CN101615859B - 高效率光伏逆变器 - Google Patents

高效率光伏逆变器 Download PDF

Info

Publication number
CN101615859B
CN101615859B CN200910146279.3A CN200910146279A CN101615859B CN 101615859 B CN101615859 B CN 101615859B CN 200910146279 A CN200910146279 A CN 200910146279A CN 101615859 B CN101615859 B CN 101615859B
Authority
CN
China
Prior art keywords
converter
photovoltaic
high frequency
switching device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910146279.3A
Other languages
English (en)
Other versions
CN101615859A (zh
Inventor
M·A·德鲁伊
J·S·格拉泽
R·L·施泰格瓦德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Grid Solutions LLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101615859A publication Critical patent/CN101615859A/zh
Application granted granted Critical
Publication of CN101615859B publication Critical patent/CN101615859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种高效率光伏逆变器。一种光伏(PV)逆变器(30)包括:单个DC向AC变换器,其被配置来对于大于所连接的电网的瞬时电压加变换器裕量的PV阵列电压等级,仅仅在降压模式下运行,并且被进一步配置来对于小于所述所连接的电网瞬时电压的PV阵列电压等级加裕量,仅仅在升压模式下运行,使得所述PV逆变器(30)响应于所述可用的PV阵列(12)功率而产生整流的正弦波电流(32),并且进一步使得所述PV逆变器(30)响应于所述整流的正弦波电流(32)而产生公用电网(14)电流。

