和z0在(2)式中分别变成了即等效参数,称为收缩因子。在一定的时长内,可以认为z0和RISCr均是大小不变的常量,则收缩因子也是一个常量。
与正常的电池单体相比,发生了微短路的电池单体的E和z0分别变化了即在发生微短路时,1)电池单体的等效电动势E和内阻z0会同时减小,且减小的比例相同;2)微短路的规模越大(即微短路电阻RISCr越小),E和z0减小的量越大;3)电池单体的容量越大,z0越小,微短路现象的电信号表现越不明显。
除此之外,由于微短路电阻RISCr的存在,微短路电池单体的电能会在正常工作的基础上附加一个消耗量,导致微短路单体的荷电状态(state of charge,SOC)低于正常电池单体,进一步使微短路电池单体的电动势E降低。
因此,对于微短路电池单体,它的电动势偏差量ΔEi会明显小于正常电池单体,可以利用电动势偏差量ΔEi的这种负显著的特征进行微短路识别,即对于处于同一工况下的电池单体,若某一电池单体的电动势偏差量ΔEi显著的地小于其他电池单体,就可以判定该电池单体发生了微短路。请参见图5,该图为微短路电池单体与正常电池单体电动势偏差量ΔEi对照图,图中用圆圈圈出来的即为微短路电池单体。
当判定电池组中存在电池单体发生微短路后,所述电池组的控制系统将会启动相应的应急措施。
步骤S16中,对于发生微短路的电池单体m,如需要进一步确定所发生的微短路的类型,可以利用该微短路电池单体m的历史数据计算出该单体的信息熵H。所述历史数据可以是该电池单体m在历次循环过程中所获取内阻偏差量ΔZm、电动势偏差量ΔEm等。本实施例中根据微短路电池单体m的电动势偏差量ΔEm的历史数据计算该微短路电池单体的信息熵H(E)。一种可行的信息熵定义方法为:其中H(E)为该微短路电池单体m电动势偏差量ΔEm的信息熵,p(ei)是电动势偏差量ΔEm数据在第i个分区的概率密度,n为电动势偏差量ΔEm数据的分区数。
步骤S17中,外短路一般属于非稳定接触,由于振动等原因,阻值会出现波动,故其电动势偏差量ΔE等参数的历史数据信息熵较大。内短路是一个缓慢发展的过程,阻值不易波动,故其电动势偏差量ΔE等参数的历史数据信息熵较小。所述预设阈值为经过大量的数据统计得到的一个经验值,通常可以在25%~50%之间选取,本实施例中预设阈值的取值为30%。当然,上述预设阈值可以根据不同的环境需求进行相应的调整。
本发明第二实施例提供一种电池微短路识别方法,包括以下步骤:
S21,提供一个包括多个电池单体的电池组;
S22,采集所述电池组中每个电池单体的端电压Ui及端电流Ii
S23,根据所述端电压Ui及端电流Ii,计算所述每个电池单体的电动势Ei相对于基准电动势E的电动势偏差量ΔEi
S24,对所述电动势偏差量的导数d(ΔEi)/dt进行异常值查找;
S25,若某一电池单体m的电动势偏差量的导数d(ΔEi)/dt为异常值,则判定该电池单体m为微短路电池单体,否则返回步骤S22。
S26,根据电动势偏差量ΔEi的历史数据计算出所述微短路电池单体m的信息熵H;
S27,将该信息熵H与预设阈值比较,若所述信息熵H大于该预设阈值,判定所述微短路电池单体发生外短路,若所述信息熵H小于该预设阈值,则判定所述微短路电池单体发生内短路。
本实施例与第一实施例的区别在于,第一实施例中利用电动势偏差量ΔEi的异常值判断电池单体是否发生微短路,而本实施例中利用电动势偏差量导数d(ΔEi)/dt的异常值判断电池单体是否发生微短路。
工作在同一条件下的各电池单体的工况是相同的,所以正常电池单体的电动势偏差量的导数d(ΔEi)/dt在同一时刻也是十分相近的。而对于发生了微短路的电池单体,其电动势偏差量的导数d(ΔEi)/dt相比于正常电池单体还会附加一个由于消耗效应引起的值。因此,比较各电池单体的电动势偏差量的导数d(ΔEi)/dt,就可以发现发生了微短路的电池单体。图6为微短路电池单体与正常电池单体电动势偏差量导数d(ΔEi)/dt的对照图,图中由虚线框起来的曲线为微短路电池单体的电动势偏差量导数d(ΔEi)/dt,可以看出其数值显著小于其他正常电池单体。
