发明内容
本发明提供一种实现引脚复用的恒流恒压控制器及其三引脚集成电路封装,可以有效实现恒流恒压控制器中的控制器集成电路的封装引脚的复用,减少集成电路封装引脚的数目,并使其具有更少的外部组件,从而有效降低应用成本,实现更廉价的反激式转换器。
为了解决以上技术问题,本发明提供了一种集成电路封装,用于反激式转换器,包括一开关端子,耦接到电感器开关,所述电感器开关由具有频率和脉冲宽度的电感器开关控制信号接通,包含在所述集成电路封装中的控制器集成电路调整所述电感器开关控制信号的频率,以使所述反激式转换器的输出电流保持恒定,并且,所述控制器集成电路调整所述电感器开关控制信号的脉冲宽度,以使所述反激式转换器的输出电压保持恒定;一电源端子,所述控制器集成电路通过所述电源端子接收电力;和一接地端子,所述控制器集成电路通过所述接地端子接地,所述集成电路封装除所述开关端子、所述电源端子和所述接地端子外不再包含其它端子。
本发明提还供了一种集成电路封装,用于反激式转换器,包括一开关端子,耦接到电感器开关,所述电感器开关由具有频率的电感器开关控制信号接通,包含在所述集成电路封装中的控制器集成电路调整所述电感器开关控制信号的频率,以使所述反激式转换器的输出电流保持恒定;一电源端子,用于接收反馈信号,其中所述反馈信号是从所述反激式转换器的第一电感器两端的电压导出,其中所述反馈信号为所述控制器集成电路供电,并且其中所述反馈信号由所述控制器集成电路用于产生所述电感器开关控制信号;和一接地端子,所述控制器集成电路通过所述接地端子接地,其中所述集成电路封装除所述开关端子、所述电源端子和所述接地端子外不再包含其它端子。
本发明提还供了一种电源转换器,包括一初级电感器;一辅助电感器,磁耦合到所述初级电感器;和一控制器集成电路,具有电感器开关、电源焊盘、开关焊盘和接地焊盘,所述电感器开关耦合到所述开关焊盘并由具有频率的电感器开关控制信号接通,所述控制器集成电路通过所述电源焊盘接收电力,所述电源焊盘接收一反馈信号,所述反馈信号被所述控制器集成电路用于产生所述电感器开关控制信号,并且所述控制器集成电路在恒流模式中调整所述电感器开关控制信号的频率,以使所述电源转换器的输出电流保持恒定。
本发明提还供了一种电源转换器,包括一初级电感器;一辅助电感器,磁耦合到所述初级电感器;和一控制器集成电路,具有电感器开关和电源焊盘,所述电感器开关由具有频率和脉冲宽度的电感器开关控制信号接通,其中所述电源焊盘接收一反馈信号,所述反馈信号既用于为所述控制器集成电路供电、也用于产生所述电感器开关控制信号,所述反馈信号是从所述辅助电感器两端的电压导出,所述控制器集成电路利用所述电感器开关断开时的所述反馈信号来调整所述频率,以使所述电源转换器的输出电流保持恒定,并且所述控制器集成电路利用所述电感器开关断开时的所述反馈信号调整所述脉冲宽度,以使所述反激式转换器的输出电压保持恒定。
本发明提还供了一种方法,包括将辅助电感器磁耦合到电源转换器的次级电感器,所述电源转换器具有一控制器集成电路,并且所述控制器集成电路具有一电感器开关;在所述控制器集成电路的电源焊盘上接收一反馈信号,所述反馈信号是从所述辅助电感器两端的电压导出;利用所述反馈信号为所述控制器集成电路供电;利用所述反馈信号产生电感器开关控制信号,其中所述电感器开关控制信号具有频率;利用所述电感器开关控制信号接通所述电感器开关;和利用所述反馈信号调整所述电感器开关控制信号的频率,以使所述电源转换器的输出电流保持恒定。
本发明提还供了一种电源转换器,包括一初级电感器;一辅助电感器,磁耦合到所述初级电感器;一控制器集成电路的开关焊盘,所述开关焊盘耦合到所述控制器集成电路的电感器开关,所述电感器开关由具有频率和脉冲宽度的电感器开关控制信号接通;和一用于接收反馈信号的装置,所述反馈信号既用于为所述控制器集成电路供电、也用于产生所述电感器开关控制信号,所述反馈信号是从所述辅助电感器两端的电压导出,所述反馈信号用于调整所述频率,以使所述电源转换器的输出电流保持恒定,并且所述反馈信号用于调整所述脉冲宽度,以使所述反激式转换器的输出电压保持恒定。
本发明提还供了一种集成电路封装,包括一电源端子,用于接收辅助电压信号,其中所述辅助电压信号是从反激式转换器的第一电感器两端的电压导出,并且其中所述辅助电压信号为容纳在所述集成电路封装中的控制器集成电路供电;一接地端子,所述控制器集成电路通过所述接地端子接地;和一开关端子,用于接收开关信号并耦接到电感器开关,所述电感器开关由具有频率的电感器开关控制信号接通,所述开关信号由所述控制器集成电路用于产生所述电感器开关控制信号,所述控制器集成电路调整所述频率,以使所述反激式转换器的输出电流保持恒定,并且所述集成电路封装除所述电源端子、所述接地端子和所述开关端子外,不再包括其它端子。
本发明提还供了一种电源转换器,包括一初级电感器;一辅助电感器,磁耦合到所述初级电感器;和一控制器集成电路,具有电感器开关、电源焊盘、开关焊盘和接地焊盘,所述电感器开关耦合到所述开关焊盘并由具有频率的电感器开关控制信号接通,所述控制器集成电路通过所述电源焊盘接收电力,所述开关焊盘接收开关信号,所述开关信号由所述控制器集成电路用于产生所述电感器开关控制信号,并且所述控制器集成电路在恒流模式中调整所述电感器开关控制信号的频率,以使所述电源转换器的输出电流保持恒定。
本发明提还供了一种方法,包括将辅助电感器磁耦合到电源转换器的次级电感器,所述电源转换器具有控制器集成电路,并且所述控制器集成电路具有电感器开关;在所述控制器集成电路的开关焊盘上接收开关信号,所述开关信号是从所述辅助电感器两端的电压导出;利用所述开关信号产生电感器开关控制信号,所述电感器开关控制信号具有频率和脉冲宽度;利用所述电感器开关控制信号接通所述电感器开关;利用所述开关信号调整所述电感器开关控制信号的频率,以使所述电源转换器的输出电流保持恒定;和利用所述开关信号调整所述电感器开关控制信号的脉冲宽度,以使所述电源转换器的输出电压保持恒定。
本发明提还供了一种电源转换器,包括一初级电感器;一辅助电感器,磁耦合到所述初级电感器,其中控制器集成电路的电感器开关由具有频率和脉冲宽度的电感器开关控制信号接通;和一用于接收开关信号的装置,所述开关信号用于产生所述电感器开关控制信号,所述开关信号是从所述辅助电感器两端的电压导出,所述装置耦接到所述电感器开关,并且所述开关信号既用于调整所述频率以使所述电源转换器的输出电流保持恒定、也用于调整所述脉冲宽度以使所述反激式转换器的输出电压保持恒定。
综上所述,本发明涉及的反激式转换器包括容纳在只具有以下三个端子的IC封装中的控制器集成电路(IC):接地端子、电源端子和开关端子。电源端子用于多种功能。控制器IC通过接地端子进行接地。开关端子耦接到电感器开关,所述电感器开关由具有频率和脉冲宽度的电感器开关控制信号接通。电感器开关控制流经反激式转换器的初级电感器的电流。电源端子接收从反激式转换器的辅助电感器两端的电压导出的反馈信号。反馈信号对控制器IC供电,并且还用于产生电感器开关控制信号。控制器IC以恒流模式调整电感器开关控制信号的频率,以使反激式转换器的输出电流保持恒定。在恒压模式中,控制器IC调整电感器开关控制信号的脉冲宽度,以使输出电压保持恒定。
开关端子接收开关信号,所述开关信号指示流经初级电感器的电感器电流。控制器IC控制电感器开关控制信号的脉冲宽度,使电感器电流停止通过初级电感器增大的时刻对应于开关信号达到峰值电流限值的时刻。控制脉冲宽度能防止输出电流超过预定的电流限值。
控制器IC具有电源焊盘、开关焊盘和接地焊盘。电源焊盘耦接到电源端子;开关焊盘耦接到开关端子;接地焊盘则耦接到接地端子。在一个实施例中,控制器IC除电源焊盘、开关焊盘和接地焊盘外,不再具有其它焊盘。
一种操作电源转换器的方法包括以下步骤:将辅助电感器磁耦合到电源转换器的初级电感器和次级电感器。电源转换器具有外部电感器开关和控制器IC。控制器IC具有耦接到外部电感器开关的内部电感器开关。内部电感器开关由电感器开关控制信号进行接通和断开。电感器开关控制信号具有频率和脉冲宽度。
在另一步骤中,从辅助电感器两端的电压导出反馈信号,并将反馈信号接收到控制器IC的电源焊盘上。除电源焊盘外,控制器IC还具有开关焊盘和接地焊盘。控制器IC容纳在具有电源端子、开关端子和接地端子的IC封装中。除电源端子、开关端子和接地端子外,IC封装不再包括其它端子。电源端子耦接到电源焊盘;开关端子耦合到开关焊盘;接地端子耦接到接地焊盘。
在另一步骤中,利用所述反馈信号产生所述电感器开关控制信号。
在另一步骤中,利用所述电感器开关控制信号接通和断开所述内部电感器开关。
在另一步骤中,利用反馈信号调整电感器开关控制信号的频率,使电源转换器的输出电流保持恒定。利用在内部电感器开关断开时在反馈信号中传递的信息来调整频率,使输出电流保持恒定。
在另一步骤中,利用反馈信号调整电感器开关控制信号的脉冲宽度,使电源转换器的输出电压保持恒定。利用在内部电感器开关断开时在反馈信号中传递的信息来调整脉冲宽度,使输出电压保持恒定。
在另一实施例中,一种电源转换器包括初级电感器和次级电感器,所述初级电感器和次级电感器磁耦合到辅助电感器。从辅助电感器两端的电压导出反馈信号。所述电源转换器还包括控制器IC,所述控制器IC具有开关焊盘,所述开关焊盘耦合到所述控制器IC的电感器开关。电感器开关由电感器开关控制信号接通和断开。所述电源转换器还包括用于接收反馈信号的装置。反馈信号同时用于为控制器IC供电和产生电感器开关控制信号。控制器IC利用反馈信号调整电感器开关控制信号的频率,使电源转换器的输出电流保持恒定。控制器IC还利用反馈信号调整电感器开关控制信号的脉冲频率,使反激式转换器的输出电压保持恒定。控制器IC封装在包括不多于三个端子的IC封装中。
在另一实施例中,一种反激式转换器包括容纳在只具有以下三个端子的IC封装中的控制器IC:接地端子、电源端子和开关端子。开关端子用于多种功能。控制器IC通过接地端子接地。在电源端子上接收辅助电压信号,用于为控制器IC供电。所述辅助电压信号从反激式转换器的第一辅助电感器两端的电压导出。开关端子耦接到电感器开关,所述电感器开关由具有频率和脉冲宽度的电感器开关控制信号接通。电感器开关控制流经反激式转换器的初级电感器的电流。电感器开关通过外部晶体管耦接到初级电感器。在开关端子上接收开关信号,用于产生电感器开关控制信号。开关信号提供能使反激式转换器在恒流模式期间输出恒定电流、在恒压模式期间输出恒定电压并防止输出电流超过预定电流限值的信息。开关信号中所传递的信息提供对于反激式转换器的输出电压和对于电流的大小何时停止通过初级电感器增大的指示。
在恒流模式和在恒压模式中,控制器IC均利用来自开关信号的信息产生电感器开关控制信号。控制器IC在恒流模式中调整电感器开关控制信号的频率,以使输出电流保持恒定,并在恒压模式中调整电感器开关控制信号的脉冲宽度,以使输出电压保持恒定。控制器IC还利用来自开关信号的信息来控制流经初级电感器的峰值电流,使反激式转换器的输出电流不超过预定电流限值。
在另一实施例中,电源转换器具有控制器IC、初级电感器、次级电感器、第一辅助电感器和第二辅助电感器。这些辅助电感器磁耦合到初级电感器和次级电感器。控制器IC具有电感器开关、电源焊盘、开关焊盘和接地焊盘。控制器IC通过电源焊盘接收电力,并通过接地焊盘接地。电感器开关耦合到开关焊盘,并由电感器开关控制信号接通和断开。开关焊盘接收开关信号,控制器IC利用开关信号来产生电感器开关控制信号。控制器IC在恒流模式中利用开关信号调整电感器开关控制信号的频率,以使电源转换器的输出电流保持恒定。控制器IC还在恒压模式中利用开关信号调整电感器开关控制信号的脉冲宽度,以使电源转换器的输出电压保持恒定。控制器IC还利用开关信号调整电感器开关控制信号的脉冲宽度,以使反激式转换器的输出电流不超过预定电流限值。
一种操作电源转换器的方法包括以下步骤:将辅助电感器磁耦合到电源转换器的初级电感器和次级电感器。电源转换器具有外部电感器开关和控制器IC。控制器IC具有耦接到外部电感器开关的内部电感器开关。内部电感器开关由电感器开关控制信号进行接通和断开。电感器开关控制信号具有频率和脉冲宽度。
在另一步骤中,在控制器集成电路的开关焊盘上接收开关信号。所述开关信号是从辅助电感器两端的电压导出。
在另一步骤中,利用开关信号产生电感器开关控制信号。
在另一步骤中,利用电感器开关控制信号接通和断开内部电感器开关。
在另一步骤中,利用开关信号调整电感器开关控制信号的频率,以使电源转换器的输出电流保持恒定。利用在内部电感器开关断开时在开关信号中传递的信息来调整频率,以使输出电流保持恒定。
在另一步骤中,利用开关信号调整电感器开关控制信号的脉冲宽度,以使电源转换器的输出电压保持恒定。利用在内部电感器开关断开时在开关信号中传递的信息来调整脉冲宽度,以使输出电压保持恒定。
在另一实施例中,一种电源转换器包括初级电感器,所述初级电感器磁耦合到第一辅助电感器和第二辅助电感器。从第一辅助电感器两端的电压导出辅助电压信号。所述电源转换器还包括控制器IC,所述控制器IC具有开关焊盘,所述开关焊盘耦合到所述控制器IC的电感器开关。电感器开关由电感器开关控制信号接通和断开。所述电源转换器还包括用于接收开关信号的装置,所述开关信号是从第二辅助电感器两端的电压和从流经初级电感器的电流导出。开关信号同时用于调整电感器开关控制信号的频率以使电源转换器的输出电流保持恒定、和调整电感器开关控制信号的脉冲宽度以使反激式转换器的输出电压保持恒定。此外,开关信号还用于调整电感器开关控制信号的脉冲宽度,以使反激式转换器的输出电流不超过预定电流限值。控制器IC封装在包括不多于三个端子的IC封装中。
本发明所采用的引脚复用恒流恒压控制器及其集成电路封装,可以有效实现恒流恒压控制器中的控制器集成电路的封装引脚的复用,减少封装管脚的数目,并使其具有更少的外部组件,从而有效降低应用成本,实现更廉价的反激式转换器。
在下文详细说明中描述了其它实施例和优点。本发明内容并不用于限定本发明。本发明是由权利要求书加以限定。
具体实施方式
现在将详细参照本发明的某些实施例,这些实施例的例子在附图中被示出。
图3是反激式转换器30的图,反激式转换器30具有封装在集成电路封装32中的控制器集成电路(IC)31。尽管术语“集成电路”常用于既表示集成电路、也表示其中容纳有集成电路的集成电路封装,然而本文所用的术语“集成电路”只表示集成电路裸片(die)。反激式转换器30包括用于将输出电压转换成不同输出电压的变压器。在一个实施例中,输入电压是来自墙上插座的电压,输出电压则用于对便携式电子用户装置进行充电。当转换器中的主电源开关接通时,电流开始流经变压器的初级电感器。在电流通过初级电感器斜升到峰值并随后被切断时,初级电感器周围的崩溃的磁场会向次级电感器传递能量。传递到次级电感器的能量在不同的输出电压下从反激式转换器30作为输出电流输出。在某些应用中,例如在对电子用户装置进行充电的应用中,希望使输出电流保持在恒定的水平并防止输出电流超过预定电流限值。
控制器IC 31通过调整流经初级电感器33的峰值电流,控制反激式转换器30的输出电压(VOUT)和输出电流(IOUT)。峰值电流是利用脉宽调制(PWM)进行调整的。控制器IC 31还通过调整初级电感器中的峰值电流和调整外部NPN双极晶体管34接通和断开时的频率,控制反激式转换器30的输出电流(IOUT)。晶体管34充当初级电感器33的电感器开关。控制器IC 31具有电源焊盘35、开关焊盘36和接地焊盘37。
由于电流只通过三个焊盘传递到控制器IC 31,因而集成电路封装32只具有三个端子。集成电路封装的每个端子都会增加成本。因此,制造封装在集成电路封装32中的控制器IC 31比制造需要封装具有多于三个端子的控制器IC更为廉价。集成电路封装32只具有三个端子:电源端子38、开关端子39和接地端子40。通过利用反馈信号为控制器IC 31供电,由于反馈信号包含指示当电感器开关34断开时的输出电压VOUT和输出电流(IOUT)的信息,因而可无需使用单独的端子来(i)为控制器IC 31供电,(ii)提供用于控制反激式转换器30的输出电流的反馈,和(iii)提供用于控制反激式转换器30的输出电压的反馈。由此,可将图2的反激式转换器22使用的四个端子减少到反激式转换器30的三个端子。
在图3的实施例中,电源焊盘35通过焊线41连接到电源端子38。控制器IC 31通过电源端子38接收关于输出电压VOUT的指示。反馈信号42是在电源端子38上接收,并接着通过焊线41传输到电源焊盘35。根据封装的类型而定,电源端子38可以是低成本TO-92三引脚式封装的引线或者小尺寸晶体管(SOT)封装的引线。在其中集成电路封装32为三引脚式TO-92封装的实施例中,允许将控制器IC 31容纳在通常用于容纳单个晶体管的低成本封装中。在图3所示的实施例中,开关端子39通过焊线43连接到焊盘SW 36。开关信号44是在开关端子39上接收,并接着通过焊线43传输到焊盘SW 36。
除控制器IC 31、IC封装32和电感器开关34外,反激式转换器30还包括变压器45、次级侧整流器46、输出电容器47、初级侧整流器48、起动电阻器49、电力电容器(C1)50、以及耦接到NPN双极晶体管34的基极的二极管51和电阻器52。反激式转换器30不具有次级侧控制电路和光耦合器。图3所示的次级侧电阻器53表示变压器45的铜绕组的电阻性损耗。变压器45包括初级绕组(电感器)33、次级绕组54和辅助绕组55。变压器45的初级绕组33具有Np匝;次级绕组54具有Ns匝;并且辅助绕组55具有Na匝。控制器IC 31的初始起动能量由起动电阻器49和电力电容器(C1)50提供。在反激式转换器30达到稳定后,变压器45的辅助绕组55便通过整流器48为控制器IC 31供电。
图3所示的反激式转换器30的实施例用于需要具有较高输入电压或较高功率的应用中,并使用外部功率处理组件,例如NPN双极晶体管34。在较低输入电压或较低功率应用中所用的反激式转换器30的其它实施例不具有外部双极晶体管、MOSFET电源开关或电流检测电路-所有这些组件均可并入集成电路31中。在图3所示的实施例中,NPN双极晶体管34以发射极开关配置形式与控制器IC 31相配合。外部NPN双极晶体管34充当初级绕组33的开关。在此种配置中,控制器IC 31中的内部电路驱动外部双极晶体管34的发射极。在其它实施例中,为进一步增强功率处理能力和开关频率,使用外部MOSFET作为主开关来取代双极晶体管34。一般来说,双极晶体管34的频率能力受限于NPN基极充电/放电时间,并且双极晶体管34的高功率能力受限于基极驱动电阻器。因此,双极晶体管34适合用于不需要极高功率或开关频率的应用中。
图4是控制器IC 31的更详细的示意图。控制器IC 31包括振荡器56、限流器57、脉宽调制(PWM)逻辑58、门极驱动器59和内部主电源开关60。此外,控制器IC 31包括调节器和欠电压闭锁电路(UVLO)61、参考电压产生器62、PWM误差放大器63、误差比较器64、频率调制器(FMOD)65、电流检测放大器66、补偿二极管67、分压器68、电源电压钳位器69、取样器电容器(C2)70、第一开关(SW1)71、第二开关(SW2)72、和软线(cord)修正电路73。
来自变压器45的次级侧的唯一反馈由反激式转换器30用于控制输出电流和电压,其是通过辅助绕组55和次级绕组54的磁耦合进行反馈。由于不使用次级侧控制电路或光耦合器,反激式转换器30的成本得以降低。此外,三引脚式IC封装32的成本低于四引脚式封装的成本。例如,可使用通常用于容纳晶体管的低成本TO-92三引脚式封装来封装控制器IC 31。最后,由于通过将分压器68布置在控制器IC 31内部而减少了外部组件,成本得以降低。内部分压器68的第一反馈电阻器(RFB1)74和第二反馈电阻器(RFB2)75的制造成本低于反激式转换器22的外部分压电阻器网络13的成本。在典型的应用中,反激式转换器30产生约为5伏的输出电压(VOUT)。分压器68的电阻器的规格被确定成提供5伏的输出电压。当某种应用要求输出电压(VOUT)不是5伏时,可调整分压器68的电阻。例如,为提供12伏的输出电压,可对控制器IC 31内的熔丝、反熔丝或EPROM、EEPROM或其它非易失性编程装置进行编程,以便调整分压器68的电压比。通过利用熔丝、反熔丝或其它非易失性编程装置来改变分压器68的电阻,使控制器IC 31成为一次性可编程的(OTP)。
图5是流程图,其图解说明图3的反激式转换器30的操作方法的步骤76-83。该方法通过调整电感器开关控制信号84的频率来控制反激式转换器30的输出电流(IOUT),电感器开关控制信号84用于接通和断开主电源开关60以及间接地接通和断开电感器开关34。该方法还通过调整电感器开关控制信号84的脉冲宽度并由此调整流经反激式转换器30的初级电感器33的峰值电流,来控制反激式转换器30的输出电压(VOUT)。在某些应用中,希望使反激式转换器30的输出电流(IOUT)保持在恒定水平。输出电流(IOUT)取决于至少三个因素:(i)流经初级电感器33的电感器电流85的峰值,(ii)初级电感器33的电感(LP),和(iii)电感器开关控制信号84接通和断开主电源开关60以使电流通过初级电感器33斜坡上升时的频率(fOSC)。
图5的方法调整主电源开关60接通和断开时的频率(fOSC),以使来自反激式转换器30的输出电流(IOUT)保持恒定。由此,通过调整电感器电流85通过初级电感器33斜坡上升时的开关频率(fOSC)或流经初级电感器33的电流的峰值(IP)中的一者或两者,使输出电流(IOUT)保持在恒定的值。
在图5所示的第一步骤76中,反激式转换器30连接到输入电压(VIN),并且主电源开关60接通。然后,电感器电流85开始流经初级电感器33。当主电源开关60接通时,初级电感器33的带点端的电压降低,不带点端的电压则高。随着电感器电流85通过初级电感器33斜坡上升,输入能量被存储在初级电感器33中。接着,当主电源开关60断开时,能量被传递到次级绕组54。传递到次级绕组54的能量作为输出电流(IOUT)从反激式转换器30输出。
在步骤77中,辅助绕组55磁性耦合到次级绕组54。随着电感器电流85通过初级电感器33增大并随后停止流动,能量还传递到辅助绕组55并在辅助绕组55的带点端上产生电压(VAUX)86。电压(VAUX)86包含与当主电源开关60断开时的输出电压有关的信息。
在步骤78中,在控制器IC 31的电源焊盘(VDD)35上接收反馈信号42。反馈信号42是从当辅助电感器55与初级绕组33和次级绕组54磁耦合时辅助电感器55两端的电压(VAUX)86导出。
在步骤79中,使用反馈信号42为控制器IC 31供电。调节器和欠电压闭锁电路(UVLO)61从电源焊盘(VDD)35接收反馈信号42,并向控制器IC 31提供内部电源。倘若电源焊盘(VDD)35上的电压(VDD)超过安全工作范围,电源电压钳位器69便充当保护装置并泄放过量的电荷。在一个实施例中,调节器61利用反馈信号42产生5伏的信号,由该信号为控制器IC 31的电路(例如限流器57)供电。
在稳态运行中,调节器61在电源焊盘(VDD)35上从反馈信号42接收15伏的电压。在起动过程中、辅助绕组55产生任何电压之前,在电源焊盘(VDD)35上接收由起动电阻器49和电力电容器(C1)50所产生的电压。在起动过程中,电力电容器(C1)50上的电压逐渐增大,直到达到19伏的欠电压闭锁接通阈值并且控制器IC 31开始切换主电源开关60。调节器和欠电压闭锁电路(UVLO)61监测作为反馈信号42接收到的VDD电压,并在VDD达到欠电压闭锁接通阈值时启动控制器IC 31的正常运行。在本实例中,欠电压闭锁断开阈值为8伏。如果VDD降低到或低于断开阈值,则调节器和欠电压闭锁电路(UVLO)61停止切换控制器IC 31,并且电荷通过起动电阻器49流到电力电容器(C1)50,直到再次达到19伏的欠电压闭锁接通阈值。
在步骤80中,控制器IC 31利用反馈信号42产生电感器开关控制信号84。控制器IC 31还利用开关信号(ISW)44产生电感器开关控制信号84。控制器IC 31通过电源端子38和电源焊盘(VDD)35从初级侧整流器(D2)48接收反馈信号42。控制器IC 31的限流器57从开关焊盘36接收开关信号(ISW)44,以指示流经初级电感器33的电感器电流85的大小。当达到预定峰值电流限值时,限流器57断开主电源开关60。开关信号44是通过IC封装32的开关端子(SW)39从外部NPN双极晶体管34的发射极获得。通过初级电感器33斜坡上升的电感器电流85流经NPN双极晶体管34、开关端子39和开关焊盘36。
在步骤81中,电感器开关控制信号84被断言(asserted),以闭合主电源开关60并接通电感器开关34。然后,电感器电流85开始通过初级电感器33斜坡上升。电感器开关控制信号84具有频率(fOSC)和脉冲宽度,并且控制电感器电流85所流经的主电源开关60的门极。门极驱动器59使用“N沟道导通”(NCHON)信号87产生电感器开关控制信号84。门极驱动器59是相对高速度的MOSFET门极驱动器。除主电源开关60外,电感器开关控制信号84还被较小尺寸的内部MOSFET 88接收到。较小的内部MOSFET 88和电阻器89形成电流检测电路。所检测的电流经电流检测放大器66放大,并被转换成电压信号90。误差比较器64将电压信号90与PWM误差放大器63的输出相比较。
PWM逻辑58利用来自限流器57的限流信号91、来自振荡器56的开关频率信号92和来自误差比较器64的脉冲宽度信号93,产生N沟道导通信号87。开关频率信号92提供电感器开关控制信号84的脉冲的频率,并且脉冲宽度信号93提供电感器开关控制信号84的脉冲宽度的持续时间。限流器57利用开关信号(ISW)44和内部产生的固定参考电压,产生限流信号91。
除限制峰值输入电流外,反激式转换器30还通过以下两种工作模式输出恒定电流和恒定电压:恒流模式和恒压模式。在恒流模式中,限流器57控制电感器开关控制信号84的脉冲宽度,以使电感器电流85停止通过初级电感器33增大时的时间(T2)对应于开关信号(ISW)44达到峰值电流限值时的时间。
在步骤82中,反激式转换器30利用当电感器开关34断开时来自反馈信号42的信息,调整电感器开关控制信号84的频率(fOSC),以使输出电流(IOUT)保持恒定。在恒流模式中,电感器电流85的峰值(IP)总是达到其限值,并且通过调节峰值电流的脉冲通过初级电感器33斜坡上升时的频率,调整输出电流(IOUT)。振荡器56所输出的开关频率信号92控制电感器开关控制信号84的频率(fOSC),以在被充电装置所接收到的输出电压(VOUT)升高时使输出电流(IOUT)保持恒定。
在步骤83中,反激式转换器30利用当电感器开关34断开时来自反馈信号42的信息,调整电感器开关控制信号84的脉冲宽度,以使输出电压(VOUT)保持恒定。当在初级侧峰值电流低于预定峰值电流限值情况下可满足负载电流时,反激式转换器30进入恒压模式。在电感器电流85低于峰值电流限值时的恒压模式中,误差比较器64所输出的脉冲宽度信号93控制电感器开关控制信号84的脉冲宽度,以使电感器电流85的每一脉冲的峰值保持恒定输出电压(VOUT)。
图6显示反激式转换器30的各个节点上的理想化波形。这些波形图解说明在图5所示的方法期间反激式转换器30的操作。主电源开关60在T0接通,在T2断开,并在T4再次接通。T0和T1之间的时间代表从主电源开关60接通时到电感器开关34接通从而允许电感器电流85(ILP)开始斜坡上升时的延迟。因此,T1与T5之间的时间是开关周期。电感器开关34还表现出从T2时刻到T2′时刻的断开延迟。T1与T2′之间的时间是斜坡上升时间。T2′与T4之间的时间是主电源开关60断开期间的时间。图6图解说明使用当主电源开关60断开时从反馈信号42接收的信息来调节输出电流(IOUT)和输出电压(VOUT)。在恒流模式中,限流器57控制电感器开关控制信号84的脉冲宽度,以使电感器电流85停止通过初级电感器33增大时的时间T2′对应于开关信号(ISW)44达到预设峰值电流限值时的时间。
电流波形IS显示流过次级绕组54的电流到T3时刻放电到零。图6图解说明反激式转换器30以断续导通模式(DCM)工作,因为在电流IS停止流过次级绕组54的T3时刻与电感器电流(ILP)85接着开始通过初级电感器33斜坡上升的T5时刻之间存在间隙。
反馈信号42提供对于次级绕组54的输出电压(VOUT)的指示。该输出电压(VOUT)指示用于调整输出电压(VOUT)和输出电流(IOUT)二者。如图3所示,变压器45初级侧上的控制器IC 31的电源焊盘(VDD)35接收对于次级绕组54的输出电压(VOUT)的指示。电源焊盘35上的反馈信号42是通过经初级侧整流器(D2)48传递辅助绕组55的带点端上的电压(VAUX)86而获得。
如图4所示,通过经补偿二极管67和分压器68传递电源焊盘(VDD)35上所存在的反馈信号42,产生控制器IC 31的节点94上的反馈电压(VFB)。然后,当主电源开关60断开并且电感器开关34断开时,对反馈电压(VFB)进行取样。当电感器开关控制信号84被解除断言(deasserted)并且断开主电源开关60时,取样器开关信号95被断言并且同时闭合第一开关(SW1)71和第二开关(SW2)72。然后,当电感器开关控制信号84被断言时,取样器开关信号95打开第二开关(SW2),并对反馈电压(VFB)进行取样。当电感器开关控制信号84被断言并且主电源开关60接通时,取样器开关信号95也打开第一开关(SW1)71。打开第一开关(SW1)71主要是为了减少在起动阶段所需的电流大小。
当主电源开关60接通并且第一开关(SW1)71打开时,电压(VAUX)86变为负值,如图6所示。然而,初级侧整流器(D2)48阻止电源焊盘(VDD)35上所存在的反馈信号42的电压变为负值。当主电源开关60接通时,控制器IC31由电力电容器(C1)50上的电荷供电。图6显示当主电源开关60接通时电力电容器(C1)50上的电荷作为反馈信号42的电压(VDD)。为便于图解说明,图6以夸张的方式显示了当主电源开关60接通时,电力电容器(C1)50上的电压(VDD)随着控制器IC 31消耗电力而降低。接着,在T2时刻,当取样器开关信号95闭合第一开关(SW1)71和第二开关(SW2)72时,刷新电力电容器(C1)50上的电压(VDD)。
取样反馈电压(VFBS)由取样电容器(C2)70来保持。取样反馈电压(VFBS)与输出电压(VOUT)之间的关系按下述方式进行确定。当电感器开关34刚刚断开并且能量正向次级绕组54传递时,辅助绕组55两端的电压(VAUX)86等于
电源焊盘(VDD)35上所存在的反馈信号42的电压(VDD)等于电压(VAUX)86减去初级侧整流器(D2)48两端的电压降(VD2)。因此,VDD+VD2=(VOUT+VD1)Na/Ns。因而反馈信号42的电压可表示为
第二项是“误差项”,其可通过以下方式得到最小化:选取初级侧整流器(D2)48以使其电压降等于匝数比Na/Ns乘以次级侧整流器(D1)46的电压降。或者,可使用串联的多个初级侧整流二极管来补偿次级侧整流器(D1)46的电压降。例如,当次级侧整流器(D1)46是电压降约为0.4伏的肖特基二极管且匝数比Na/Ns为3∶1时,可使用电压降分别约为0.65伏的两个4148型二极管串联作为初级侧整流器。“误差”项由此将减小到0.1伏(3·0.4V-2·0.65V)。
应选取初级侧整流器(D2)48,使其击穿电压大于电源焊盘(VDD)35上的最大正电压(VDD)与峰值负电压(VAUX)86之和。例如,当初级电感器33所接收的输入线电压的峰值约为400伏并且匝数比Np/Na为4∶1时,峰值负电压(VAUX)86将为约-100伏。当补偿二极管67和分压器68两端的电压降已被选取成在电源焊盘(VDD)35上获得约为15伏的电压(VDD)并且最大正电压(VDD)略大于钳位电压时,初级侧整流器(D2)48应被选取成具有大于120伏[20V-(-100V)]的击穿电压。当欠电压闭锁接通阈值为19伏时,电源电压钳位器69的钳位电压必须至少为20伏,以便获得足以接通控制器IC 31的电压电平。
在图3所示的实施例中,控制器IC 31内的补偿整流二极管(D3)67也用于使方程式97的“误差”项最小化。电源焊盘(VDD)35上所存在的反馈信号42的电压(VDD)也可表示为
其中VFBS是控制器IC 31的节点99上的取样反馈电压。将方程式97和98相结合并求解VOUT会得到
现在,可通过使初级侧整流器(D2)48和补偿整流二极管(D3)67两端的组合电压降等于匝数比Na/Ns乘以次级侧整流器(D1)46的电压降,将“误差”项最小化。通过选取恰当规格的二极管48和67以消除方程式100中的“误差”项,可按照以下关系式,基于取样反馈电压(VFBS)来调整输出电压(VOUT):
参考电压产生器62将调节器和欠电压闭锁电路(UVLO)61的输出转换成参考电压VREF。然后,将参考电压VREF与由软线修正电路73产生的软线修正信号102的软线修正电压(VCORD)相加。然后,通过PWM误差放大器63对参考电压VREF与软线修正电压(VCORD)之和与取样反馈电压(VFBS)相比较。PWM误差放大器63输出误差信号103。PWM误差放大器63的内部补偿网络由电阻器104和电容器105及106形成。误差比较器64接收误差信号103和电压信号90,并输出脉冲宽度信号93。PWM逻辑58接收脉冲宽度信号93,并使用其来调整N沟道导通信号87的脉冲宽度。因此,误差比较器64在反激式转换器30的恒压模式中用作脉宽调制比较器。当在恒压模式中电感器电流85低于峰值电流限值时,控制器IC 31的负反馈回路将取样反馈电压(VFBS)调节到参考电压VREF与软线修正电压(VCORD)之和。误差比较器64输出的脉冲宽度信号93控制电感器开关控制信号84的脉冲宽度,以按照下式产生输出电压(VOUT):
在恒流模式中,控制器IC 31还利用来自节点94上的反馈电压(VFB)的信息来调整峰值电流脉冲通过初级电感器33斜坡上升时的频率。振荡器56输出的开关频率信号92控制电感器开关控制信号84的频率(fOSC),以使输出电流(IOUT)保持恒定。输出电流(IOUT)取决于开关频率(fOSC)和输出电压(VOUT)二者,因为反激式转换器30在断续导通模式(DCM)中的输出功率一般依照下式只取决于初级电感器33所存储的能量:
POUT=(VOUT)·IOUT=1/2·IP 2·LP·fOSC·η (108)
其中LP是初级绕组33的电感,IP是流过初级电感器33的峰值电流,η是效率。在恒流模式中,峰值电流(IP)总是达到其限值,并且因此保持恒定。因此,反激式转换器30的电流输出(IOUT)作为开关频率(fOSC)和输出电压(VOUT)的函数被表示为:
当峰值电流(IP)达到其限值时,输出电压(VOUT)降低并且反激式转换器30进入恒流模式。方程式109显示当流过初级电感器33的峰值电流(IP)处于其限值时,为保持恒定的输出电流(IOUT),必须与输出电压降(VOUT)成比例地调整开关频率(fOSC)。
振荡器56通过频率调制器(FMOD)65从电感器开关34断开时的反馈电压(VFB)获得关于输出电压(VOUT)的信息。在恒流模式中当被充电装置所接收的输出电压(VOUT)增大时,振荡器56输出开关频率信号92,以控制电感器开关控制信号84的开关频率(fOSC),使得开关频率(fOSC)与输出电压(VOUT)成比例地增大。因此,为在输出电压(VOUT)增大时保持恒定的输出电流(IOUT),控制器IC 31将增大开关频率(fOSC)。
软线修正电路73接收已过滤的误差信号103,并产生软线修正信号102,软线修正信号102的电压与误差信号103的电压成比例。软线修正信号102用于调整参考电压(VREF)的电压,以补偿由反激式转换器30的充电软线的串联电阻所引起的输出电压损失。软线电阻补偿能在用于将反激式转换器30连接到要被充电或供电的装置(例如移动电话或便携式媒体播放器)的软线的末端提供相当精确的恒定电压。输出电压之所以出现损失,是因为软线的有限串联电阻乘以电源的输出电流将使负载点处的电压出现I·R电压降。初级侧受控的反激式电源转换器30依靠从次级绕组54向辅助绕组55反射的变压器45两端的反馈电压来调节输出电压(VOUT),但该反射电压不包括由有限软线电阻引起的I·R电压降误差。在恒压运行模式中,误差放大器63的输出与反激式转换器30的输出电流成比例。因此,使用误差信号103产生软线修正信号102,软线修正信号102的电压与输出电流成比例并且该信号被施加到误差放大器63的参考电压输入上以补偿软线电阻。
图7是波形图,其显示当反激式转换器30对装置进行充电时,在多个开关周期(周期编号3-11)中的初级电感器电流(ILP)85、流过次级绕组54的电流(IS)和反馈信号(VDD)42。这些波形图解说明反激式转换器30在图5所示方法的步骤82中如何调整开关频率(fOSC)以保持恒定的输出电流(IOUT)。当在恒流模式中反激式转换器30对装置进行充电并且输出电压(VOUT)增大时,增大开关频率(fOSC)来使输出电流(IOUT)保持恒定。图7图解说明在反馈信号42的电压(VDD)较低时的开关周期A长于在反馈信号42的电压(VDD)较高时的开关周期B。较短的开关周期B对应于较高的开关频率(fOSC)。
图7中的波形还图解说明反激式转换器30在图5所示方法的步骤83中如何调整电感器开关控制信号84的脉冲宽度以保持恒定的输出电压(VOUT)。在恒压模式中,控制器IC 31控制电感器开关控制信号84的脉冲宽度,以使电感器电流85的每一脉冲的峰值保持恒定的输出电压(VOUT)。当被充电的装置接近完全充电状态时,输出电压(VOUT)接近预定的最大输出电压。图7图解说明脉冲宽度D短于脉冲宽度C,目的是在反馈信号42的电压(VDD)达到预定限值时减小通过初级电感器33的峰值电流并进而减小输出电压(VOUT)。控制器IC 31的负反馈回路控制电感器开关控制信号84的脉冲宽度,以使取样反馈电压(VFBS)等于参考电压VREF与软线修正电压(VCORD)之和。
图8是在恒流模式和恒压模式中反激式转换器30输出的峰值电流随时间变化的图。每一峰值代表在一个开关周期中由反激式转换器30输出的电流。开关周期编号3-11对应于图7中相同编号的开关周期。在对移动电话的电池进行充电的例子中,充电在周期#1中以恒流模式开始,并在周期#9中进入恒压模式。当移动电话的电池进行充电及移动电话电池的负载减小时,反激式转换器30在周期#17中减小峰值电流,以保持恒定的电压。
图9是反激式转换器30的输出电压与输出电流的关系图。沿该曲线的编号对应于图8中各周期的峰值电流。正常充电过程开始于点#1并进行到点#17。当输出电压降到由虚线表示的故障阈值以下时,会出现故障状态。当输出电压降到故障阈值以下时,电源焊盘(VDD)35上所存在的电压(VDD)降到欠电压闭锁断开阈值以下,并且开关操作停止。输入电压对电源焊盘(VDD)35上所存在的电压(VDD)进行再充电,直到VDD达到接通阈值、开关操作重新开始且反激式转换器30重新尝试对电池充电为止。
图10更详细地显示控制器IC 31的振荡器56。振荡器56由调节器61所产生的5伏的电源信号进行供电。振荡器56包括电压比较器110、两个电流源111和112、和振荡器电容器COSC 113。振荡器电容器COSC 113由电流源111所产生的充电电流IOSC进行充电。在本实施例中,振荡器电容器COSC 113通过电流源112以四倍于充电电流大小的放电电流进行放电。由于当放电电流源112接通时充电电流源111不断开,因而放电电流三倍于充电电流的大小,如图11所示。振荡器56可被建模为内部RC振荡器,该内部RC振荡器产生开关频率信号92的频率fOSC,频率fOSC取决于振荡器电容器的电容COSC和振荡器电阻ROSC。振荡器电阻可表示为ROSC=VFB/IOSC。当主电源开关60断开时FMOD 65用与反馈信号42的电压成比例的一个电压产生偏流。电流源111接收该偏流,并由此根据反激式转换器30的输出电压(VOUT)来调整振荡器频率(fOSC)。
图12更详细地显示控制器IC 31的限流器57。限流器57包括偏流源114、比较器115和复制电阻器(RREPLICA)116。复制电阻器(RREPLICA)116复制主电源开关60的漏极-源极电阻(RDSON)。偏流源114利用复制电阻器116在比较器115的非反相输入引线上产生对应于参考电流(IREF)的电压。比较器115然后将开关信号(ISW)44的电压与偏流源114所产生的对应于参考电流(IREF)的电压相比较。当开关信号(ISW)44超过由RREPLICA·IREF所产生的比较器阈值时,比较器115的输出变低,并且主电源开关60断开。在恒流模式中,限流器57控制开关断开,而在恒压模式中,误差比较器64控制开关断开。
图13显示反激式转换器117的另一实施例,反激式转换器117具有封装在只具有三个端子的集成电路封装119中的控制器集成电路(IC)118。在反激式转换器30的实施例中,电源焊盘35既用于为控制器IC 31供电,也用于接收关于输出电压VOUT的指示。然而,在反激式转换器117的实施例中,具有多种用途的是开关焊盘36:既用于接收关于输出电压VOUT的指示,也用于接收关于流经初级电感器33的电感器电流85的指示。
反激式转换器117具有第二辅助绕组120,用于使得开关焊盘36能够用于接收关于输出电压VOUT的指示。当电感器电流85通过初级电感器33斜坡上升并且随后停止流动时,能量同时传递到第一辅助绕组55和第二辅助绕组120。在第一辅助绕组55的带点端上产生电压(VAUX1)86,在第二辅助绕组120的带点端上则产生电压(VAUX2)121。第一辅助绕组55具有NA1匝,第二辅助绕组120则具有NA2匝。为确保在电感器开关控制信号84被解除断言并且主电源开关60断开时外部NPN双极晶体管34保持关断,第二辅助绕组120的匝数NA2被制作得大于第一辅助绕组55的匝数NA1。使NA2大于NA1能确保当主电源开关60断开时电感器开关34的发射极上的电压(VAUX2)121大于由电压(VAUX1)86产生的电感器开关34的基极上的电压。
当第一辅助电感器55与初级绕组33和次级绕组54磁耦合时,从第一辅助电感器55两端的电压(VAUX)86导出辅助电压信号122。辅助电压信号122的波形与反激式转换器30的实施例中反馈信号42的波形基本相同,只是辅助电压信号122不用于向控制器IC 118提供反馈信息。第二辅助绕组120的带点端通过第二初级侧整流器123(D4)同时耦接到电感器开关34的发射极和开关端子39。当电感器开关34接通并且第二辅助绕组120的带点端上的电压为负值时,第二初级侧整流器123(D4)承受反向偏压并且在开关端子39上接收的开关信号(VSW)124对应于反激式转换器30的实施例中的开关信号(ISW)44。当电感器开关34断开时,在开关端子39上接收的开关信号(VSW)124跟随由第二辅助绕组120所产生的电压(VAUX2)121。
如在反激式转换器30的实施例中一样,电源焊盘(VDD)35上存在的辅助电压信号122等于电压(VAUX1)86减去初级侧整流器(D2)48两端的电压降(VD2)。因此,VDD+VD2=(VOUT+VD1)NA1/Ns,并且辅助电压信号122的电压按下式提供关于反激式转换器117的输出电压(VOUT)的指示
但是尽管辅助电压信号122提供关于输出电压(VOUT)的指示,辅助电压信号122在图13所示实施例中只用于为控制器IC 118供电和产生参考电压。
当主电源开关60断开时,电感器开关34断开,并且在次级绕组54中在T3时刻电流刚好完成斜坡下降到零之后,开关信号124类似地按下式提供反激式转换器117的输出电压(VOUT)的指示
图14是控制器IC 118的更详细的示意图。控制器IC 118类似于控制器IC 31,只是控制器IC 118包括前置放大器127、反馈取样器128和或非门129。此外,补偿二极管67和分压器68连接到开关焊盘(SW)36而不是连接到电源焊盘(VDD)35。
控制器IC 118内的补偿整流二极管(D3)67用于使方程式126的“误差”项最小化。开关焊盘36上的开关信号124的电压(VSW)也可根据节点130上的反馈电压(VFB)表示为
将方程式126和131相结合并求解VOUT会得到
通过使第二初级侧整流器123(D4)和补偿整流二极管(D3)67二者两端的组合电压降等于匝数比NA2/NS乘以次级侧整流器(D1)46的电压降,可使“误差”项最小化。通过选取恰当规格的二极管123和67以消除方程式132中的“误差”项,可按以下关系式,基于节点130上的反馈电压(VFB)来调整输出电压(VOUT)
然而,不同于反激式转换器30的实施例,当在电感器开关34断开时,并非在可对反馈电压(VFB)取样时总能使“误差”项一致性地达到最小化。在反激式转换器117的实施例中,由于开关焊盘36耦接到第二辅助绕组120,因而在电感器开关34断开时,电流流经补偿二极管67和分压器68。补偿整流二极管(D3)67两端的电压降是由电流决定的。相比之下,在反激式转换器30的实施例中,则在电流开始流经辅助绕组55之前,在T4时刻对取样反馈电压(VFBS)进行取样。因此,在反激式转换器117的实施例中,在电流停止流经第二辅助绕组120时且在电压(VAUX2)121即将“自由振铃(free ringing)”之前,在T3时刻对反馈电压(VFB)进行取样。
反馈取样器128检测当电流停止流经第二辅助绕组120时电压(VAUX2)121开始振铃的时间。反馈取样器128的输出用作控制信号134,以在T3时刻在电压(VAUX2)121开始振铃时将补偿二极管67和分压器68从开关焊盘(SW)36断开,这是因为存在如下可能性:电压(VAUX2)121减去第二初级侧整流器123(D4)两端的电压降有可能降到电感器开关34的基极电压以下并接通开关34。当控制信号134被断言时,开关信号(VSW)124的电压升高到接近电源焊盘(VDD)35上的辅助电压信号(VDD)122。
当流经补偿二极管67的电流的量极微小并且已经选取恰当规格的二极管123和67来消除方程式132中的“误差”项时,节点130上的反馈电压(VFB)根据方程式133提供关于输出电压(VOUT)的指示。将节点130上的反馈电压(VFB)与参考电压VREF和软线修正电压(VCORD)之和相比较,以产生误差信号,该误差信号经前置放大器127放大、反馈取样器128取样并反馈到PWM误差放大器63。以与反激式转换器30类似的方式,控制器IC 117的负反馈回路将节点130上的反馈电压(VFB)调节到参考电压VREF与软线修正电压(VCORD)之和。在恒压模式中,通过调整电感器开关控制信号84的脉冲宽度来调节节点130上的反馈电压(VFB),以使输出电压(VOUT)保持恒定。
以与反激式转换器30类似的方式,也调节输出电流。如以上方程式109所示,反激式转换器117的输出电流(IOUT)与开关频率(fOSC)成正比、与输出电压(VOUT)成反比。在恒流模式中,当正对某一装置进行充电并且输出电压(VOUT)正在升高时,控制器IC 118以与VOUT的升高的速率相同的速率增大开关频率(fOSC),以保持恒定的输出电流(IOUT)。为调整开关频率(fOSC),振荡器56通过频率调制器(FMOD)65从T3时刻节点130上的反馈电压(VFB)获得关于输出电压(VOUT)的信息。
反激式转换器117还以与反激式转换器30所用的类似方式来调整峰值电流。控制器IC 118的限流器57从开关焊盘36接收开关信号(VSW)124,开关信号(VSW)124指示流经初级电感器33的电感器电流85的大小。当开关信号(ISW)44的电流超过预定峰值电流限值时,限流器57的比较器115便跳变并断开主电源开关60。
图15是流程图,其图解说明一种操作图13所示反激式转换器117的方法的步骤135-141。
在步骤135中,将第二辅助电感器120耦接到反激式转换器117的次级电感器54。
在步骤136中,从第二辅助绕组120两端的电压(VAUX2)121导出开关信号(VSW)124,并在开关焊盘36上接收该信号。
在步骤137中,控制器IC 118利用开关信号(VSW)124产生电感器开关控制信号84。
在步骤138中,利用电感器开关控制信号84接通和断开主电源开关60。
在步骤139中,控制器IC 118利用开关信号(VSW)124调整电感器开关控制信号84的脉冲宽度,以便不超过反激式转换器117的输出电流(IOUT)的预定电流限值。预定电流限值是根据被充电装置的要求加以规定。
在步骤140中,控制器IC 118利用开关信号(VSW)124调整电感器开关控制信号84的频率(fOSC),以使反激式转换器117的输出电流(IOUT)在恒流模式中保持恒定。
在步骤141中,控制器IC 118利用开关信号(VSW)124调整电感器开关控制信号84的脉冲宽度,以使反激式转换器117的输出电压(VOUT)在恒压模式中保持恒定。
图16显示反激式转换器117的各个节点上的理想化波形。这些波形显示在图15的方法过程中反激式转换器117的操作。主电源开关60在T0接通,在T2断开,并在T4再次接通。T0和T1之间的时间代表从主电源开关60接通时到电感器开关34接通从而允许电感器电流85(ILP)开始斜坡上升时的延迟。T1与T2′之间的时间是斜坡上升时间。T2′与T4之间的时间是主电源开关60断开期间的时间。图16图解说明使用当主电源开关60断开时从开关信号(VSW)124接收的信息来调节输出电流(IOUT)和输出电压(VOUT)。限流器57控制电感器开关控制信号84的脉冲宽度,以使电感器电流85停止通过初级电感器33增大时的时间T2对应于开关信号(VSW)124达到预设峰值电流限值时的时间。
电流波形IS显示流过次级绕组54的电流到T3时刻放电到零。在电流IS停止流经次级绕组54的T3时刻,开关信号(VSW)124提供次级绕组54的输出电压(VOUT)的指示。该输出电压(VOUT)指示用于在负载需要输出电流高于恒定电流限值时调节输出电流(IOUT)和在输出电流低于恒定电流限值时调节输出电压(VOUT)。
图17显示反激式转换器142的又一实施例,反激式转换器142具有封装在只具有三个端子的集成电路封装119中的控制器集成电路(IC)118。反激式转换器142只具有三个电感器,而没有第二辅助电感器。图17的实施例类似于图13的实施例,只是开关端子39通过第二初级侧整流器123(D4)耦接到第一辅助电感器55而不是第二辅助电感器。在图17的实施例中,电感器开关34的发射极上的电压(VAUX2)121等同于第一辅助电感器55两端的电压(VAUX)86。
尽管出于说明目的,上文结合某些具体实施例来说明本发明,然而本发明并不仅限于此。尽管上文将脉宽调制(PWM)逻辑45描述为采用脉宽调制来产生NCHON信号87和电感器开关控制信号84,然而也可使用变频调制来替代固定频率PWM。在替代实施例中,使用变频脉冲频率调制(PFM)来产生NCHON信号87和电感器开关控制信号84。相应地,可在不脱离权利要求所述本发明范围的条件下对所述实施例的各种特征实施各种修改、改动和组合。