Description

高效率光伏逆变器
技术领域
本发明一般地涉及电子功率变换,具体上涉及很高变换效率的、并网的、单相光伏(PV)逆变器。
背景技术
光伏(PV)电池产生直流(DC)功率,并且DC电流的等级依赖于太阳辐照,并且DC电压的等级依赖于温度。当期望交流电(AC)功率时,使用逆变器来将DC能量变换为AC能量。典型的PV逆变器使用两个级来用于功率处理,第一级被配置来用于提供不变的DC电压,第二级被配置来用于将不变的DC电压变换为AC电流。经常地,第一级包括升压变换器,第二级包括单相或者三相逆变器系统。两级逆变器的效率是影响PV系统性能的重要参数,并且是各个级效率的乘积,每个级典型地导致系统损耗的一半。
单相光伏逆变器一般要求两级变换功率电路,用于将PV阵列的变化的DC电压变换为电网的固定频率的AC电压。传统的PV逆变器使用DC链路来作为中间的能量存储级,这意味着变换器首先将稳定的DC电压变换为可以被注入到电网内的电流。
传统的单相PV逆变器也不合需要地使用多个,即5个,开关器件以固定开关频率来控制功率电路,所述开关器件对整体的开关损耗有贡献。当使用传统的PV逆变器时,通过将开关频率保持为低,将开关损耗典型地保持得尽可能低。
具有优点和益处的是,提供一种与居住有关的光伏逆变器,其使用比传统的PV逆变器所使用的更少的高频开关器件。如果PV逆变器可以使用自适应数字控制技术来保证PV逆变器总是运行在峰值效率,则更具有优点。
发明内容
简而言之,根据一个实施例,一种光伏(PV)逆变器包括:
降压变换器,其被配置来响应于可用的PV阵列功率驱动的电压加变换器运行裕量,每当其大于公用电网电压时,产生整流的正弦波电流;以及
电流展开电路(current unfolding circuit),其被配置来响应于所述整流的正弦波电流而向所述公用电网内注入电流。
根据另一个实施例,一种光伏(PV)逆变器包括:单个DC向AC变换器,其被配置来对于大于所连接的公用电网的瞬时电压加变换器运行裕量的PV阵列电压等级,在降压模式下运行,并且进一步被配置来对于小于所述所连接的公用电网电压的PV阵列电压等级加裕量,在升压模式下运行,使得所述PV逆变器响应于所述可用的PV阵列功率而产生整流的正弦波电流,并且进一步使得所述PV逆变器响应于所述整流的正弦波电流而产生公用电网电流。
根据另一个实施例,一种光伏(PV)逆变器被配置来当瞬时公用电网电压减去变换器运行裕量小于PV阵列电压时,作为降压变换器运行,并且当所述瞬时公用电网电压减去变换器运行裕量大于所述PV阵列电压时,作为升压变换器运行。
附图说明
当参考附图阅读下面的详细说明时,将更好地理解本发明的这些和其他特征、方面和优点,其中,在全部附图内,类似的字符表示类似的部分,其中:
图1图解了本领域已知的光伏逆变器拓扑;
图2图解了根据本发明的一个实施例的光伏逆变器拓扑;
图3是图解根据本发明的一个实施例的光伏逆变器硬开关拓扑的仿真逆变器性能的图;
图4是图解用于实现在图3内描绘的仿真逆变器性能的降压升压工作周期的图;
图5图解了根据本发明的另一个实施例的、包括波纹电流消除电路的光伏逆变器拓扑。
虽然上述附图给出了替代实施例,但是也可以预期本发明的其他实施例,如在讨论内所述。就一切情况而论,本公开通过陈述而不是限制,提供了本发明的说明性的实施例。本领域内的技术人员可以设计多个其他修改和实施例,它们落在本发明的原理的范围和精神内。
具体实施方式
