CN101594068A - 高效、多源光电逆变器 - Google Patents
高效、多源光电逆变器 Download PDFInfo
- Publication number
- CN101594068A CN101594068A CNA2009101452537A CN200910145253A CN101594068A CN 101594068 A CN101594068 A CN 101594068A CN A2009101452537 A CNA2009101452537 A CN A2009101452537A CN 200910145253 A CN200910145253 A CN 200910145253A CN 101594068 A CN101594068 A CN 101594068A
- Authority
- CN
- China
- Prior art keywords
- circuit
- switch
- full
- inverter system
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/0093—Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
Abstract
光电(PV)逆变器系统(100)在降压转换器模式下持续工作,响应由多个降压转换器产生的多个全波整流正弦波电流(120)、(122)、(124)、(126),在多个降压转换器共用的电流节点产生全波整流正弦波电流之和。当相应的DC电源电压(104)、(106)、(108)、(110)低于与PV逆变器系统(100)相连的公用电网的瞬时电压时,PV逆变器系统(100)增加提供给每个降压转换器的电压电平。
Description
技术领域
本发明通常涉及电子电源转换,尤其涉及非常高的转换效率、连接电网的、单相、多源光电(PV)逆变器。
背景技术
光电(PV)电池产生直流(DC)电源,其DC电流电平取决于太阳辐照并且其DC电压电平取决于温度。当需要交变电流(AC)电源时,使用逆变器将DC能源转换为AC能源。典型的PV逆变器使用两级电源处理:第一级配置成提供恒定DC电压并且第二级配置成将恒定DC电压转换成AC电压。第一级常包括升压转换器,第二级包括单相或者三相逆变器系统。两级逆变器的效率是影响PV系统性能的重要参数并且是单级效率的倍数,每级一般造成一半的系统损耗。
单相光电逆变器通常需要两级转换电源电路,以将PV阵列的变化的DC电压转换为电网的固定频率的AC电压。传统的PV逆变器使用DC链路作为中间能量存储步骤(intermediate energy storage step),这意味着转换器首先将不稳定的PV阵列电压转换为稳定的DC电压,接着将稳定的电压转换为可以注入到电网的电流。
传统的单相PV逆变器的不受欢迎之处是利用多个开关装置(例如5个),以固定的开关频率来控制电源电路,这些开关装置对总体开关损耗是有贡献的。当使用传统的PV逆变器时,一般通过将开关频率保持为低,使开关损耗保持尽可能的低。
既有利又有益的是提供一种住宅用的光电逆变器,比起传统的PV逆变器,它使用较少的高频开关装置。更加有利的是如果PV逆变器能够采用自适应数字控制技术以确保其即使在从多个输入源抽取电力时也一直工作在峰值效率,这里的输入源包括但不限于PV阵列、电池和燃料电池。
发明内容
简而言之,根据一个实施例,光电(PV)逆变器包括:
降压转换器,被配置成响应可用的PV阵列电源和公用电网的瞬时电压,在多个降压转换器共用的电流汇集节点产生全波整流正弦波电流;
升压电路,被配置为当PV阵列输出电压低于公用电网的瞬时电压时增加提供给降压转换器的电压电平;以及
电流扩展电路,包括开关装置,被配置为响应全波整流正弦波电流以与公用电网同步地开关从而构造AC电流。
根据另一个实施例,光电(PV)逆变器系统包括:
多个降压电路,每个降压电路与相应的DC电源相关连;以及
单个全桥电流扩展电路,
其中,每个降压电路被配置为持续地工作于降压模式下以产生相应的全波整流正弦波电流,多个降压电路被一起配置为通过汇集多个降压电路所产生的多个全波整流正弦波电流,在单个共用电流节点处产生合成的全波整流正弦波,以及该单个全桥电流扩展电路响应合成的全波整流正弦波电流,产生期望的公用电网AC电流。
根据本发明的另一个实施例,光电(PV)逆变器系统被配置为持续地工作于降压转换器模式下,从而响应多个降压转换器所产生的多个全波整流正弦波电流,在多个降压转换器共用的电流节点处产生全波整流正弦波电流之和,并且进一步地被配置为当相应的DC电源电压低于连接到PV逆变器系统的公用电网的瞬时电压时,借助相应的升压转换器增加提供给每个降压转换器的电压电平。
根据本发明的另一个实施例,光电(PV)逆变器系统包括:
多个软开关(soft switching)降压电路,每个软开关降压电路与相应的DC电源相关连并且被配置为实质上消除与相应的波形成形感应器相关的波纹电流;
与每个软开关降压电路对应的升压转换器,每个升压转换器被配置为,不在整个PV逆变器开关周期内持续地升压,从而使得因为不得不升压相应的DC电源电压而对PV逆变器系统效率产生的影响最小;以及
被配置为在其开关周期内工作于零电流和电压电平附近的单个全桥电流扩展电路,
其中每个软开关降压电路被配置为持续工作于降压模式下从而产生相应的全波整流正弦波电流,多个软开关降压电路一起被配置为通过汇集多个软开关降压电路产生的多个全波整流正弦波电流,在单个共用电流节点处产生合成的全波整流正弦波,以及单个全桥电流扩展电路产生期望的公用电网AC电流。
附图说明
参考附图阅读下面详细的说明将会更好的理解本发明的这些和其它特征、方面和优点,其中在附图中相同的符号表示相同的部分,其中:
图1示出了现有技术中公知的光电逆变器拓扑形态;
图2示出了根据本发明一个实施例的光电逆变器拓扑形态;
图3是表示根据本发明一个实施例的降压-升压开关方案的图;