本实施例中利用3倍标准差法对所述电动势偏差量导数d(ΔEi)/dt的异常值进行查找,其具体过程与上述电动势偏差量ΔEi异常值查找方法相同。
可以理解,使用电动势偏差量ΔEi的微分,相当于在dt相同时直接比较d(ΔE),与导数d(ΔEi)/dt的识别原理等效,可以实现相同的识别效果。
本发明第三实施例提供一种电池微短路识别方法,包括以下步骤:
S31,提供一个包括多个电池单体的电池组;
S32,采集所述电池组中每个电池单体的端电压Ui及端电流Ii
S33,根据所述端电压Ui及端电流Ii,计算所述每个电池单体的电动势Ei相对于基准电动势E的电动势偏差量ΔEi
S34,若某一电池单体m的电动势偏差量导数d(ΔEi)/dt的凹凸性与其他电池单体相反,则判定该电池单体为微短路电池单体,否则返回步骤S2。
S35,根据电动势偏差量ΔEi的历史数据计算出所述微短路电池单体m的信息熵H;
S36,将该信息熵H与预设阈值比较,若所述信息熵H大于该预设阈值,判定所述微短路电池单体发生外短路,若所述信息熵H小于该预设阈值,则判定所述微短路电池单体发生内短路。
本实施例与第二实施例的区别在于,第二实施例中利用电动势偏差量导数d(ΔEi)/dt的异常值判断电池单体是否发生微短路,而本实施例中利用电动势偏差量导数d(ΔEi)/dt的凹凸性进行微短路判断。
图7为微短路电池单体与正常电池单体电动势偏差量导数d(ΔEi)/dt的对照图,图中虚线框起来的为微短路电池单体的电动势偏差量导数d(ΔEi)/dt曲线,微短路电池单体的电动势偏差量的导数d(ΔEi)/dt曲线的凹凸性在每一时刻与正常电池单体刚好相反,因此,可以利用d(ΔEi)/dt曲线的凹凸性进行微短路的识别。
可以理解,在数学上有许多方法与识别凹凸性等价,如计算二阶导数等,在此不一一列举。这些等价的识别方法可以实现相同的识别效果。
本发明基于等效参数原理,利用微短路时电池单体的电动势E对发生微短路的电池单体进行识别;根据发生微短路的电池单体的信息熵H判断所发生的微短路的类型。具体地,本发明实施例中分别利用:1)电动势偏差量ΔEi的异常值;2)电动势偏差量导数d(ΔEi)/dt的异常值;3)电动势偏差量导数d(ΔEi)/dt的凹凸性三种方法对微短路电池单体进行识别。上述三种识别方法可以单独使用,可以任意选取其中的两种联合使用,也可以三种方法共同使用,两种或三种方法联合进行判断可以提高识别的准确性。本发明提供了一种准确且快速的识别电池微短路的方法,该方法解决了现有技术中电池微短路现象不明显而难以识别的问题,对于使用电池组的产品安全性能的提高具有关键作用。
另外,本领域技术人员还可以在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种电池微短路的识别方法,其特征在于,包括以下步骤:
S1,提供一个包括多个电池单体的电池组;
S2,采集所述电池组中每个电池单体的端电压Ui及端电流Ii
S3,根据所述端电压Ui及端电流Ii,计算所述每个电池单体的电动势Ei相对于基准电动势E的电动势偏差量ΔEi
S4,对所述电动势偏差量ΔEi或所述电动势偏差量的导数d(ΔEi)/dt进行异常分析;
S5,若某一电池单体m的电动势偏差量ΔEi或电动势偏差量的导数d(ΔEi)/dt为异常,则判定该电池单体m为微短路电池单体,否则返回步骤S2;
S6,根据电动势偏差量ΔEi的历史数据计算出所述微短路电池单体m的信息熵H;
S7,将该信息熵H与预设阈值比较,若所述信息熵H大于该预设阈值,判定所述微短路电池单体发生外短路,若所述信息熵H小于该预设阈值,则判定所述微短路电池单体发生内短路。