图1图解了在本领域内公知的光伏逆变器10的拓扑。光伏逆变器10使用两级功率电路,以将PV阵列12的变化的DC电压转换为电网14的固定频率AC电压。光伏逆变器10使用DC链路16来实现中间的能量存储级。这意味着PV逆变器10首先将不稳定的PV DC电压18经由升压变换器变换为大于电网电压的稳定的DC电压20,随后将稳定的DC电压20经由PWM电路24变换为随后可以被注入到电网14内的电流22。光伏逆变器10拓扑使用5个开关器件44、46、48、50、52,它们在高频下开关,并且不合需要地对两级变换器的整体开关损耗做出贡献。
图2图解了根据本发明的一个实施例的光伏逆变器30硬开关拓扑。光伏逆变器30拓扑克服了使用诸如参考图1上述的DC链路来实现中间的能量存储级的必要,因为PV逆变器30拓扑将PV阵列12电压直接变换为等同于整流的电网电流的电流32。这个特征的实现是通过使用大电容34来使PV阵列12增强稳性(stiffen),从而有效地将DC链路转移到PV阵列12。随后的逆变器级36仅仅需要将电流32展开(unfold)到电网14内,并且这样做没有开关损耗。因此,与具有诸如图1内所描绘的具有开关损耗的5个开关器件44、46、48、50、52的传统变换器相比,第一级40是具有来自单个器件42的开关损耗的仅有的级。光伏逆变器30被配置来通过对器件54、56进行开关并且将器件40保持为接通来在低输入电压下在升压模式下运行,由此消除它的开关损耗,因此器件54和56是仅在这个升压模式期间对开关损耗做出贡献的仅有器件。
作为进一步的说明,光伏逆变器30当它在下面进一步详细说明的降压模式下运行时,使用单个高速开关42。光伏逆变器30当它在下面详细说明的升压模式下运行时,也使用一对高速开关54、56。
诸如参考图1上述的传统逆变器使用固定的开关频率来控制功率电路。本发明人认识到当变换效率很高时,可以通过使用自适应数字控制技术来获得改进。因此,可以使用自适应数字控制器,其调节开关频率来补偿对于各种运行条件和温度的半导体器件42、54、56和电感器58性能的改变,以便获得尽可能高的变换效率。
作为总结说明,光伏逆变器30拓扑有益地通过大大减少在任何时间点将在高频下进行开关的功率电子器件的数量而起作用。这个特征提供了另外的益处,这是由于与可以被选择来实现逆变器系统的较慢器件相关联的较低导通损耗而产生的。
在图2内所描绘的从电源到公共设施的串联路径也具有最少可能数量的组件来将导通损耗保持为低。与在图2内所示的光伏逆变器30相比,在图1内所示的光伏逆变器10使用三个开关和串联的两个电感器,图2内所示的光伏逆变器30具有三个开关和仅仅一个电感器58,该三个开关其中之一被优化以产生很低的导通损耗。
经由诸如如上所述的大电容34而使光伏阵列源12增强稳性。这个大电容34有益地不损害系统的安全方面,因为PV源12是限流的。
第一级降压变换器40被附接到电容器34,第一级降压变换器40在主电感器58内产生全波整流的正弦波电流。这个电流然后通过连接到PV逆变器30的输出的全桥逆变器36被展开到电网14内。
发现:只要PV源电压保持得比电网电压高,PV逆变器30拓扑则提供适合的工作结果。在PV源12电压小于电网14电压的情况下,则PV逆变器30的运行被配置来保证在主电感器58内的电流总是从PV源12流向电网14。其是通过持续地接通降压开关42,并且使用传统的脉宽调制(PWM)技术来高频开关全桥逆变器36的两个低侧器件54、56来实现的。因此当PV源12电压小于电网14电压时,PV逆变器30在升压模式下运行。这个升压模式有益地仅仅在大于PV源12电压的正弦波输出电压的部分期间是生效的。