图4示出了根据本发明另一个实施例的光电逆变器拓扑形态,其包括波纹电流消除电路;
图5示出了根据本发明一个实施例的多源输入光电逆变器拓扑形态。
虽然上述附图阐述了可选实施例,但是如在讨论中所指明的,本发明的其它实施例也是可预期的。在所有情况下,本公开内容通过说明的形式而非以限制的形式描述本发明的实施例。本领域的技术人员在本发明的范围和原理的精神内可以做出多种其它的修改和实施例。
具体实施方式
图1示出了现有技术中公知的光电逆变器10的拓扑形态。光电逆变器10使用两级电源电路将PV阵列12的变化的DC电压转换为用于电网14的固定频率的AC电流。光电逆变器10使用DC链路电容器16来实现中间能量存储步骤。这意味着PV逆变器首先通过升压转换器将不稳定的PV DC电压18转换为大于电网电压的稳定的DC电压20,然后通过PWM电路24将稳定的DC电压20转换成可以注入到电网14的电流22。光电逆变器10的拓扑形态采用5个开关装置44、46、48、50、52,它们都在高频下开关并且对两级转换器的总体开关损耗作出了的贡献,而这种贡献并非期望的。
图2示出了根据本发明的一个实施例的光电逆变器30硬开关(hardswitching)拓扑形态。由于PV逆变器30拓扑形态将PV阵列12电压直接转换成相当于整流电网电流的电流32,因此没有必要采用诸如图1所示的DC链路来实现中间能量存储步骤。该特征通过使用大电容器34强PV阵列12的每个引脚的稳定性来加以实现,因为大电容器使DC链路有效地偏转到PV阵列12上,从而在整流电网电流的产生期间稳定了PV阵列的输出电压。
随后的逆变器级36只需要将电流32扩展(unfold)到电网14,并且由于逆变器级开关装置54、56、58、60仅在公用电网14的零电压电平开关且电流为零,因此这样做不会产生开关损耗。与诸如图1所示的具有均产生开关损耗的5个高频开关装置44、46、48、50、52的传统逆变器10相比,第一级40是唯一有开关损耗的一级,该损耗来自高频降压开关装置62和高频升压开关装置64。
继续参考图2,光电逆变器30包括与二极管66和波形成形感应器68一起工作的降压电路开关62。PV逆变器30还包括与二极管70和升压感应器72一起工作的升压电路开关64。
包括开关62、二极管66和感应器68的降压电路始终处于工作状态;然而包括开关64、二极管70和感应器72的升压电路仅在PV阵列12的输出电压低于公用电网14的瞬时电压时工作。然后每当PV阵列12的输出电压低于公用电网的瞬时电压时,升压电路将来自PV阵列12的存储在升压感应器72的额外电流抽取至存储电容器74。跨越电容器34和电容器74的总的合成电压提供了使降压电路在升压工作模式期间保持工作状态所需的电压。
如图3中的实施例所示,上述降压和升压功能是动态起作用的。现在参考图3,无论何时只要公用电网的瞬时电压76超过期望的220伏特的PV阵列12输出电压,升压功能就起作用。当公用电网的瞬时电压76超过220伏特时,升压电容器74所提供的电压80被加至降压电压78从而允许有适当的降压。这有利于使升压转换器不在整个周期内持续升压,从而将不得不升压PV阵列电压而对效率的影响降低到最低程度。
诸如上面图1所示的传统逆变器以固定的开关频率来控制电源电路。本发明人认识到,当转换效率非常高时,可以利用自适应数字控制技术来获得改进。因此可以采用自适应数字控制器调整开关频率以补偿在各种工作条件和温度下半导体装置62、64和感应器68、72性能的变化,从而获得尽可能高的转换效率。
自适应数字控制技术可包括连接到降压电路开关62的升压电路开关64的控制信号,从而在某些情况下可以延迟开启升压开关64,并且升压开关64的关断可以相对于降压开关62的关断延迟进行,因此使得只有一个开关承载所有的损耗而其它的开关则不承载损耗。
总而言之,光电逆变器30拓扑形态的优点是在工作时明显减少了任一时点处作高频开关的电源电子装置的数量。该特征提供的其它益处是较低的传导损耗与采用较慢速的装置有关,而这些较慢速的装置可被选用构建完整的逆变器系统。
通过诸如上述的大电容器34来加强光电阵列源12的稳定性,从而保证向降压电路提供稳定的供电电压源。有利的是,因为PV源12是电流受限的,所以大电容器34不会危及系统的安全。
与电容器34相连的第一级降压转换器40在主感应器68中产生全波整流正弦电流。该电流然后通过连接到PV逆变器30输出的全桥逆变器36扩展到电网14。
已经发现只要PV源电压高于瞬时电网电压,PV逆变器30拓扑形态就可提供适当的工作结果。在PV源12电压低于瞬时电网14电压的情况下,PV逆变器的操作被配置为确保降压感应器68中的电流总是从PV源12流向电网14。为此,开启升压电路将降压电路的输入电压增加到一个大于瞬时电网电压的值。
因为仅在必要的时候提升电流(即,当PV阵列12电压低于瞬时电网14电压时),所以逆变器开关效率提升到高于诸如上面参考图1所述的传统PV逆变器拓扑可以达到的水平。
根据本发明的另一个实施例,光电逆变器30利用软开关拓扑形态即可以容易地实现。利用软开关拓扑形态使得可以在PV逆变器的降压转换器中选用较低传导损耗的较慢速装置。PV逆变器30使用非常适于采用如上所述的自适应数字控制方法的拓扑形态,以根据诸如但不限于温度、输入电压和负载电源电平的工作条件来寻找系统的最有效工作点。
现在参考图4,PV逆变器80包括波纹电流消除电路82,波纹电路消除电路82提供了一种手段,可在减小主感应器68尺寸的同时无需折衷考虑系统的输出波纹电流要求。波纹电流消除电路82使得可以采用比较大感应器损耗更小的较小感应器68,并使得可以使用准谐振开关(quasiresonant switching),从而显著减少开关损耗。
图5示出了根据本发明一个实施例的多源输入光电逆变器拓扑形态100。PV逆变器拓扑形态100包括输出扩展电路102,该输出扩展电路102的作用仅限于通过汇集由多个电源所产生的整流电源所产生的整流电路波形来进行扩展,其中该多个电源包括第一PV阵列104、第二PV阵列106、电池组108和燃料电池110。这样,由于扩展电路开关装置112、114、116、118只以两倍于公用电网频率的频率开关,所以扩展电路102绝不会以高频开关。所有的电源电流120、122、124、126参考一个公共电压以便达到期望的电流汇集功能。
波形成形感应器128、130、132、134的每一个只完成电流波形成形功能,不完成诸如已知的降压/升压转换器设计中所见的任何类型的电流提升功能。但是本发明并没有被限制于此,而是可以类似的方式,采用任意数量的多种不同类型的电源来实现根据本文所描述的原理的多源输入PV逆变器拓扑形态。
PV逆变器拓扑30、100所提供的优点包括但不限于,采用双电容器组而非通常的降压/升压拓扑形态,在一个DC-AC转换器纳入降压和升压功能。其它优点包括但不限于:通过使电源和负载之间切换的功率半导体装置的数量最少来使效率最高;在单个PV逆变器内使用多种技术来提高拓扑形态的效率,该多种技术例如为参考图4所示的波纹电流消除能力;软开关技术的采用;使用根据工作条件寻找系统最有效工作点的自适应数字控制方法,其中所述工作条件例如为但不限于温度、输入电压和负载电压电平;以及可选的激活AC接触器的步骤,其中接触器/继电器被赋能之后,将保持电压减少到仅足以维持保持状态。
与已知的PV逆变器相比进一步的优点是,通过使在电源和负载之间切换的功率半导体的数量最少可使效率最高,并且通过功率半导体的选用来实现最大的效率。
总而言之,上述实施例提供了可以和多个PV和/或可选能量源一起使用的极高转换效率的连接电网的住宅光电逆变器。该逆变器产生了与电网电压成正比且具有高功率因数的正弦电流。高效率通过以下方式获得:仅使一个功率半导体装置以高频开关而其它所有的装置以电网频率切换。降压转换器的主开关装置产生扩展到电网电源的全波整流正弦波电流。因为在开关周期期间装置两端的电流和电压都接近零点,因此该扩展电路避免了开关损耗。对于大于电网电压的PV阵列电压,该电路的作用仅作为降压转换器。对于低于电网电压的PV阵列电压,升压电路和降压转换器同步工作。这种配置保证了降压转换器电压总是大于电网电压。输出逆变器全桥从不以高频开关。还可以通过以下方式实现效率进一步的提高:开关装置的特定选择;通过借助数字控制调节(诸如调整开关频率来补偿输入电压、负载电流和系统温度的变化)来确保逆变器总是工作在峰值效率;实现波纹电流消除电路使得主电路可以选择小的较低损耗的感应器;以及在如上所述的横跨主开关装置上增加准谐振电路从而保证软开关。
虽然本文仅显示和描述了本发明的某些特征,对于本领域的技术人员来说会发生多种修改和变化。因此应当理解为所附的权利要求书目的在于覆盖落入本发明真正精神内的所有这些修改和变化。
元件列表
(10)现有技术的光电(PV)逆变器
(12)PV阵列
(14)电网
(16)DC链路电容器
(18)不稳定的DC电压
(20)稳定的DC电压
(22)电流
(24)PWM电路
(44)开关装置
(46)开关装置
(48)开关装置
(50)开关装置
(52)开关装置
(30)PV逆变器
(32)电流
(34)电容器
(36)逆变器级
(40)第一级
(54)开关装置
(56)开关装置
(58)开关装置
(60)开关装置
(62)降压开关装置
(64)高频升压开关装置
(68)主(降压)感应器
(70)二极管
(72)升压感应器
(74)存储电容器
(76)公用电网瞬时电压
(78)降压
(80)PV逆变器
(82)波纹消除电路
(100)PV逆变器
(102)输出扩展电路
(104)第一PV阵列
(106)第二PV阵列
(108)电池组
(110)燃料电池
(112)扩展电路开关装置
(114)扩展电路开关装置
(116)扩展电路开关装置
(118)扩展电路开关装置
(120)电源电流
(122)电源电流
(124)电源电流
(126)电源电流
(128)波形成形感应器
(130)波形成形感应器
(132)波形成形感应器
(134)波形成形感应器
Claims (10)
1.一种光电(PV)逆变器系统(100),其特征在于,被配置为在降压转换器模式下持续地工作,从而在多个降压转换器共用的电流节点处,响应由所述多个降压转换器产生的多个全波整流正弦波电流(120)、(122)、(124)、(126)以产生全波整流正弦波电流之和,还被配置为当相应的DC电源(104)、(106)、(108)、(110)电压低于连接到所述PV逆变器系统(100)的公用电网的瞬时电压时,通过相应的升压转换器增加提供给每个降压转换器的所述电压电平。
2.如权利要求2所述的PV逆变器系统(100),其特征在于,还包括全桥扩展电路(102),其被配置为响应所述全波整流正弦波电流之和以产生公用电网电流。
3.如权利要求2所述的PV逆变器系统(100),其特征在于,其中所述全桥扩展电路(102)包括多个开关装置(112)、(114)、(116)、(118),并且其中所有的全桥扩展电路开关装置(112)、(114)、(116)、(118)仅以两倍于公用电网低频的频率开关。
4.如权利要求3所述的PV逆变器系统(100),其特征在于,其中每个全桥扩展电路被配置为在其开关周期内,工作于零电流和零电压电平附近。
5.如权利要求1所述的PV逆变器系统(100),其特征在于,其中每个降压转换器包括唯一的一个开关装置,其中所述唯一的一个开关装置为高频开关装置。
6.如权利要求1所述的PV逆变器系统(100),其特征在于,其中经相应的升压电路产生提供给每个降压转换器的所述增加的电压电平,每个升压电路包括唯一一个开关装置,其中所述的唯一一个升压电路开关装置为高频开关装置。
7.如权利要求6所述的PV逆变器系统(100),其特征在于,其中每个降压转换器及其相应的升压电路被一起配置为响应期望的工作特性,自适应调整所述降压转换器开关频率及其相应的升压电路开关频率,从而获得比使用固定开关频率PV逆变器技术所达到的效率更高的PV逆变器系统效率。