2.如权利要求1所述的电池微短路的识别方法,其特征在于,所述电池组由相同型号的多个电池单体构成,所述步骤S3包括:
S301,利用高频电池等效电路模型计算所述基准电动势E;
S302,利用低频电池等效电路模型计算所述每个电池单体的电动势Ei
S303,根据公式ΔEi=Ei-E计算所述每个电池单体的电动势偏差量ΔEi
3.如权利要求2所述的电池微短路的识别方法,其特征在于,所述低频电池等效电路模型为一阶或二阶RC等效电路模型,所述高频电池等效电路模型为三阶或更高阶数的等效模型。
4.如权利要求1所述的电池微短路的识别方法,其特征在于,所述电池组由多个电池单体串联构成,所述步骤S3包括:
S311,计算所述多个电池单体的端电压的平均值U;
S312,根据ΔUi=Ui-U计算所述每个电池单体的端电压偏差量ΔUi
S313,利用所述端电压偏差量ΔUi与所述端电流Ii计算每个电池单体的电动势偏差量ΔEi
5.如权利要求1所述的电池微短路的识别方法,其特征在于,步骤S4中对所述电动势偏差量ΔEi或所述电动势偏差量的导数d(ΔEi)/dt进行异常分析包括:利用标准差法对所述电动势偏差量ΔEi的异常值进行查找,具体包括以下步骤
S401,对于同一时刻的每个电池单体的电动势偏差量ΔEi,去除最大值和最小值后计算标准差以及平均值;
S402,计算所述最小值与所述平均值的差值;
S403,判断该差值的绝对值是否大于3倍的标准差,若大于则认为该最小值为异常值。
6.如权利要求1所述的电池微短路的识别方法,其特征在于,步骤S4中对所述电动势偏差量ΔEi或所述电动势偏差量的导数d(ΔEi)/dt进行异常分析包括:利用标准差法对所述电动势偏差量的导数d(ΔEi)/dt的异常值进行查找,具体包括以下步骤
S411,对于同一时刻的每个电池单体的电动势偏差量的导数d(ΔEi)/dt,去除最大值和最小值后计算标准差以及平均值;
S412,计算所述最小值与所述平均值的差值;
S413,判断该差值的绝对值是否大于3倍的标准差,若大于则认为该最小值为异常值。
7.如权利要求1所述的电池微短路的识别方法,其特征在于,步骤S4中对所述电动势偏差量ΔEi或所述电动势偏差量的导数d(ΔEi)/dt进行异常分析包括:对所述电动势偏差量导数d(ΔEi)/dt的凹凸性进行分析,若某一电池单体m的电动势偏差量导数d(ΔEm)/dt的凹凸性与其他电池单体相反,则判定该电池单体m的电动势偏差量导数d(ΔEm)/dt为异常。
8.如权利要求1所述的电池微短路的识别方法,其特征在于,所述预设阈值取值为30%。
9.如权利要求1所述的电池微短路的识别方法,其特征在于,根据微短路电池单体电动势偏差量ΔEi的历史数据计算该微短路电池单体的信息熵H(E),该信息熵的定义为:其中H(E)为该微短路电池单体电动势偏差量ΔEi的信息熵,p(ei)是电动势偏差量ΔEi数据在第i个分区的概率密度,n为电动势偏差量ΔEi数据的分区数。
10.如权利要求1所述的电池微短路的识别方法,其特征在于,所述预设阈值取值范围在25%~50%之间。
CN201510026114.8A 2015-01-19 2015-01-19 一种电池微短路的识别方法 Active CN104614631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510026114.8A CN104614631B (zh) 2015-01-19 2015-01-19 一种电池微短路的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510026114.8A CN104614631B (zh) 2015-01-19 2015-01-19 一种电池微短路的识别方法