根据一个实施例,在整流周期的正半周期间,左下的开关62总是接通,右下的开关64总是断开,上面两个开关54、56被调制以产生被注入到电网14内的升压电流。
在整流周期的负部分期间,右下开关64总是接通,左下开关62总是断开,上面两个开关54、56被调制以成形(shape)升压电流,并且将升压电流注入到电网14内。
逆变器36可以容易地通过下述方式来产生必要的升压电流:通过在整流周期的负部分期间接通右上开关56同时断开左上开关54,然后调制下面两个开关62、64以成形升压电流,并且将升压电流注入到电网14内。当下面两个开关62、64被调制以产生升压电流时,左上开关54然后在整流周期的正部分期间被接通。
因为仅仅当必要时、即当PV阵列12电压小于电网14电压时才使用电流升压(current boosting),因此,将逆变器开关效率提高到超过当与诸如参见图1上述的传统的PV逆变器拓扑相比较时可实现的逆变器开关效率。
图3是图解根据本发明的一个实施例的、光伏逆变器硬开关拓扑的仿真逆变器性能的图。可以看到,当使用在图4内描绘的降压升压工作周期来产生在大约150瓦特和大约3000瓦特之间的输出功率等级时,逆变器效率在90%和接近98%之间。
根据本发明的另一个实施例,可以使用软开关技术来容易地实现光伏逆变器30以进一步改善变换效率,该另一个实施例也使用同样少数量的、在高频下开关的器件。软开关拓扑的使用允许选择具有较低的导通损耗的较慢器件来用于各个PV逆变器的电流32展开部分内。PV逆变器30使用良好地适合于自适应数字控制方法的使用的拓扑,以基于诸如但不限于温度、输入电压和负载功率等级的运行条件来寻找系统的最有效率的运行点。
现在参见图5,PV逆变器70拓扑包括波纹电流消除电路72,其提供了用于减小主电感器58的尺寸而不损害系统的输出波纹电流要求的装置。波纹电流消除电路72允许使用较小的电感器58,该电感器58具有比使用较大电感器可实现的损耗更低的损耗,并且也允许使用准谐振开关,这大大地减少了主器件42的开关损耗。
由PV逆变器30、70拓扑提供的优点包括但不限于降压和升压能力,所述能力被包含在单个DC向AC变换器内,而不使用传统的降压/升压拓扑。其他优点包括但不限于:在单个PV逆变器内使用多种技术来加强高效率拓扑,诸如参考图5上述的波纹电流消除能力;使用准谐振开关;良好地适合于自适应数字控制方法的使用的拓扑,以基于但不限于温度、输入电压和负载功率等级的运行条件来寻找系统的最有效率的运行点;以及,AC接触器的选用级激活。
通过最小化在电源和负载之间开关的串联功率半导体的数量来最大化效率以及选择功率半导体来实现最大效率相对于已知的PV逆变器提供了进一步的优点。
虽然已经仅仅在此图解和说明了本发明的特定特征,但是本领域内的技术人员可以进行许多修改和改变。因此,应当明白,所附的权利要求意欲涵盖落入本发明的真实精神的所有这些修改和改变。
元件列表
(10)光伏逆变器
(12)PV阵列
(14)电网
(16)DC链路电容器
(18)不稳定的PV DC电压
(20)稳定的DC电压
(22)电流
(24)PWM电路
(30)光伏逆变器
(32)电流
(34)电容器
(36)逆变器级
(40)第一级
(42)开关器件
(44)开关器件
(46)开关器件
(48)开关器件
(50)开关器件
(52)开关器件
(54)开关器件
(56)开关器件
(58)电感器
(62)开关器件
(64)开关器件
(70)光伏逆变器
(72)波纹电流消除电路

Claims (19)

1.一种光伏逆变器,包括:
降压变换器,该降压变换器被配置来响应于可用的光伏阵列功率和公用电网电压,产生整流的正弦波电流;
电流展开输出电路,该电流展开输出电路被配置来每当所述光伏阵列电压加变换器运行裕量大于所述公用电网电压时,响应于所述整流的正弦波电流,控制被注入到公用电网内的电流;以及
在所述光伏阵列和所述降压变换器之间的增强稳性电容器,所述增强稳性电容器被配置来与所述降压变换器一起在所述降压变换器和所述电流展开输出电路之间没有DC链路的情况下,产生整流的正弦波电流。
2.根据权利要求1的光伏逆变器,其中,所述降压变换器包括一个高频开关器件,并且所述电流展开输出电路包括两个高频开关器件,并且进一步其中,所述两个高频开关器件被配置来仅仅当所述光伏阵列电压加变换器运行裕量小于所述瞬时的公用电网电压时来高频开关。
3.根据权利要求1的光伏逆变器,其中,所述降压变换器被保持接通以停止开关,并且所述电流展开输出电路被配置来在光伏阵列电压加变换器运行裕量小于所述公用电网电压时在升压模式下工作,并且在光伏阵列电压加变换器运行裕量大于所述公用电网电压时在降压模式下工作。
4.根据权利要求1的光伏逆变器,其中,所述降压变换器包括一个高频开关器件,并且进一步其中,所述一个高频开关器件是当所述光伏逆变器在降压模式下运行时在高频开关模式下运行的唯一的光伏逆变器开关器件。
5.根据权利要求1的光伏逆变器,还包括自适应数字控制器,该自适应数字控制器被配置来响应于期望的运行特性而调节与所述降压变换器和电流展开输出电路相关联的降压升压开关频率,以实现比使用固定开关频率光伏逆变器技术可实现的效率更大的光伏逆变器效率。
6.根据权利要求5的光伏逆变器,其中,从光伏阵列电压等级、光伏逆变器环境运行温度、光伏逆变器开关器件温度和电网功率等级选择所述期望的运行特性。
7.根据权利要求1的光伏逆变器,其中,所述光伏逆变器包括一个高频开关器件,以便所述光伏逆变器比包括多个高频开关器件的光伏逆变器具有更少的固有EMI产生。
8.一种光伏逆变器,该光伏逆变器包括单个DC向AC变换器,其被配置来对于大于所连接的公用电网的瞬时电压加变换器运行裕量的光伏阵列电压等级,唯一地在降压模式下运行,并且进一步被配置来对于小于所连接的公用电网电压的光伏阵列电压等级加裕量,唯一地在升压模式下运行,使得所述光伏逆变器响应于所述可用的光伏阵列功率而产生整流的正弦波电流,并且进一步使得所述光伏逆变器响应于所述整流的正弦波电流而产生公用电网电流,其中DC向AC变换器包括:
降压变换器,该降压变换器被配置来响应于可用的光伏阵列功率和公用电网电压,产生全波整流的正弦波电流;
全桥展开输出电路,该全桥展开输出电路被配置来每当所述光伏阵列电压加变换器运行裕量大于所述公用电网电压时,响应于所述全波整流的正弦波电流,产生公用电网电流;以及
在所述光伏阵列和所述DC向AC变换器之间的增强稳性电容器,所述增强稳性电容器被配置来与所述DC向AC变换器一起在所述降压变换器和所述全桥展开输出电路之间没有DC链路的情况下,产生全波整流的正弦波电流。
9.根据权利要求8的光伏逆变器,其中,所述降压变换器包括一个高频开关器件,并且所述全桥展开输出电路包括两个高频开关器件,并且进一步其中,所述两个高频开关器件被配置来仅仅当所述光伏阵列电压加变换器运行裕量小于所述瞬时的公用电网电压时来高频开关。
10.根据权利要求8的光伏逆变器,其中,所述降压变换器包括一个高频开关器件,并且进一步其中,所述一个高频开关器件是当所述光伏阵列电压加变换器运行裕量大于瞬时的公用电网电压时在降压模式下运行的唯一的光伏逆变器开关器件。
11.根据权利要求8的光伏逆变器,还包括自适应数字控制器,该自适应数字控制器被配置来响应于期望的运行特性而调节与DC向AC变换器相关联的降压升压开关频率,以实现比使用固定开关频率光伏逆变器技术可实现的效率更大的光伏逆变器效率。
12.根据权利要求11的光伏逆变器,其中,从光伏阵列电压等级、光伏逆变器环境运行温度、光伏逆变器开关器件温度和公用电网功率等级选择所述期望的运行特性。
13.根据权利要求8的光伏逆变器,其中,所述光伏逆变器包括一个高频开关器件,以便所述光伏逆变器比包括多个高频开关器件的光伏逆变器具有更少的固有EMI产生。
14.一种光伏逆变器,被配置来每当瞬时的公用电网电压减去变换器运行裕量小于光伏阵列电压时操作为降压变换器,并且每当瞬时的公用电网电压减去变换器运行裕量高于光伏阵列电压时操作为升压变换器,所述光伏逆变器进一步包括:
电流展开输出电路,该电流展开输出电路被配置来最小化被注入到所述公用电网内的DC电流的数量,而不论所述光伏阵列电压加变换器裕量是否大于或者小于所述公用电网电压;以及
在所述光伏阵列和所述降压变换器之间的增强稳性电容器,所述增强稳性电容器被配置来与所述降压变换器一起在所述降压变换器和所述电流展开输出电路之间没有DC链路的情况下,产生整流的正弦波电流。
15.根据权利要求14的光伏逆变器,其中,所述降压变换器包括一个高频开关器件,并且所述电流展开输出电路包括两个高频开关器件,并且进一步其中,所述两个高频开关器件被配置来仅仅当所述光伏阵列电压加变换器运行裕量小于所述瞬时的公用电网电压时来高频开关。
16.根据权利要求14的光伏逆变器,其中,所述降压变换器包括一个高频开关器件,并且进一步其中,所述一个高频开关器件是当所述光伏逆变器在降压模式下运行时在高频开关模式下运行的唯一的光伏逆变器开关器件。
17.根据权利要求14的光伏逆变器,还包括自适应数字控制器,该自适应数字控制器被配置来响应于期望的运行特性而调节与所述降压变换器和电流展开输出电路相关联的降压升压开关频率,以实现比使用固定开关频率光伏逆变器技术可实现的效率更大的光伏逆变器效率。
18.根据权利要求17的光伏逆变器,其中,从光伏阵列电压等级、光伏逆变器环境运行温度、光伏逆变器开关器件温度和电网功率等级选择所述期望的运行特性。
19.根据权利要求14的光伏逆变器,其中,所述光伏逆变器包括一个高频开关器件,以便所述光伏逆变器比包括多个高频开关器件的光伏逆变器具有更少的固有EMI产生。
CN200910146279.3A 2008-06-27 2009-06-26 高效率光伏逆变器 Active CN101615859B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/215505 2008-06-27
US12/215,505 US8023297B2 (en) 2008-06-27 2008-06-27 High efficiency photovoltaic inverter
US12/215,505 2008-06-27

Publications (2)

Publication Number Publication Date
CN101615859A CN101615859A (zh) 2009-12-30
CN101615859B true CN101615859B (zh) 2014-08-13

Family

ID=41138621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910146279.3A Active CN101615859B (zh) 2008-06-27 2009-06-26 高效率光伏逆变器

Country Status (4)

Country Link
US (1) US8023297B2 (zh)
EP (1) EP2139104B1 (zh)
CN (1) CN101615859B (zh)
AU (1) AU2009202490B2 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
EP3121922B1 (en) 2008-05-05 2020-03-04 Solaredge Technologies Ltd. Direct current power combiner
DE102009047936A1 (de) * 2009-10-01 2011-04-07 Dr. Johannes Heidenhain Gmbh Verfahren zum Betreiben eines Wechselrichters und Wechselrichter
RU2012121259A (ru) * 2009-10-29 2013-12-10 УОТТС энд МОР ЛТД. Система и способ сбора энергии
US8916764B2 (en) 2010-05-06 2014-12-23 Xandex, Inc. Output voltage ripple control for a DC-DC power converter
CN101976965B (zh) * 2010-10-08 2013-04-03 江苏博纬新能源科技有限公司 直流跟踪控制的大功率光伏并网逆变器
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN102088192B (zh) * 2011-03-02 2013-01-02 中南大学 单相单级电流型光伏并网逆变器及其控制方法
CN102684522A (zh) * 2011-03-09 2012-09-19 上海康威特吉能源技术有限公司 一种非隔离光伏并网逆变器及其控制方法
EP2549635B1 (en) 2011-07-20 2018-12-05 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
CN102291028A (zh) * 2011-08-17 2011-12-21 福州大学 基于有源功率因数校正芯片控制的微功率并网逆变器
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
CN102624030A (zh) * 2012-03-29 2012-08-01 东南大学 一种光伏/蓄电池混合式电流逆变型分布发电系统
US8896182B2 (en) 2012-04-05 2014-11-25 General Electric Corporation System for driving a piezoelectric load and method of making same
AT512983B1 (de) * 2012-06-13 2014-06-15 Fronius Int Gmbh Verfahren zur Prüfung einer Trennstelle eines Photovoltaik-Wechselrichters und Photovoltaik-Wechselrichter
US8958217B2 (en) 2012-06-15 2015-02-17 General Electric Company System for driving a piezoelectric load and method of making same
CN102751742B (zh) * 2012-07-25 2014-03-26 漳州科华技术有限责任公司 一种可变开关频率提高并网性能的方法
CN103009989B (zh) * 2012-12-14 2015-09-16 东南大学 一种混合式电流源型能量传输与驱动设备
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
CN103746561B (zh) * 2013-12-17 2016-04-13 中国船舶重工集团公司第七一九研究所 一种基于脉宽劈分的高频隔离型变频装置及其控制方法
US10447040B2 (en) 2014-10-15 2019-10-15 Cummins Power Generation Ip, Inc. Programmable inverter for controllable grid response
KR102308628B1 (ko) * 2015-01-21 2021-10-05 삼성에스디아이 주식회사 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
CN105305858B (zh) * 2015-11-18 2018-01-09 保定嘉盛光电科技股份有限公司 自适应光伏逆变器
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN106208786A (zh) * 2016-08-25 2016-12-07 苏州苏宝新能源科技有限公司 具有自放电、h桥逆变和电源防雷功能的太阳能空调系统
CN108169596B (zh) * 2017-12-22 2020-08-28 湖南科比特电气技术有限公司 一种光伏逆变器输入电流通道的校准系统及应用所述校准系统进行校准的方法
CN108418416A (zh) * 2018-03-19 2018-08-17 盐城工学院 一种部分功率处理升压单元与并网逆变器的协同控制方法
CN108695928B (zh) * 2018-05-28 2020-08-04 武汉天富海科技发展有限公司 一种隔离式光伏充电装置与方法
CN114498746A (zh) * 2022-01-28 2022-05-13 浙江腾圣储能技术有限公司 逆变器电路、逆变器、逆变器控制方法及光伏系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063538C1 (de) * 2000-12-20 2003-03-13 Ascom Energy Systems Ag Bern Verfahren zur Datenübertragung in Wechselstromnetzen
US6556462B1 (en) * 2002-06-28 2003-04-29 General Electric Company High power factor converter with a boost circuit having continuous/discontinuous modes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693805B1 (en) 2002-07-31 2004-02-17 Lockheed Martin Corporation Ripple cancellation circuit for ultra-low-noise power supplies
US7099169B2 (en) * 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
US7016205B2 (en) 2003-10-01 2006-03-21 General Electric Company Ripple-current reduction schemes for AC converters
US20050139259A1 (en) 2003-12-30 2005-06-30 Robert Steigerwald Transformerless power conversion in an inverter for a photovoltaic system
TW200709544A (en) * 2005-08-29 2007-03-01 Ind Tech Res Inst Transformer-free power conversion circuit for parallel connection with commercial electricity system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063538C1 (de) * 2000-12-20 2003-03-13 Ascom Energy Systems Ag Bern Verfahren zur Datenübertragung in Wechselstromnetzen
US6556462B1 (en) * 2002-06-28 2003-04-29 General Electric Company High power factor converter with a boost circuit having continuous/discontinuous modes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《A Robust power Decoupler and Maximum Power Point Tracker Topology for a Grid-Connected Photovoltaic System》;S.AliKhajehoddin等;《POWER ELECTRONICS SPECIALISTS CONFERENCE,IEEE》;20080615;66-69 *
S.AliKhajehoddin等.《A Robust power Decoupler and Maximum Power Point Tracker Topology for a Grid-Connected Photovoltaic System》.《POWER ELECTRONICS SPECIALISTS CONFERENCE,IEEE》.2008,66-69.

Also Published As

Publication number Publication date
AU2009202490B2 (en) 2013-12-05
AU2009202490A1 (en) 2010-01-14
EP2139104A1 (en) 2009-12-30
CN101615859A (zh) 2009-12-30
US8023297B2 (en) 2011-09-20
US20090323379A1 (en) 2009-12-31
EP2139104B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
CN101615859B (zh) 高效率光伏逆变器
CN101594068B (zh) 高效、多源光电逆变器
Sivakumar et al. An assessment on performance of DC–DC converters for renewable energy applications
Tseng et al. High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system
Hu et al. Power decoupling techniques for micro-inverters in PV systems-a review
US20120155139A1 (en) Electrical Energy Conversion Circuit Device
Abdel-Rahim et al. DC integration of residential photovoltaic systems: A survey
Stallon et al. High efficient module of boost converter in PV module
Chang et al. An interleaved buck-cascaded buck-boost inverter for PV grid-connection applications
KR101609245B1 (ko) 에너지 저장 장치
KR20190115364A (ko) 단상 및 3상 겸용 충전기
Ansari et al. A new control method for an interleaved flyback inverter to achieve high efficiency and low output current THD
Singh et al. Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications
Jagtap et al. A High Gain Modified Voltage Lift Cell Based DC-DC Converter Using Single Switch
Kim et al. Bidirectional power conversion of isolated switched-capacitor topology for photovoltaic differential power processors
Tian et al. A new single-staged bi-directional high frequency link inverter design
Bharathi Survey on Photo-Voltaic Powered Interleaved Converter System
CN202261063U (zh) 高效率多源光伏逆变器
Shehadeh et al. Photovoltaic inverters technology
Radmanesh et al. A Non-Isolated High Step-up Two-Input Single Output DC-DC Converter with Less Number of Components
Priya et al. Single Stage Dual Boost Inverter with Half Cycle Modulation Scheme for PV System Applications
Ahmed et al. Advanced single-stage soft switching PWM power conditioner with coupled inductor PWM boost chopper cascaded PWM inverter and time-sharing sinusoidal follow-up control scheme
Chiang et al. Design and implementation of boost-type flyback PV inverter
Saxena et al. A technical review: Single stage and two stage operation for solar system
Thanikanti et al. Converter/Inverter Topologies for Standalone and Grid-Connected PV Systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240314

Address after: American Georgia

Patentee after: General Electric Grid Solutions LLC

Country or region after: U.S.A.

Address before: New York, United States

Patentee before: General Electric Co.

Country or region before: U.S.A.

TR01 Transfer of patent right