8.如权利要求6所述的PV逆变器系统(100),其特征在于,其中每个升压电路包括唯一一个升压电路开关和每个降压转换器包括唯一一个降压转换器开关,其中每个升压电路开关被配置为在期望的工作条件下具有延迟的开启时间,和其中每个唯一一个升压电路开关及其相应的唯一一个降压转换器开关被配置为同步地关闭,使得所述降压转换器或者相应的升压电路开关中只有一个实质上承载所有的开关损耗而其他所述的降压转换器或者相应的升压电路开关实质上不承载开关损耗。
9.如权利要求1所述的PV逆变器系统(100),其特征在于,进一步被配置为减少至少一个降压转换器波形成形感应器(128)、(130)、(132)、(134)的尺寸而无需考虑所述PV逆变器系统(100)对所述输出波纹电流的要求。
10.光电(PV)逆变器系统(100),其特征在于,包括:
多个软开关降压电路,每个软开关降压电路与相应的DC电源(104)、(106)、(108)、(110)相关连并且被配置为实质上消除与相应的波形成形感应器(128)、(130)、(132)、(134)相关联的波纹电流;
与每个软开关降压电路对应的升压转换器,每个升压转换器被配置为使得其在整个PV逆变器开关周期内不持续升压,因此使得不得不升压所述的相应的DC电源电压对PV逆变器系统效率的影响最小;以及
单个全桥电路扩展电路(102),被配置为在其开关周期内工作于零电流和零电压电平附近,
其中每个软开关降压电路被配置为在降压模式下持续工作以产生相应的全波整流正弦波电流,并且所述多个软开关降压电流被一起配置为通过汇集所述多个软开关降压电路产生的所述多个全波整流正弦波电流,在单个共用电流节点处产生合成的全波整流正弦波,以及其中所述单个全桥电流扩展电路(102)产生期望的公用电网AC电流。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/154,745 US7929325B2 (en) | 2008-05-27 | 2008-05-27 | High efficiency, multi-source photovoltaic inverter |
US12/154,745 | 2008-05-27 | ||
US12/154745 | 2008-05-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101594068A true CN101594068A (zh) | 2009-12-02 |
CN101594068B CN101594068B (zh) | 2015-01-28 |
Family
ID=41210479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910145253.7A Active CN101594068B (zh) | 2008-05-27 | 2009-05-22 | 高效、多源光电逆变器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7929325B2 (zh) |
EP (1) | EP2128972B1 (zh) |
CN (1) | CN101594068B (zh) |
AU (1) | AU2009201940B2 (zh) |
ES (1) | ES2683730T3 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088252A (zh) * | 2011-02-21 | 2011-06-08 | 浙江大学 | 一种开关电容实现无变压器型逆变器及应用 |
CN102624268A (zh) * | 2012-03-27 | 2012-08-01 | 阳光电源股份有限公司 | 一种逆变器及其在三相系统中的应用电路 |
CN102868312A (zh) * | 2012-10-17 | 2013-01-09 | 华为技术有限公司 | 逆变方法与装置 |
CN102931861A (zh) * | 2011-08-12 | 2013-02-13 | 苏州绿茵能源科技有限公司 | 高效率多源光伏逆变器 |
CN106533158A (zh) * | 2016-12-20 | 2017-03-22 | 中国航空工业集团公司雷华电子技术研究所 | 一种输出电流纹波抑制电路 |
CN108633320A (zh) * | 2015-12-18 | 2018-10-09 | 南线有限责任公司 | 电缆集成式太阳能逆变器 |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
WO2009073868A1 (en) | 2007-12-05 | 2009-06-11 | Solaredge, Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US8618692B2 (en) | 2007-12-04 | 2013-12-31 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
WO2009136358A1 (en) | 2008-05-05 | 2009-11-12 | Solaredge Technologies Ltd. | Direct current power combiner |
US8352091B2 (en) * | 2009-01-02 | 2013-01-08 | International Business Machines Corporation | Distributed grid-interactive photovoltaic-based power dispatching |
CN201378812Y (zh) * | 2009-02-23 | 2010-01-06 | 中山大洋电机股份有限公司 | 一种供电控制装置及其应用的通风换气装置 |
US8730702B2 (en) * | 2009-03-03 | 2014-05-20 | Renewable Power Conversion, Inc. | Very high efficiency three phase power converter |
US8264100B2 (en) * | 2009-09-11 | 2012-09-11 | Hamilton Sundstrand Corporation | Electric power generating system for multiple sources and interface to an AC grid |
DE102009054485A1 (de) * | 2009-12-10 | 2011-06-16 | SB LiMotive Company Ltd., Suwon | System zur dezentralen Speicherung und Generierung elektrischer Energie |
US20110241433A1 (en) * | 2010-03-30 | 2011-10-06 | General Electric Company | Dc transmission system for remote solar farms |
CN101860041B (zh) * | 2010-05-04 | 2012-08-29 | 阳光电源股份有限公司 | 一种动态调整母线电压提高并网效率的方法 |
US9350166B2 (en) | 2010-10-05 | 2016-05-24 | Alencon Acquisition Co., Llc | High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems |
EP2625762A4 (en) | 2010-10-05 | 2015-05-20 | Alencon Acquisition Co Llc | HIGH VOLTAGE CURRENT SYSTEMS FOR ENERGY RECOVERY AND CONVERSION USING RENEWABLE ENERGY AND SYSTEMS FOR VISUAL MONITORING AND CONTROLLING SUCH SYSTEMS |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2485527B (en) | 2010-11-09 | 2012-12-19 | Solaredge Technologies Ltd | Arc detection and prevention in a power generation system |
GB2483317B (en) | 2011-01-12 | 2012-08-22 | Solaredge Technologies Ltd | Serially connected inverters |
US11460488B2 (en) | 2017-08-14 | 2022-10-04 | Koolbridge Solar, Inc. | AC electrical power measurements |
US11901810B2 (en) | 2011-05-08 | 2024-02-13 | Koolbridge Solar, Inc. | Adaptive electrical power distribution panel |
US8937822B2 (en) | 2011-05-08 | 2015-01-20 | Paul Wilkinson Dent | Solar energy conversion and utilization system |
US9627889B2 (en) | 2011-05-12 | 2017-04-18 | Alencon Acquisition Co., Llc. | High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems |
US8330299B2 (en) | 2011-06-29 | 2012-12-11 | General Electric Company | DC to DC power converters and methods of controlling the same |
GB2498365A (en) | 2012-01-11 | 2013-07-17 | Solaredge Technologies Ltd | Photovoltaic module |
EP2621075B1 (en) * | 2012-01-27 | 2020-07-29 | LG Electronics Inc. | Power converting apparatus and photovoltaic module |
KR101954195B1 (ko) * | 2012-07-16 | 2019-03-05 | 엘지전자 주식회사 | 전력변환장치, 및 태양광 모듈 |
GB2498790A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Maximising power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
GB2498791A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US8896182B2 (en) | 2012-04-05 | 2014-11-25 | General Electric Corporation | System for driving a piezoelectric load and method of making same |
US9379543B2 (en) * | 2012-04-10 | 2016-06-28 | Sol Chip Ltd. | Integrated circuit energy harvester |
US8958217B2 (en) | 2012-06-15 | 2015-02-17 | General Electric Company | System for driving a piezoelectric load and method of making same |
US9595888B2 (en) | 2012-11-29 | 2017-03-14 | General Electric Company | System and method to avoid reverse recovery in a power converter |
US8937824B2 (en) * | 2013-01-28 | 2015-01-20 | Eaton Corporation | Photovoltaic system and method of controlling same |
US9455645B1 (en) * | 2013-03-13 | 2016-09-27 | The Florida State University Research Foundation, Inc. | System and method for leakage current suppression in a photovoltaic cascaded multilevel inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9641099B2 (en) * | 2013-03-15 | 2017-05-02 | Sparq Systems Inc. | DC-AC inverter with soft switching |
TW201445845A (zh) * | 2013-05-24 | 2014-12-01 | Td Hitech Energy Inc | 並聯式放電調節裝置及其調節方法 |
US9660580B2 (en) | 2014-09-08 | 2017-05-23 | Jabil Circuit, Inc. | Synchronous buck inverter |
KR102308628B1 (ko) * | 2015-01-21 | 2021-10-05 | 삼성에스디아이 주식회사 | 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법 |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) * | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US10483759B2 (en) | 2016-04-07 | 2019-11-19 | Alencon Acquisition Co., Llc | Integrated multi-mode large-scale electric power support system for an electrical grid |
BE1025533B1 (fr) * | 2017-09-11 | 2019-04-08 | KS RESEARCH société anonyme | Système de protection pour limiter l'impact des perturbations d'un réseau électrique externe sur le réseau local d'un site branché sur le réseau externe |
CN109787483B (zh) * | 2019-01-29 | 2021-06-18 | 北方工业大学 | 电容器纹波测试用电源的控制方法以及电容器纹波测试用电源 |
KR102274958B1 (ko) * | 2019-04-15 | 2021-07-08 | 주식회사 에스제이솔루션 | 지능형 프리 레귤레이터를 이용한 전원공급장치 |
US11114932B1 (en) | 2020-06-18 | 2021-09-07 | Ge Aviation Systems Llc | Method and apparatus for reduction of ripple current |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1395348A (zh) * | 2001-06-29 | 2003-02-05 | 三洋电机株式会社 | 系统连接发电装置及其控制方法 |
CN101128974A (zh) * | 2005-02-25 | 2008-02-20 | 三菱电机株式会社 | 电力转换装置 |
US20080055941A1 (en) * | 2005-05-20 | 2008-03-06 | Sma Technologie Ag | Inverter |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5623398A (en) * | 1995-10-30 | 1997-04-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Series connected converter for control of multi-bus spacecraft power utility |
