CN101610979A - 13c的制造方法 - Google Patents

13c的制造方法 Download PDF

Info

Publication number
CN101610979A
CN101610979A CNA2007800455700A CN200780045570A CN101610979A CN 101610979 A CN101610979 A CN 101610979A CN A2007800455700 A CNA2007800455700 A CN A2007800455700A CN 200780045570 A CN200780045570 A CN 200780045570A CN 101610979 A CN101610979 A CN 101610979A
Authority
CN
China
Prior art keywords
autoclave
hydrogen
temperature
manufacture method
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800455700A
Other languages
English (en)
Inventor
泽田重美
副岛秀雄
水野忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101610979A publication Critical patent/CN101610979A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • B01J3/042Pressure vessels, e.g. autoclaves in the form of a tube
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00234Control algorithm taking actions modifying the operating conditions of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0263Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/88Isotope composition differing from the natural occurrence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种13C的制造方法,其目的在于,用通用的碳氢化合物作为原料,在不发生放射性废弃物的情况下,得到非放射性的稳定同位素13C。而且,其构成的特征在于,以碳化合物为原料,在氢、硫化合物以及反应催化剂的存在下,在500℃~1000℃下得到13C。

Description

13C的制造方法
技术领域
本发明涉及以碳化合物为原料来制造13C(质量数13的非放射性碳的稳定同位素)的方法,尤其涉及用于在低温下得到非放射性碳的稳定同位素13C的制造方法。
背景技术
目前,正在进行将氘和氚加热到1亿度以上引发核融合反应生成氦等,得到非常大的核融合能的方法。该方法具有原料大致取之不尽,原理上不失控,不产生二氧化碳,不产生高级的放射性废弃物等优点。
另外,日本特开平08-211191号公报(专利文献1)中公开了使氘、氚在由数千安培的大电流引起的电弧放电的作用下产生等离子体,在数千万度下进行核融合反应的技术。
另外,如非专利文献1所述,目前,常温核融合的研究也正在积极进行,但还处于学术研究的阶段,尚未达到工业化的程度。
专利文献1:日本特开平08-211191号公报
非专利文献1:日本原子力学会志Vol.47,No.9(2005)大阪大学 高桥 亮人、三菱重工株式会社 岩村 康弘著p.62-p.63
但是,根据现有技术,为了制造原料氘及氚,需要特殊的装置和大量的工时,另外,即使在核融合反应的条件下,反应温度也极其高,而且也需要非常大的装置。
发明内容
因此,本发明的课题在于,提供一种13C的制造方法,该方法以通用的碳化合物为原料,在氢和硫化合物的存在下不会产生放射性废弃物的情况下,得到非放射性碳的稳定同位素13C。
为了解决以上的课题,首先,第一方面提供一种13C的制造方法,其特征在于,以碳化合物为原料,在氢、硫化合物以及反应催化剂的存在下于500℃~1000℃下进行反应,从而得到非放射性的碳的稳定同位素13C。
另外,第二方面根据所述第一方面所述的13C的制造方法,其特征在于,所述反应催化剂为铂催化剂、钯催化剂、铂-钯合金催化剂中的至少一种。
另外,第三方面根据第一、第二方面所述的13C的制造方法,其特征在于,所述硫化合物的硫含有率相对于所述碳化合物为50ppm~7%。
另外,第四方面根据第一、第二方面所述的13C的制造方法,其特征在于,所述氢的压力为9.8×106Pa~22.3×106Pa(100kg/cm2~250kg/cm2)。
另外,第五方面提供一种13C的制造方法,其特征在于,以碳化合物为原料,在氢与惰性气体的混合气体、硫化合物以及反应催化剂的存在下于500℃~1000℃下进行反应,从而得到非放射性碳的稳定同位素13C。
本发明中,作为碳化合物,根据大致的分类,可选择气体、液体、固体。作为气体的代表例,有甲烷、乙烷、丙烯、丁烷等烃,作为液体的代表例,有苯、甲苯、萘、蒽、汽油、轻油、煤油、柴油、杂芬油、煤焦油等。另外,作为固体的代表例,有活性碳、炭黑、煤、焦炭等。这些可以单独使用,也可以分别将上述的气体、液体、固体的碳化合物任意地混合使用。
另外,本发明中,除原子核为一个质子的氢(H)以外,原子核由一个质子和一个中子构成的氘(D)及由一个质子和二个中子构成的氚(T:氚)等氢的同位素也可以作为原料,但最优选工业上作为通用气体使用的氢。
另外,本发明中,将惰性气体和氢并用也可以进行本发明的反应。作为惰性气体的代表例,举出氦、氖、氩等稀有气体。例如,即使在将氢用He稀释100倍左右,氢气压力为1个标准大气压(1013×102Pa)的水平下,只要提高反应温度,也可以得到同等的反应速度。从安全性方面考虑,可以优选并用与大部分物质均不发生反应的惰性气体。
另外,本发明的硫化合物只要是在本发明的反应中产生含硫自由基的化合物即可,作为代表例,可以从硫化氢、二氧化硫等无机硫化合物,甲硫醇、硫化甲基、二硫化甲基、苯并噻吩等有机硫化合物以及硫单体中选择。这些可以单独或混合使用。
作为反应时的硫添加量(硫纯组分),只要是相对于原料碳化合物为50ppm以上即可。在50ppm以下时,往往反应进度慢,不实用。通常,煤焦油、杂芬油、柴油等的硫含有率在50ppm~7%以下的范围,不需要添补。硫含有率超过7%时,虽然不会阻碍反应,但在常温下,硫往往以固体的形式析出,此时,硫附着在容器、配管内造成不变,因此不优选。
关于反应温度和压力,温度和压力越高,越促进反应。但是,在封闭式反应装置中,受材料的制约,压力、温度都规定上限。反应中的氢的压力优选9.8×106Pa~22.3×106Pa(100kg/cm2~250kg/cm2)。即使氢的压力不足9.8×106Pa(100kg/cm2),则在温度充分高的情况下,也可以进行反应。例如,即使在1个大气压(1013×102Pa)下,只要升高温度,也能够以与氢单独在100个大气压(1013×104Pa)的情况同等的速度进行反应。
作为反应温度,优选为500℃~1000℃。更优选为600℃~900℃。在低于600℃的温度下氢气的压力不足够高时,难以引发反应,超过900℃时,难以应用发电及化学工业机械设备用的高温装置部件,不优选。
作为反应催化剂,优选铂催化剂、钯催化剂、铂-钯合金催化剂中的至少一种。催化剂的形状没有特别限定。也可以为金网状、多孔质状、粉末、碳或氧化铝的复合粉末或颗粒、铂黑。
由本发明得到的13C的生成和能量发生的原因的机理未知,但根据1939年德国物理学家柏特和魏兹扎克提倡的下述C-N-O循环反应的结果推定:发生下述(1)、(2)、(3)式所示的部分反应。
(数1)
C 6 12 + H 1 1 → N 7 13 + γ + 2 MeV · · · ( 1 )
N 7 13 → C + β + + v 6 13 + 1.2 MeV · · · ( 2 )
C 6 13 + H 1 1 → N 7 14 + γ + 8 MeV · · · ( 3 )
N 7 14 + H 1 1 → O 8 15 + γ + 7 MeV · · · ( 4 )
O 8 15 → N + β + + v 7 15 + 1 . 7 MeV · · · ( 5 )
N 7 15 + H 1 1 → C 6 12 + H 2 4 e + 5 MeV · · · ( 6 )
(γ:γ射线  β+:正电子束  v:微中子)
根据本发明,通过以通用的碳化合物为原料,且在氢和硫化合物的存在下,可以得到非放射性的碳的稳定同位素13C并产生发生。反应中发生的过热相对于设定温度(绝对温度)呈现指数函数增减的关系,因此容易进行反应控制。
附图说明
图1是作为实验装置的反应器的概略图。
图2(a)是表示实施例1的反应器的温度变化的图,系列1表示高压反应釜内部温度,系列2表示高压反应釜外壁面的温度,(b)为(a)的局部放大图。
图3是表示生成物的GC-MS分析结果的图。
图4是表示图3的13C的峰(2)的质谱分析结果的图。
图5(a)是表示实施例2的反应器的温度变化的图,系列1表示高压反应釜内部温度,系列2表示高压反应釜外壁面的温度,(b)为(a)的局部放大图。
图6(a)是表示实施例3的反应器的温度变化的图,系列1表示高压反应釜内部温度,系列2表示高压反应釜外壁面的温度,(b)为(a)的局部放大图。
图7是表示反应中发生的过热与内部温度(绝对温度)之间的关系的图。
图8是表示反应中发生的过热和氢的压力之间的关系的图。
符号说明
1反应器
2高压反应釜
2a高压反应釜主体
2a1凹部
2a2贯通孔
2b高压反应釜盖
2b1凸部
2b2贯通孔
3加热器
3a电源
4铂催化剂
5螺栓
6排气阀
7氢供给阀
8a、8b热电偶温度计
9个人计算机
10衬垫
11碳化合物
具体实施方式
参照附图对本发明的13C的制造方法之一实施方式进行具体地说明。另外,本发明不限于这些实施方式。另外,通过本发明的13C的制造方法得到的13C的分析可以通过GC-MS(Gas Chromatography-Mass Spectrometry;气相色谱-质谱分析仪)、13C-NMR(Nuclear Magnetic Resonance;核磁共振)法来进行。
实施例1
对于图1所示的反应器1而言,将主体部外径为56mm、内径为26mm、内部容积为88cc的INCONEL制的圆筒形高压釜2设置于与电源3a连接的电热式加热器3内,以碳化合物11为原料,并将含有硫化合物的杂芬油(硫含有率为0.07%)12cc和金属网状铂催化剂4插入高压反应釜主体2a内,之后,隔着金属制衬垫10将高压反应釜盖2b的凸部2b1嵌合于高压反应釜主体2a的凹部2a1,并将六根螺栓5穿过设于高压反应釜主体2a及高压反应釜盖2b的各周边部的六个部位的贯通孔2a2、2b2,将螺母12与该螺栓5螺纹结合,将高压反应釜盖2b固定在高压反应釜主体2a。
其后,打开氢供给阀7,向高压反应釜2内供给氢气,同时使排气阀6一直打开数分钟,将残留在该高压反应釜2内的空气置换为氢气。其后,关闭排气阀6使高压反应釜2内的氢气的压力上升到100大气压(1013×104Pa)将氢填充在高压反应釜2内,之后,关闭氢供给阀7。这样,从电源3a对设置有封入了氢气的高压反应釜2的加热器3通电,加热至高压反应釜2的内部温度达到540℃,停止向该加热器3通电。
还有,图1中,8a、8b为热电偶温度计,热电偶温度计8a设置在高压反应釜2内部,测定该高压反应釜2内部的温度,热电偶温度计8b设置在高压反应釜2的外壁面,测定该高压反应釜2的外壁面的温度。由热电偶温度计8a、8b测得的温度数据信息被输送到个人计算机9并如图2及图5所示进行记录。
将由热电偶温度计8a、8b测得的高压反应釜2内外的温度测定结果示于图2。图2中,系列1表示由热电偶温度计8a测得的高压反应釜2的内部温度。系列2表示由热电偶温度计8b测得的高压反应釜2的外壁面的温度。如图2所示,发现在停止用加热器3加热的数分钟后高压反应釜2的各部温度急剧上升的现象。将高压反应釜2的温度恢复到室温并采集该高压反应釜2内的残留气体,三天后,利用GC-MS(Gas Chromatography-Mass Spectrometry;气相色谱-质谱分析仪)进行气体成分分析。
将气相色谱分析仪分析的结果示于图3。图3的横轴表示各成分的洗提时间(min),纵轴表示检测强度。如图3所示,气体成分为图3的(1)所示的CO(一氧化碳),由图4的质谱分析(Mass Spectrometry)的结果可知,图3的(2)所示的成分为C-13(13C),图3的(3)~(8)分别表示CH4(甲烷;Methane)、C2H6(乙烷;Ethane)、C3H8(丙烷;Propane)、C4H10(丁烷;Butane)、C6H6(苯;Benzene)、C7H8(甲苯;Toluene)的碳化合物成分。
图4(a)表示图3的气相色谱分析的峰(2)附近的结果,图4(b)表示峰(2)的质谱分析的结果。图4(b)的横轴表示质量数/电荷数(m/z),纵轴表示检测离子的相对强度。如图4所示,确定了质量数13的非放射性的碳的稳定同位素13C。
另外,从高压反应釜2内部回收的固态碳状的块和微量液体的总重量大致与已填充的杂芬油相同。
图2中,可知由于系列1所示的由热电偶温度计8a测定的高压反应釜2的内部温度比系列2所示的由热电偶温度计8b测定的高压反应釜2的外壁面的温度高,因此在高压反应釜2内部发生了核熔融引起的放热反应。
实施例2
使用具有上述实施例1中使用的反应器1的高压反应釜·加热装置,用碳化合物11为原料,并用含有硫化合物的煤焦油(硫含有率为3%)12cc来代替杂酚油插入高压反应釜2内,除此以外,以与上述实施例1相同的操作将氢气以100个大气压(1013×104Pa)封入,用相同的铂催化剂4进行同样的操作,利用加热器3加热高压反应釜2,将该高压反应釜2内部的温度从室温加热到600℃。如图5所示,高压反应釜2的内部温度最高上升到660℃。
反应结束后,在高压反应釜2内残存有10cc固态碳状的块和微量的液体。与上述实施例1同样,利用GC-MS(Gas Chromatography-Mass Spectrometry;气相色谱-质谱分析仪)进行气体成分分析,结果是,检测到质量数13的非放射性的碳的稳定同位素13C。
图5中也同样,可知由于系列1所示的由热电偶温度计8a测定的高压反应釜2的内部温度比系列2所示的由热电偶温度计8b测定的高压反应釜2的外壁面的温度高,因此在高压反应釜2内部发生了核熔融引起的放热反应。
如上所述,以碳化合物11为原料,在氢、硫化合物以及作为反应催化剂的铂催化剂4的存在下,在500℃~1000℃下可得到13C。硫化合物的硫含有率只要相对于碳化合物11为50ppm~7%即可,氢的压力只要为9.8×106Pa~22.3×106Pa(100kg/cm2~250kg/cm2)即可。
实施例3
将1cc杂芬油及铂催化剂4加入与上述实施例1同样的反应器1的高压反应釜2内,以与上述实施例1相同的操作,使氢气在1个大气压(1013×102Pa)下,并使氦气在70个大气压(7091×103Pa)下,调整加热器3的输入(功率),将高压反应釜2的内部温度设定为660℃。如图6(a)、(b)所示,高压反应釜2的内部温度达到660℃后,该高压反应釜2的内部温度也上升,且在加热器3输入后,在约4小时内达到690℃,具有30℃的温度上升(过热)。
〔实施例4~实施例31〕
用与上述实施例3同样的反应器1、杂芬油,在单独为氢气时(35个大气压(355×104Pa))的12种温度条件下,根据过热和其持续时间求出过热的瓦数(Watt)。在此,瓦数(Watt)是指每单位时间发生的焦耳(Joule)数。其结果是,如图7所示,过热的瓦数(Watt)相对于由加热器3施加的该加热器3的绝对温度(T)呈指数函数增加。由该结果断定,该反应中阿雷尼厄斯方程式成立。在此,阿雷尼厄斯方程式是指:在通常的化学反应中,反应速度和绝对温度之间的关系如图7所示,过热的对数和绝对温度的倒数成直线的关系,将该直线所表示的一次式称为阿雷尼厄斯方程式。
还有,图7的横轴所示的T为绝对温度(K),0℃为273K。1000/T用1000倍绝对温度的倒数的值表示,例如,以600℃为例,1/T为0.001145...,1000倍时,表示为1.145...。
〔实施例32~实施例68〕
与上述实施例3同样,使用反应器1、杂酚油,在250℃~665℃的温度范围内,在单独为氢气时的35种压力条件下,根据过热和其持续时间求出过热的瓦数(Watt)。其结果是,如图8所示,过热与气体的压力成正比地增加。
产业上的可利用性
本发明提供一种13C的制造方法,其用通用的碳化合物作为原料,在氢和硫化合物的存在下不会发生放射性废弃物的情况下,可以得到非放射性的碳的稳定同位素13C。

Claims (5)

1、一种13C的制造方法,其特征在于,
以碳化合物为原料,在氢、硫化合物以及反应催化剂的存在下于500℃~1000℃下进行反应,从而得到非放射性的碳的稳定同位素13C。
2、如权利要求1所述的13C的制造方法,其特征在于,
所述反应催化剂为铂催化剂、钯催化剂、铂-钯合金催化剂中的至少一种。
3、如权利要求1或2所述的13C的制造方法,其特征在于,
所述硫化合物的硫含有率相对于所述碳化合物为50ppm~7%。
4、如权利要求1或2所述的13C的制造方法,其特征在于,
所述氢的压力为9.8×106Pa~22.3×106Pa,即100kg/cm2~250kg/cm2
5、一种13C的制造方法,其特征在于,
以碳化合物为原料,在氢与惰性气体的混合气体、硫化合物以及反应催化剂的存在下于500℃~1000℃下进行反应,从而得到非放射性的碳的稳定同位素13C。
CNA2007800455700A 2006-12-12 2007-12-06 13c的制造方法 Pending CN101610979A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006357166 2006-12-12
JP357166/2006 2006-12-12

Publications (1)

Publication Number Publication Date
CN101610979A true CN101610979A (zh) 2009-12-23

Family

ID=39511566

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800455700A Pending CN101610979A (zh) 2006-12-12 2007-12-06 13c的制造方法

Country Status (5)

Country Link
EP (1) EP2093190A4 (zh)
JP (1) JPWO2008072546A1 (zh)
CN (1) CN101610979A (zh)
CA (1) CA2672274A1 (zh)
WO (1) WO2008072546A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042972A (ja) * 2008-08-10 2010-02-25 Shigemi Sawada 13cの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131689A (en) * 1980-03-21 1981-10-15 Agency Of Ind Science & Technol Direct liquefaction method of coal
JPS5968391A (ja) * 1982-10-12 1984-04-18 Asahi Chem Ind Co Ltd 石炭の液化方法
JPH08211191A (ja) 1995-01-31 1996-08-20 Takeshi Hatanaka 核融合エンジンおよびこれを有する機械システム
JP2001048516A (ja) * 1999-08-05 2001-02-20 Mitsubishi Heavy Ind Ltd 13c濃縮二酸化炭素の製造方法
JP2004352592A (ja) * 2003-05-30 2004-12-16 Canon Inc コイル状カーボン材料の製造方法

Also Published As

Publication number Publication date
CA2672274A1 (en) 2008-06-19
EP2093190A4 (en) 2011-08-10
EP2093190A1 (en) 2009-08-26
JPWO2008072546A1 (ja) 2010-03-25
WO2008072546A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
Vishnevetsky et al. Production of hydrogen from solar zinc in steam atmosphere
Xiaowei et al. Effect of temperature on graphite oxidation behavior
Kissane A review of radionuclide behaviour in the primary system of a very-high-temperature reactor
Kim et al. Experimental study on the oxidation of nuclear graphite and development of an oxidation model
Kolesnikov et al. Chemistry of hydrocarbons under extreme thermobaric conditions
Li et al. Experimental and theoretical study on kinetic behaviour of coal gangue and raw coal using model reconstruction
Liu et al. Acquiring real kinetics of reactions in the inhibitory atmosphere containing product gases using micro fluidized bed
Yang et al. Vapor-phase oxidation of the saturates of crude oil in accelerated-rate calorimetric tests
Maimaiti et al. Oil pyrolysis with carbonate minerals: Implications for the thermal stability of deep crude oil
CN101610979A (zh) 13c的制造方法
Steinbrück et al. Oxidation of B4C by steam at high temperatures: New experiments and modelling
Yan et al. Dissolution behavior of hydrogen in the model recycle solvent of mild direct coal liquefaction
Epstein et al. The SnO 2/Sn carbothermic cycle for splitting water and production of hydrogen
Mi et al. Combination of Methyl from Methane Early Cracking: A Possible Mechanism for Carbon Isotopic Reversal of Overmature Natural Gas
Perez-Feró et al. Experimental database of E110 claddings exposed to accident conditions
Contescu et al. Oxidation Behavior and Property Degradation of Nuclear Graphites
Nakagaki et al. Development of methanol steam reformer for chemical recuperation
Oxley et al. Kinetics of carbon deposition in a fluidized bed
CN102119121A (zh) 13c的制造方法
Qian et al. Investigation of swelling behaviors of U-10Zr metallic fuel in the low temperature regime via a cavitational void swelling model
Enders et al. Parallel FTIR-ATR spectroscopy and gravimetry for the in situ hydrogen desorption measurement of NaAlH 4 powder compacts
Zhao et al. Carbon Isotope Fractionation Characteristics during the Oil Shale Water Extraction Process and Its Implications
Troyanov et al. Program and some results of pre-reactor studies of mixed uranium-plutonium nitride fuel for fast reactors
Mansi et al. High temperature stability of a commercial terphenyl-based thermal oil
Yanni et al. Study on Thermal Effect of Coal Oxidation at Low-Temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091223