Publications (2)

Publication Number Publication Date
CN104614631A CN104614631A (zh) 2015-05-13
CN104614631B true CN104614631B (zh) 2018-01-23

Family

ID=53149167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510026114.8A Active CN104614631B (zh) 2015-01-19 2015-01-19 一种电池微短路的识别方法

Country Status (1)

Country Link
CN (1) CN104614631B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932722A (zh) * 2015-12-30 2017-07-07 华为技术有限公司 一种动力电池的内短路检测方法及装置
CN107870301B (zh) 2016-09-27 2020-09-04 华为技术有限公司 一种电池微短路的检测方法及装置
CN108241102A (zh) * 2016-12-23 2018-07-03 华为技术有限公司 一种电池微短路的检测方法及装置
CN111208439B (zh) * 2020-01-19 2021-10-22 中国科学技术大学 一种串联锂离子电池组微短路故障定量检测方法
CN111413629B (zh) * 2020-02-24 2024-02-02 上海蔚来汽车有限公司 动力电池内单体电池的短路监测方法、系统以及装置
CN113671391B (zh) * 2021-06-28 2024-03-12 国联汽车动力电池研究院有限责任公司 一种用于锂离子电池微/短路信号识别预警的检测方法
CN113484760B (zh) * 2021-07-12 2022-06-24 杭州华塑科技股份有限公司 一种电池热失控识别方法、装置、设备及存储介质
CN115684975A (zh) * 2022-12-28 2023-02-03 湖北工业大学 一种基于均衡电量量化电池微短路的方法及系统
CN117907862B (zh) * 2024-03-20 2024-06-11 青岛艾诺仪器有限公司 一种电池微短路检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536285A (zh) * 2006-11-02 2009-09-16 松下电器产业株式会社 蓄电元件的异常检测装置、方法、程序以及记录该程序的可由计算机读取的记录介质
CN101615706A (zh) * 2008-06-24 2009-12-30 索尼株式会社 电池包及其控制方法
CN101800340A (zh) * 2009-02-05 2010-08-11 三洋电机株式会社 二次电池的异常检测器件及二次电池器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839761B2 (ja) * 2001-09-14 2006-11-01 松下電器産業株式会社 バッテリ制御装置
JP3975798B2 (ja) * 2002-03-25 2007-09-12 トヨタ自動車株式会社 組電池の異常検出装置および異常検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536285A (zh) * 2006-11-02 2009-09-16 松下电器产业株式会社 蓄电元件的异常检测装置、方法、程序以及记录该程序的可由计算机读取的记录介质
CN101615706A (zh) * 2008-06-24 2009-12-30 索尼株式会社 电池包及其控制方法
CN101800340A (zh) * 2009-02-05 2010-08-11 三洋电机株式会社 二次电池的异常检测器件及二次电池器件

Also Published As

Publication number Publication date
CN104614631A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104614630B (zh) 一种电池微短路的识别方法
CN104614631B (zh) 一种电池微短路的识别方法
CN104614632B (zh) 一种电池微短路的识别方法
Duan et al. Evaluation of battery inconsistency based on information entropy
CN109031145B (zh) 一种考虑不一致性的串并联电池组模型及实现方法
CN104617330B (zh) 电池微短路的识别方法
CN110161425B (zh) 一种基于锂电池退化阶段划分的剩余使用寿命的预测方法
CN104218267B (zh) 一种锂离子电池分容配组方法
CN110376530B (zh) 电池内短路检测装置及方法
WO2022213597A1 (zh) 一种新能源车辆三电系统安全特征数据库构建方法
CN108508365B (zh) 一种锂离子电池自放电筛选方法
CN110488201B (zh) 一种锂离子电池荷电状态放电筛选方法、系统、存储介质
CN110190347A (zh) 一种应用于通信基站的锂电池管理系统
CN109116242A (zh) 一种动力电池的数据处理方法和装置
CN112540297B (zh) 一种研究锂离子电池过充安全冗余边界的方法
CN114839536B (zh) 一种基于多健康因子的锂离子电池健康状态估计方法
CN111123148B (zh) 一种判断金属二次电池内短路的方法及设备
CN114734873B (zh) 一种基于云端在线数据的动力电池单体热失控预警方法
Chen et al. An approach for state of charge estimation of Li-ion battery based on Thevenin equivalent circuit model
CN111129628A (zh) 锂离子电芯充放电的控制方法、系统、介质及电子设备
CN114252792A (zh) 电池包的内短路检测方法、装置、电子设备及存储介质
Shuai et al. Intelligent diagnosis of abnormal charging for electric bicycles based on improved dynamic time warping
CN110297185A (zh) 一种新能源汽车电池参数动态监测系统
Qiao et al. Data-Driven Fault Diagnosis of Internal Short Circuit for Series-Connected Battery Packs Using Partial Voltage Curves
Xiao et al. Discharge curve-based formation of retired power batteries for secondary use

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant