CN101604069B - Manufacturing process of three-layer continuous surface type MEMS deformable mirror based on bonding process - Google Patents
Manufacturing process of three-layer continuous surface type MEMS deformable mirror based on bonding process Download PDFInfo
- Publication number
- CN101604069B CN101604069B CN2009100892559A CN200910089255A CN101604069B CN 101604069 B CN101604069 B CN 101604069B CN 2009100892559 A CN2009100892559 A CN 2009100892559A CN 200910089255 A CN200910089255 A CN 200910089255A CN 101604069 B CN101604069 B CN 101604069B
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- etching
- silicon nitride
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 52
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 52
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000010703 silicon Substances 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000001312 dry etching Methods 0.000 claims abstract description 25
- 238000001039 wet etching Methods 0.000 claims abstract description 19
- 239000011521 glass Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 74
- 239000000377 silicon dioxide Substances 0.000 claims description 37
- 235000012239 silicon dioxide Nutrition 0.000 claims description 36
- 238000005530 etching Methods 0.000 claims description 29
- 230000000694 effects Effects 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims description 2
- 238000001459 lithography Methods 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 238000001259 photo etching Methods 0.000 claims 4
- 238000005459 micromachining Methods 0.000 abstract description 8
- 230000003044 adaptive effect Effects 0.000 abstract description 5
- 238000000151 deposition Methods 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 238000006073 displacement reaction Methods 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract description 2
- 238000004891 communication Methods 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000003754 machining Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 26
- 238000000206 photolithography Methods 0.000 description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
Description
技术领域 technical field
本发明涉及微光机电系统技术领域,特别涉及一种适用于自适应光学系统的基于键合工艺的三层连续面型MEMS变形镜的制作工艺。The invention relates to the technical field of micro-opto-electromechanical systems, in particular to a manufacturing process of a three-layer continuous surface MEMS deformable mirror based on a bonding process suitable for an adaptive optical system.
背景技术 Background technique
在自适应光学领域,静电驱动的MEMS变形镜具有体积小,功耗低,响应速度快,可批量生产,与集成电路兼容性好等优点,因而在自适应光学系统中备受青睐。现有的静电驱动MEMS变形镜一般都是采用表面微加工技术进行加工,加工难度较大;且要得到大的行程,例如大于4微米的行程,由于静电拉入效应的影响,驱动器的行程不能超过初始极板间距的三分之一,就需要牺牲层的厚度大于10微米,加工难度更大。通过采用基于键合工艺的三层连续面型MEMS变形镜的制作工艺,使得加工连续面型的变形镜的难度降低,容易加工出大行程的变形镜,而且本工艺在上下极板之间加入了一层氮化硅薄膜,避免了静电拉入对器件短路的损害,而且由于是连续型,填充因子接近100%。In the field of adaptive optics, electrostatically driven MEMS deformable mirrors have the advantages of small size, low power consumption, fast response, mass production, and good compatibility with integrated circuits, so they are favored in adaptive optics systems. The existing electrostatically driven MEMS deformable mirrors are generally processed by surface micromachining technology, which is difficult to process; and to obtain a large stroke, such as a stroke greater than 4 microns, due to the influence of the electrostatic pull-in effect, the stroke of the driver cannot If it exceeds one-third of the initial plate spacing, the thickness of the sacrificial layer needs to be greater than 10 microns, and the processing is more difficult. By adopting the manufacturing process of the three-layer continuous surface MEMS deformable mirror based on the bonding process, the difficulty of processing the continuous surface deformable mirror is reduced, and it is easy to process the deformable mirror with a large stroke. A layer of silicon nitride film is used to avoid the short circuit damage of the device due to electrostatic pull-in, and because it is continuous, the fill factor is close to 100%.
发明内容 Contents of the invention
本发明要解决的技术问题是:针对现有技术的不足,设计了一种基于键合工艺的三层连续面型MEMS变形镜的制作工艺,加工过程相对简单,也易于加工大行程连续面型变形镜,填充因子可以达到接近100%。The technical problem to be solved by the present invention is: Aiming at the deficiencies of the prior art, a manufacturing process of a three-layer continuous surface MEMS deformable mirror based on a bonding process is designed, the processing process is relatively simple, and it is also easy to process a large-stroke continuous surface shape For deformable mirrors, the fill factor can reach close to 100%.
本发明解决其技术问题所采用的技术方案是:一种基于键合工艺的三层连续面型MEMS变形镜的制作工艺,将体硅加工工艺和表面微加工工艺相结合,即将体硅工艺加工出的上面两层与用表面工艺加工出的下电极结构层相键合,从而得到三层微机械结构。The technical solution adopted by the present invention to solve the technical problem is: a manufacturing process of a three-layer continuous surface MEMS deformable mirror based on a bonding process, which combines the bulk silicon processing technology with the surface micro-machining process, that is, the bulk silicon process. The upper two layers are bonded with the lower electrode structure layer processed by surface technology, so as to obtain a three-layer micro-mechanical structure.
具体由以下工艺流程构成:Specifically, it consists of the following process flow:
(1)取一块玻璃或硅片作为基底;(1) Take a piece of glass or silicon wafer as the substrate;
(2)光刻并刻蚀,在基底上形成0.3~2.0微米深的槽;(2) Photolithography and etching to form grooves with a depth of 0.3 to 2.0 microns on the substrate;
(3)沉积0.3~2.0微米厚的多晶硅或非晶硅或金属薄膜,然后光刻并刻蚀,刻蚀深度等于这层薄膜的厚度,形成变形镜的下电极和引线;(3) Deposit 0.3-2.0 micron thick polysilicon or amorphous silicon or metal film, then photolithography and etching, the etching depth is equal to the thickness of this layer of film, forming the lower electrode and lead of the deformable mirror;
(4)沉积厚度为0.1~1.0微米的氮化硅薄膜,然后光刻并刻蚀,刻蚀深度等于这层薄膜的厚度,使得氮化硅或二氧化硅层将下电极覆盖,从而避免静电拉入效应对器件造成短路的损害;(4) Deposit a silicon nitride film with a thickness of 0.1 to 1.0 microns, and then photolithography and etch. The etching depth is equal to the thickness of this film, so that the silicon nitride or silicon dioxide layer covers the lower electrode, thereby avoiding static electricity. The pull-in effect causes short-circuit damage to the device;
(5)取一块SOI晶片,晶片的硅结构层厚度是0.3~20.0微米,氧化层厚度是0.3~10微米,基底厚度为300~1000微米,或者在厚300~1000微米的普通硅片的上表面热氧化一层厚0.3~10微米的氧化层,然后在氧化层上表面键合一块硅片并将这块硅片用机械或化学的方法减薄到0.3~20微米厚并将其磨平;(5) Take an SOI wafer, the thickness of the silicon structure layer of the wafer is 0.3-20.0 microns, the thickness of the oxide layer is 0.3-10 microns, the thickness of the base is 300-1000 microns, or on an ordinary silicon wafer with a thickness of 300-1000 microns The surface is thermally oxidized with an oxide layer with a thickness of 0.3-10 microns, and then a silicon wafer is bonded on the surface of the oxide layer, and the silicon wafer is thinned to a thickness of 0.3-20 microns by mechanical or chemical methods and ground flat ;
(6)对步骤(5)得到的晶片上下表面都沉积两层二氧化硅和两层氮化硅,顺序是二氧化硅→氮化硅→二氧化硅→氮化硅,为后续的湿法刻蚀或干法刻蚀做准备;(6) Deposit two layers of silicon dioxide and two layers of silicon nitride on the upper and lower surfaces of the wafer obtained in step (5), the order is silicon dioxide→silicon nitride→silicon dioxide→silicon nitride, which is the subsequent wet method Preparation for etching or dry etching;
(7)对步骤(6)得到的结构下表面进行两次光刻和刻蚀,形成台阶状的结构,为后续的湿法刻蚀做准备;(7) Perform photolithography and etching twice on the lower surface of the structure obtained in step (6) to form a stepped structure for subsequent wet etching;
(8)以步骤(7)得到的台阶状的氮化硅和二氧化硅为掩膜进行湿法或干法刻蚀硅基底,刻蚀至距离基底的上表面12~52微米处停止;(8) Perform wet or dry etching of the silicon substrate using the step-shaped silicon nitride and silicon dioxide obtained in step (7) as a mask, and stop the etching until it is 12 to 52 microns away from the upper surface of the substrate;
(9)然后湿法或干法刻蚀掉一层氮化硅和二氧化硅,以剩余的氮化硅和二氧化硅作掩膜进行湿法或干法刻蚀硅基底,深度为10~50微米;(9) Then wet or dry etch away one layer of silicon nitride and silicon dioxide, and use the remaining silicon nitride and silicon dioxide as a mask to wet or dry etch the silicon substrate, with a depth of 10 ~ 50 microns;
(10)将上下表面剩余的二氧化硅和氮化硅用湿法或干法刻蚀除掉;(10) The remaining silicon dioxide and silicon nitride on the upper and lower surfaces are removed by wet or dry etching;
(11)将步骤(3)中得到的结构的上表面和步骤(10)中得到的结构的下表面进行熔融键合或阳极键合或低温键合;(11) performing fusion bonding or anodic bonding or low-temperature bonding on the upper surface of the structure obtained in step (3) and the lower surface of the structure obtained in step (10);
(12)对步骤(10)中得到的结构的上表面进行光刻并刻蚀,形成释放孔,然后将释放孔下面的氧化层释放,只保留将第一层和第二层连接的连接体。(12) Photolithography and etching are performed on the upper surface of the structure obtained in step (10) to form a release hole, and then the oxide layer below the release hole is released, leaving only the connector connecting the first layer and the second layer .
本发明与现有技术相比的优点在于:本发明主要在SOI晶片上表面进行干法刻蚀出释放孔,将部分氧化层释放,下表面湿法刻蚀并在另一块晶片上加工出电极结构并将两片晶片进行键合,将体硅加工和表面微加工结合在一起,用体硅加工上面两层然后键合下面表面微加工出的下电极得到三层机械结构,解决了传统连续表面微机械变形镜通过三层表面微加工加工难度大的缺点,而且加工出的变形镜上下极板间距可以做到超过20微米,可得到大的离面位移,还通过加入氮化硅绝缘层消除静电拉入的影响,可广泛适用于自适应光学领域。Compared with the prior art, the present invention has the advantages that: the present invention mainly performs dry etching on the upper surface of the SOI wafer to form release holes, releases part of the oxide layer, and wet-etches the lower surface to process electrodes on another wafer. Structure and bond two wafers, combine bulk silicon processing and surface micromachining together, use bulk silicon to process the upper two layers and then bond the lower electrode made by micromachining the lower surface to obtain a three-layer mechanical structure, which solves the traditional continuous The surface micromechanical deformable mirror has the disadvantage that it is difficult to process the three-layer surface micromachining, and the distance between the upper and lower plates of the processed deformable mirror can be more than 20 microns, which can obtain a large out-of-plane displacement, and also by adding a silicon nitride insulating layer Eliminates the effect of electrostatic pull-in, and can be widely used in the field of adaptive optics.
附图说明 Description of drawings
图1为本发明方法的实现流程图;Fig. 1 is the realization flowchart of the inventive method;
图2为本发明中的玻璃或硅基底立体图;Fig. 2 is a perspective view of a glass or silicon substrate in the present invention;
图3为本发明中在基底刻蚀槽之后的立体图;Fig. 3 is the perspective view after substrate etch groove among the present invention;
图4为本发明中在上面沉积金属或多晶硅或非晶硅并刻蚀后的结构图;Fig. 4 is the structural diagram after depositing metal or polysilicon or amorphous silicon and etching in the present invention;
图5为本发明中在上面沉积氮化硅并刻蚀后的结构图;Fig. 5 is the structural diagram after depositing silicon nitride on it and etching in the present invention;
图6为本发明中另一块SOI晶片或者用普通硅片上表面热氧化一层氧化层,然后在氧化层上表面键合一块硅片并将这块硅片用机械或化学的方法减薄并将其磨平;Fig. 6 is another piece of SOI wafer among the present invention or uses the thermal oxidation layer oxide layer on the upper surface of common silicon wafer, then bonds a piece of silicon wafer on the upper surface of oxide layer and this piece of silicon wafer is thinned with mechanical or chemical method and smooth it out;
图7为对图6得到的晶片上下表面都沉积2层二氧化硅和两层氮化硅的仰视图;Fig. 7 is the bottom view of all depositing 2 layers of silicon dioxide and two layers of silicon nitride on the upper and lower surfaces of the wafer obtained in Fig. 6;
图8为本发明中加工湿法或干法刻蚀的掩膜的仰视结构示意图;FIG. 8 is a schematic bottom view of a mask for processing wet or dry etching in the present invention;
图9为本发明中进行一次湿法或干法刻蚀,刻蚀到距离基底的上表面12~52微米处停止仰视结构图;Fig. 9 is a bottom-view structural view of the present invention, where wet or dry etching is performed once, and the etching stops at a distance of 12 to 52 microns from the upper surface of the substrate;
图10为本发明中用湿法或干法刻蚀掉一层氮化硅和二氧化硅,再进行一次湿法或干法刻蚀并刻蚀掉剩余的氮化硅和二氧化硅仰视结构图;Figure 10 is a bottom-view structure of silicon nitride and silicon dioxide etched away by a wet or dry method in the present invention, and then wet or dry etched again to etch away the remaining silicon nitride and silicon dioxide picture;
图11a为本发明中键合前上面的两层结构立体图;Figure 11a is a three-dimensional view of the upper two-layer structure before bonding in the present invention;
图11b为本发明中键合前下面一层结构的立体图;Figure 11b is a perspective view of the structure of the lower layer before bonding in the present invention;
图11c为本发明中键合后AA1的剖视图。Fig. 11c is a cross-sectional view of AA 1 after bonding in the present invention.
图中:1为第一个基底,2为电极引线,3为下电极,4为覆盖下电极的氮化硅,5为用作镜面的结构层,6为氧化层,7为第二基底,8为氮化硅,9为二氧化硅,10为刻蚀出图形用作湿法或干法刻蚀掩膜的氮化硅,11为湿法刻蚀出的上电极,12为键合时的连接体,13释放孔,14为薄板梁结构,15为连接镜面和驱动梁的连接体。In the figure: 1 is the first substrate, 2 is the electrode lead, 3 is the lower electrode, 4 is the silicon nitride covering the lower electrode, 5 is the structural layer used as a mirror, 6 is the oxide layer, 7 is the second substrate, 8 is silicon nitride, 9 is silicon dioxide, 10 is silicon nitride etched out to be used as a wet or dry etching mask, 11 is the upper electrode etched by wet method, and 12 is the bonding
具体实施例 specific embodiment
下面结合附图及具体实施方式详细介绍本发明。但以下的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,而且通过以下实施例本领域的技术人员即可以实现本发明权利要求的全部内容。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. But the following examples are only limited to explain the present invention, and the protection scope of the present invention should include the entire content of the claims, and those skilled in the art can realize the entire contents of the claims of the present invention through the following examples.
实施例1Example 1
以3×3单元三层连续面形微机械变形镜的制作过程为例,结合附图对本发明作具体描述,具体步骤如图1所示。Taking the manufacturing process of a 3×3 unit three-layer continuous surface-shaped micromechanical deformable mirror as an example, the present invention will be described in detail in conjunction with the accompanying drawings, and the specific steps are shown in Figure 1.
1.取一块500微米厚的5英寸Pyrex7740玻璃作为第一基底1,如图2所示。1. Take a piece of 5-inch Pyrex7740 glass with a thickness of 500 microns as the
2.用第一个掩膜版光刻并用缓冲氢氟酸湿法刻蚀出0.5微米深的槽,为沉积下电极做准备,如图3所示。2. Use the first mask for photolithography and wet etching with buffered hydrofluoric acid to form a 0.5 micron deep groove to prepare for the deposition of the lower electrode, as shown in Figure 3.
3.在玻璃基底上表面蒸镀0.5微米厚的金,然后光刻并干法刻蚀,刻蚀深度为0.5微米,形成变形镜的下电极3和引线2,如图4所示。3. Evaporate 0.5 micron-thick gold on the upper surface of the glass substrate, then photolithography and dry etching, the etching depth is 0.5 micron, to form the
4.用PECVD沉积厚度为0.5微米的氮化硅薄膜4,然后光刻并干法刻蚀,刻蚀深度等于这层薄膜的厚度,使得氮化硅将下电极覆盖,从而避免静电拉入效应对器件造成短路的损害,如图5所示。4. Deposit a
5.在厚400微米的4英寸N型(100)3级双面抛光麦克斯硅片作为第二基底7的上表面热氧化一层厚3微米的氧化层6,然后在氧化层上表面键合一块同样的硅片并将这块硅片用机械或化学的方法减薄到3微米厚并将其用CMP抛光作为镜面的结构层,如图6所示。5. In the 4 inch N-type (100) 3-level double-sided polished Max silicon wafer with a thickness of 400 microns, thermally oxidize the
6.将上一步得到的晶片上下表面都用PECVD沉积2层厚度都是300nm的二氧化硅9和两层氮化硅8,顺序是二氧化硅→氮化硅→二氧化硅→氮化硅,为后续的湿法刻蚀或基底做准备,如图7所示。6. Use PECVD to deposit two layers of silicon dioxide 9 and two layers of
7.对上一步得到的结构下表面进行两次光刻和两次干法刻蚀,形成台阶状的结构10,为后续的湿法刻蚀基底做准备,如图8所示。7. Perform two photolithography and two dry etching on the lower surface of the structure obtained in the previous step to form a
8.以上一步得到的台阶状的氮化硅和二氧化硅为掩膜用50%的氢氧化钾溶液湿法刻蚀硅基底,刻蚀至距离基底的上表面20微米处停止,形成上电极11,如图9所示8. The step-shaped silicon nitride and silicon dioxide obtained in the above step are used as a mask to wet-etch the silicon substrate with 50% potassium hydroxide solution, and the etching stops at a distance of 20 microns from the upper surface of the substrate to form the
9.然后干法刻蚀掉一层氮化硅和二氧化硅,以剩余的氮化硅和二氧化硅作掩膜用50%的氢氧化钾溶液湿法刻蚀硅基底,刻蚀深度为10微米,形成键合时的连接体12和驱动器薄膜14,如图10所示9. Then dry etch away one layer of silicon nitride and silicon dioxide, use the remaining silicon nitride and silicon dioxide as a mask to wet etch the silicon substrate with 50% potassium hydroxide solution, and the etching depth is 10 microns, the connecting
10.将步骤3中得到的结构的上表面和步骤9中得到结构的下表面进行阳极键合,条件是500V电压、一个标准大气压和300摄氏度,然后在上表面光刻并用SF6干法刻蚀释放孔13再用缓冲氢氟酸湿法刻蚀将释放孔下面的氧化层释放,只保留将第一层和第二层连接的连接体15,得到的结构如图11所示。10. Perform anodic bonding of the upper surface of the structure obtained in
实施例2Example 2
以7×7单元三层连续面形微机械变形镜的制作过程为例,结合附图对本发明作具体描述,具体步骤如图1所示。Taking the manufacturing process of a 7×7 unit three-layer continuous surface-shaped micromechanical deformable mirror as an example, the present invention will be described in detail in conjunction with the accompanying drawings, and the specific steps are shown in Figure 1.
1.取一块1000微米厚的5英寸康宁7070玻璃作为第一基底1,如图2所示。1. Take a piece of 5-inch Corning 7070 glass with a thickness of 1000 microns as the
2.用第一个掩膜版光刻并用缓冲氢氟酸湿法刻蚀出2微米深的槽,为铺设下电极做准备,如图3所示。2. Use the first mask to lithography and wet-etch a groove with a depth of 2 microns with buffered hydrofluoric acid to prepare for laying the lower electrode, as shown in Figure 3.
3.在基底上表面蒸镀2.0微米厚的金,然后光刻并干法刻蚀,刻蚀深度为2微米,形成变形镜的下电极3和引线2,如图4所示。3. Evaporate 2.0 micron-thick gold on the upper surface of the substrate, then photolithography and dry etching, the etching depth is 2 microns, to form the
4.用LPCVD沉积厚度为1微米的氮化硅薄膜4,然后光刻并干法刻蚀,刻蚀深度等于这层薄膜的厚度,使得氮化硅将下电极覆盖,从而避免静电拉入效应对器件造成短路的损害,如图5所示。4. Deposit a
5.取一块4英寸SOI晶片,晶片的硅结构层5厚度是20微米,氧化层6厚度是10微米,第二基底7厚度为1000微米,如图6所示。5. Get a 4-inch SOI wafer, the thickness of the
6.将上一步得到的晶片上下表面都沉积2层厚度都用LPCVD沉积600nm的二氧化硅9和两层氮化硅8,顺序是二氧化硅→氮化硅→二氧化硅→氮化硅,为后续的湿法刻蚀基底做准备,如图7所示。6. Deposit two layers of silicon dioxide 9 and two layers of
7.对上一步得到的结构下表面进行两次光刻和两次干法刻蚀,形成台阶状的结构10,为后续的湿法刻蚀基底做准备,如图8所示。7. Perform two photolithography and two dry etching on the lower surface of the structure obtained in the previous step to form a stepped
8.以上一步得到的台阶状的氮化硅和二氧化硅为掩膜用50%氢氧化钾溶液湿法刻蚀硅基底,刻蚀至距离基底的上表面52微米处停止,形成上电极11,如图9所示8. The step-shaped silicon nitride and silicon dioxide obtained in the above step are used as a mask to wet-etch the silicon substrate with 50% potassium hydroxide solution, and the etching stops at a distance of 52 microns from the upper surface of the substrate to form the
9.然后干法刻蚀掉一层氮化硅和二氧化硅,以剩余的氮化硅和二氧化硅作掩膜用50%氢氧化钾溶液湿法刻蚀硅基底,深度为50微米,形成键合时的连接体12和驱动器薄膜14,如图10所示9. Then dry etch away a layer of silicon nitride and silicon dioxide, and use the remaining silicon nitride and silicon dioxide as a mask to wet etch the silicon substrate with a 50% potassium hydroxide solution to a depth of 50 microns.
10.将步骤3中得到的结构的上表面和步骤9中得到结构的下表面进行阳极键合,条件是1000V、500摄氏度和一个标准下气压,然后光刻并用SF6干法刻蚀释放孔13再用缓冲氢氟酸湿法刻蚀将释放孔下面的氧化层释放,只保留将第一层和第二层连接的连接体15,得到的结构如图11所示。10. Perform anodic bonding of the upper surface of the structure obtained in
实施例3Example 3
以10×10单元三层连续面形微机械变形镜的制作过程为例,结合附图对本发明作具体描述,具体步骤如图1所示。Taking the manufacturing process of a 10×10 unit three-layer continuous surface-shaped micromechanical deformable mirror as an example, the present invention will be described in detail in conjunction with the accompanying drawings, and the specific steps are shown in Figure 1.
1.取一块300微米厚的4英寸N型(100)双面抛光麦克斯硅片作为第一基底1,电阻率为105~2×105Ω·cm,如图2所示。1. Take a 4-inch N-type (100) double-sided polished Max silicon wafer with a thickness of 300 microns as the
2.用第一个掩膜版光刻并用50%氢氧化钾溶液湿法刻蚀出0.1微米深的槽,为铺设下电极做准备,如图3所示。2. Use the first mask plate for photolithography and use 50% potassium hydroxide solution to wet-etch grooves with a depth of 0.1 micron to prepare for laying the lower electrode, as shown in Figure 3.
3.用LPCVD沉积0.1微米厚的多晶硅,然后光刻并干法刻蚀,刻蚀深度为0.1微米,形成变形镜的下电极3和引线2,如图4所示。3. Deposit polysilicon with a thickness of 0.1 micron by LPCVD, then photolithography and dry etching, the etching depth is 0.1 micron, to form the
4.用LPCVD沉积厚度为0.1微米的氮化硅薄膜4,然后光刻并刻蚀,刻蚀深度等于这层薄膜的厚度,使得氮化硅将下电极覆盖,从而避免静电拉入效应对器件造成短路的损害,如图5所示。4. Deposit a
5.取一块4英寸SOI晶片,晶片的硅结构层5厚度是0.3微米,氧化层6厚度是0.3微米,第二基底7厚度为300微米,如图6所示。5. Get a 4-inch SOI wafer, the thickness of the
6.将上一步得到的晶片上下表面都用PECVD沉积2层厚度都是800nm的二氧化硅9和两层氮化硅8,顺序是二氧化硅→氮化硅→二氧化硅→氮化硅,为后续的湿法刻蚀或干法刻蚀做准备,如图7所示。6. Use PECVD to deposit two layers of silicon dioxide 9 and two layers of
7.对上一步得到的结构下表面进行两次光刻和两次干法刻蚀,形成台阶状的结构10,为后续的湿法刻蚀基底做准备,如图8所示。7. Perform two photolithography and two dry etching on the lower surface of the structure obtained in the previous step to form a stepped
8.以上一步得到的台阶状的氮化硅和二氧化硅为掩膜用50%氢氧化钾溶液湿法刻蚀硅基底,刻蚀至距离基底的上表面32微米处停止,形成上电极11,如图9所示8. The step-shaped silicon nitride and silicon dioxide obtained in the above step are used as a mask to wet-etch the silicon substrate with 50% potassium hydroxide solution, and the etching stops at a distance of 32 microns from the upper surface of the substrate to form the
9.然后干法刻蚀掉一层氮化硅和二氧化硅,以剩余的氮化硅和二氧化硅作掩膜用50%氢氧化钾溶液湿法刻蚀硅基底,深度为12微米,形成键合时的连接体12和驱动器薄膜14,如图10所示9. Then dry etch away a layer of silicon nitride and silicon dioxide, and use the remaining silicon nitride and silicon dioxide as a mask to wet etch the silicon substrate with a 50% potassium hydroxide solution to a depth of 12 microns.
10.将步骤3中得到的结构的上表面和步骤9中得到结构的下表面进行阳极键合,条件是600V、1000摄氏度和一个标准下气压,然后光刻并用SF6干法刻蚀释放孔再用缓冲氢氟酸湿法刻蚀将释放孔下面的氧化层释放,只保留将第一层和第二层连接的连接体,得到的结构如图11所示。10. Perform anodic bonding of the upper surface of the structure obtained in
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100892559A CN101604069B (en) | 2009-07-10 | 2009-07-10 | Manufacturing process of three-layer continuous surface type MEMS deformable mirror based on bonding process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100892559A CN101604069B (en) | 2009-07-10 | 2009-07-10 | Manufacturing process of three-layer continuous surface type MEMS deformable mirror based on bonding process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101604069A CN101604069A (en) | 2009-12-16 |
CN101604069B true CN101604069B (en) | 2011-11-30 |
Family
ID=41469863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100892559A Expired - Fee Related CN101604069B (en) | 2009-07-10 | 2009-07-10 | Manufacturing process of three-layer continuous surface type MEMS deformable mirror based on bonding process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101604069B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106249402A (en) * | 2016-08-31 | 2016-12-21 | 常州创微电子机械科技有限公司 | A kind of one-dimensional micro mirror of Electromagnetic Drive |
CN106969759B (en) * | 2017-05-04 | 2020-05-05 | 成都振芯科技股份有限公司 | Cross structure processing technology for simultaneously coupling gyroscope driving mass and gyroscope detection mass |
CN108594428B (en) * | 2018-04-16 | 2020-06-05 | 西安知微传感技术有限公司 | MEMS micro-vibrating mirror and manufacturing method for prefabricating MEMS micro-vibrating mirror based on SOI top layer silicon |
CN113883041A (en) * | 2021-11-02 | 2022-01-04 | 北京航空航天大学 | High-precision MEMS micropump based on piezoelectric diaphragm |
CN116387084B (en) * | 2023-06-01 | 2023-08-01 | 中国工程物理研究院电子工程研究所 | Quartz micro switch |
-
2009
- 2009-07-10 CN CN2009100892559A patent/CN101604069B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101604069A (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6610582B1 (en) | Field-assisted fusion bonding | |
TWI276847B (en) | Wavelength-variable filter and method of manufacturing the same | |
CN105026905B (en) | Capacitive MEMS sensor device | |
CN101604069B (en) | Manufacturing process of three-layer continuous surface type MEMS deformable mirror based on bonding process | |
CN103604538B (en) | MEMS pressure sensor chip and its manufacture method based on SOI technology | |
CN104355286B (en) | A kind of total silicon MEMS structure and manufacture method thereof | |
US20130126993A1 (en) | Electromechanical transducer and method of producing the same | |
CN105293419A (en) | MEMS device for preventing suspension layer etching damage | |
US8685776B2 (en) | Wafer level packaged MEMS device | |
CN102180441B (en) | Micro electromechanical device and manufacturing method thereof | |
Pal et al. | Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes | |
CN104003348B (en) | For the method with dual-layer face structure sheaf and the MEMS structure of acoustical ports | |
CN102486972A (en) | Two-channel RF MEMS switch and manufacturing method thereof | |
JP2010238921A (en) | Mems sensor | |
CN101549848A (en) | Method for fabricating large angle turning micro mirror driver | |
CN101446682B (en) | Preparation method of continuous diaphragm type micro deformable mirror based on SOI | |
CN103193197B (en) | A kind of micro element movable structure preparation method based on silicon/glass anode linkage | |
CN102431956B (en) | Monolithic integration processing method for unequal-height silicon structure and integrated circuit | |
CN101244801A (en) | A micro-drive structure for realizing co-planar and out-of-plane motion and its preparation method | |
CN108760100B (en) | Preparation method of differential pressure sensor | |
CN103076676B (en) | Manufacturing methods of micromechanical optical grating with adjustable blazing angle | |
CN105712290B (en) | The preparation method of MEMS electrostatic actuators | |
CN102142336B (en) | Fully-integrated micro electro mechanical systems (MEMS) relay in static and electromagnetic combined driving mode and manufacturing method thereof | |
CN101913552B (en) | Method for preparing suspension micro-sensitive structure based on aluminum sacrificial layer process | |
CN103000410B (en) | Preparation method for micro electro mechanical system (MEMS) silicon bridge membrane structure relay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111130 Termination date: 20150710 |
|
EXPY | Termination of patent right or utility model |