US5786990A (en) * | 1996-09-27 | 1998-07-28 | National Semiconductor Corporation | Implementation of ripple steering to converter topologies |
US6452289B1 (en) | 2000-07-10 | 2002-09-17 | Satcon Technology Corporation | Grid-linked power supply |
US6693805B1 (en) | 2002-07-31 | 2004-02-17 | Lockheed Martin Corporation | Ripple cancellation circuit for ultra-low-noise power supplies |
JP4172235B2 (ja) * | 2002-09-12 | 2008-10-29 | 松下電器産業株式会社 | 系統連系インバータ装置 |
US20040125618A1 (en) | 2002-12-26 | 2004-07-01 | Michael De Rooij | Multiple energy-source power converter system |
US7016205B2 (en) | 2003-10-01 | 2006-03-21 | General Electric Company | Ripple-current reduction schemes for AC converters |
US20050139259A1 (en) | 2003-12-30 | 2005-06-30 | Robert Steigerwald | Transformerless power conversion in an inverter for a photovoltaic system |
AT500919B1 (de) * | 2004-09-23 | 2009-04-15 | Siemens Ag Isterreich | Verfahren zum betrieb eines wechselrichters und anordnung zur durchfuhrung des verfahrens |
US20060185727A1 (en) | 2004-12-29 | 2006-08-24 | Isg Technologies Llc | Converter circuit and technique for increasing the output efficiency of a variable power source |
-
2008
- 2008-05-27 US US12/154,745 patent/US7929325B2/en active Active
-
2009
- 2009-05-15 AU AU2009201940A patent/AU2009201940B2/en active Active
- 2009-05-19 EP EP09160660.8A patent/EP2128972B1/en active Active
- 2009-05-19 ES ES09160660.8T patent/ES2683730T3/es active Active
- 2009-05-22 CN CN200910145253.7A patent/CN101594068B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1395348A (zh) * | 2001-06-29 | 2003-02-05 | 三洋电机株式会社 | 系统连接发电装置及其控制方法 |
CN101128974A (zh) * | 2005-02-25 | 2008-02-20 | 三菱电机株式会社 | 电力转换装置 |
US20080055941A1 (en) * | 2005-05-20 | 2008-03-06 | Sma Technologie Ag | Inverter |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088252A (zh) * | 2011-02-21 | 2011-06-08 | 浙江大学 | 一种开关电容实现无变压器型逆变器及应用 |
CN102931861A (zh) * | 2011-08-12 | 2013-02-13 | 苏州绿茵能源科技有限公司 | 高效率多源光伏逆变器 |
CN102624268A (zh) * | 2012-03-27 | 2012-08-01 | 阳光电源股份有限公司 | 一种逆变器及其在三相系统中的应用电路 |
CN102624268B (zh) * | 2012-03-27 | 2014-07-16 | 阳光电源股份有限公司 | 一种逆变器及其在三相系统中的应用电路 |
CN102868312A (zh) * | 2012-10-17 | 2013-01-09 | 华为技术有限公司 | 逆变方法与装置 |
CN102868312B (zh) * | 2012-10-17 | 2016-08-10 | 华为技术有限公司 | 逆变方法与装置 |
CN108633320A (zh) * | 2015-12-18 | 2018-10-09 | 南线有限责任公司 | 电缆集成式太阳能逆变器 |
CN106533158A (zh) * | 2016-12-20 | 2017-03-22 | 中国航空工业集团公司雷华电子技术研究所 | 一种输出电流纹波抑制电路 |
Also Published As
Publication number | Publication date |
---|---|
EP2128972A3 (en) | 2015-07-29 |
US7929325B2 (en) | 2011-04-19 |
AU2009201940A1 (en) | 2009-12-17 |
US20090296434A1 (en) | 2009-12-03 |
ES2683730T3 (es) | 2018-09-27 |
AU2009201940B2 (en) | 2013-11-07 |
CN101594068B (zh) | 2015-01-28 |
EP2128972A2 (en) | 2009-12-02 |
EP2128972B1 (en) | 2018-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101594068A (zh) | 高效、多源光电逆变器 | |
CN101615859B (zh) | 高效率光伏逆变器 | |
Hu et al. | Power decoupling techniques for micro-inverters in PV systems-a review | |
Navamani et al. | Non-isolated high gain DC-DC converter by quadratic boost converter and voltage multiplier cell | |
US9077202B1 (en) | Power converter with series energy storage | |
Kyritsis et al. | Enhanced current pulsation smoothing parallel active filter for single stage grid-connected AC-PV modules | |
CN103227475A (zh) | 最大化光伏分布式电力系统中的功率 | |
KR101350532B1 (ko) | 멀티 레벨 컨버터, 이를 갖는 인버터 및 이를 갖는 태양광 전원 공급 장치 | |
Vinnikov et al. | MPPT performance enhancement of low-cost PV microconverters | |
KR20190115364A (ko) | 단상 및 3상 겸용 충전기 | |
Alcazar et al. | High voltage gain boost converter based on three-state switching cell and voltage multipliers | |
Duran-Gomez et al. | Analysis and evaluation of a series-combined connected boost and buck-boost dc-dc converter for photovoltaic application | |
Ansari et al. | A new control method for an interleaved flyback inverter to achieve high efficiency and low output current THD | |
Zhang et al. | Cascaded bridgeless totem-pole multilevel converter with model predictive control for 400 V dc-powered data centers | |
Afsharian et al. | Analysis of one phase loss operation of three-phase isolated buck matrix-type rectifier with a boost switch | |
Vinnikov et al. | An improved high-power DC/DC Converter for distributed power generation | |
KR101152359B1 (ko) | 공통 인덕터를 이용한 인터리브드 부스트 컨버터 | |
Bhukya et al. | Hysterisis Current Control PFC in Switched Mode AC-DC Converter with POESL Luo Converter for DC Machines used for Water Pumping Applications Operating on Universal Input Supply | |
Adhikari | Design of solar photovoltaic energy generation system for off-grid applications | |
Al Mamun et al. | A Grid-Tie Microinverter Design Based on Dual-Switch Flyback Topology for Solar PV Application | |
KR101070726B1 (ko) | 다중레벨 컨버터를 이용한 연료전지용 전력변환장치 | |
Kumar et al. | Dual-input single-stage isolated charger for light electric vehicles | |
CN202261063U (zh) | 高效率多源光伏逆变器 | |
Bharathi | Survey on Photo-Voltaic Powered Interleaved Converter System | |
Suresh et al. | A three-stage buck in buck, boost in boost grid-tied inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |