CN101576432A - 振动台冲击响应生成方法 - Google Patents

振动台冲击响应生成方法 Download PDF

Info

Publication number
CN101576432A
CN101576432A CNA2009100722581A CN200910072258A CN101576432A CN 101576432 A CN101576432 A CN 101576432A CN A2009100722581 A CNA2009100722581 A CN A2009100722581A CN 200910072258 A CN200910072258 A CN 200910072258A CN 101576432 A CN101576432 A CN 101576432A
Authority
CN
China
Prior art keywords
shaking table
shock response
shock
model
transport function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100722581A
Other languages
English (en)
Other versions
CN101576432B (zh
Inventor
翟国富
康云志
任万滨
梁慧敏
王健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2009100722581A priority Critical patent/CN101576432B/zh
Publication of CN101576432A publication Critical patent/CN101576432A/zh
Application granted granted Critical
Publication of CN101576432B publication Critical patent/CN101576432B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明的目的在于提供一种所生成的冲击响应具有利用系统资源少、每次冲击下响应一致、可靠性高的振动台冲击响应生成方法。方法包括:分析振动台的力学模型,得到其理论传递函数;根据辨识波形图所示形式作为振动台输入信号,通过振动台控制驱动系统加载到振动台;进行系统辨识,根据得到的传递函数,在simulink中进行PID仿真计算,直至其生成符合国军标规定的波形复现法的冲击响应;将仿真结果应用到实际,开环控制即满足要求;也可以将PID参数应用到闭环控制中,最终生成符合国军标要求的冲击响应。本发明生成的冲击响应严格符合国军标要求,并具有利用系统资源少,每次冲击下响应一致,可靠性高的特点。

Description

振动台冲击响应生成方法
(一)技术领域
本发明涉及振动台控制技术,具体说就是一种振动台冲击响应生成方法。
(二)背景技术
为了保证产品承受非重复性机械冲击的适应性,许多产品在出厂前都需要经受冲击试验的考核,尤其是军用设备。冲击试验的目的主要是用来确定元件、设备在使用和运输过程中经受非多次重复的机械冲击的适应性,以及评价结构的完好性,其次还可以用于微电子器件的内强度试验。继电器等开关类器件更容易受到冲击的影响,国军标65B对继电器有详细规定,当继电器按国军标360A中方法213规定的条件A、B或C进行试验时,闭合触点的断开不得超过10us,断开触点的闭合或桥接不得超过1us,不允许有机械或电气损坏现象。
电动式振动台是目前使用最广泛的一种振动测试设备。电动式振动台的频率范围宽,小型振动台频率范围为0-10kHz;动态范围宽,易于实现自动或手动控制,加速度波形良好,适合产生随机波,可得到很大的加速度。虽然振动台不如冲击机产生的冲击加速度大,但由于振动台良好的可控性,可以产生更符合标准的冲击响应。
冲击振动控制就是依据振动系统特性,针对设定的冲击波参数通过适当的算法产生控制信号,激励电动式振动台再现设定的冲击波形。方法213中规定的是一种复现冲击波形方法,是时域波形在振动台上的再现。针对时域波形控制,传统方法是采用波形幅值均衡法和传递函数均衡法,此类方法对所模拟的典型冲击脉冲时域波形进行修正及控制,利用数字式控制方法实现对振动台控制点处的冲击响应信号的精确控制。在控制过程中,不断修正时域波形的幅值、延迟时间等相关参数或不断确定试验系统的传递函数,再利用规定波形的傅里叶变换得到新的驱动波形信号,从而完成多次重复的、闭环的修正过程。此类方法是通过实时试验并修正控制信号的方法实现冲击响应,一方面,此类方法过程繁琐并需要傅里叶变换、闭环控制等,整个控制系统对硬件的要求被提高;另一方面,在冲击试验修正的过程中,模拟冲击波形的一些参数,如幅值、时间延迟等将受到噪声和设备等因素的影响发生变化,虽然冲击波形满足预期要求,但是不能保证在冲击试验中冲击产生时,每一次的驱动信号都相同,这样会对实验结果引入无法量化的扰动。
对振动台实现良好的控制,得到其传递函数是非常关键的,但是目前对振动台参数的辨识研究较少,只有一些基于测量频率特性而估计参数的研究方法,且操作繁琐,不利于工程应用。
(三)发明内容
本发明的目的在于提供一种所生成的冲击响应具有利用系统资源少、每次冲击下响应一致、可靠性高的振动台冲击响应生成方法。
本发明的目的是这样实现的:所述的振动台冲击响应生成方法步骤如下:
一、分析振动台的力学模型,得到其理论传递函数;根据理论传递函数推导其离散传递函数,进而确定其零极点个数;
二、根据辨识波形图所示形式作为振动台输入信号,通过振动台控制驱动系统加载到振动台;
三、加速度信号作为输出从振动台台面上的加速度传感器输出到可存储波形的示波器,示波器同时记录振动台输入信号;
四、将上一步输入输出数据保存至上位机,利用Matlab系统辨识工具箱的信号处理工具处理输入输出数据;
五、在Matlab系统辨识辨识工具箱中选择ARX模型,零极点个数按第二步结果选择;
六、进行系统辨识,如果辨识结果与实际波形拟合不好,改变第四步信号处理时滤波环节的阀值,直至拟合成功(拟合度超过60%可认定拟合成功),拟合成功会得到振动台的离散传递函数;
七、通Matlab的d2c命令将离散传递函数转换成连续传递函数;
八、通过理论模型形式修正系统辨识的结果,用数值代替原有参数;
九、将数据导入simulink参数估计,模型应用理论模型,参数初值采用上步获得数值;
十、进行参数估计,如果估计不收敛,改变迭代规则,直至计算收敛,最终得到接近真实模型的传递函数;
十一、根据得到的传递函数,在simulink中进行PID仿真计算,直至其生成符合国军标规定的波形复现法的冲击响应;
十二、将仿真结果应用到实际,开环控制即满足要求;也可以将PID参数应用到闭环控制中,最终生成符合国军标要求的冲击响应。
本发明提供一种振动台冲击响应生成方法,该方法可以得到振动台准确的传递函数;在得到传递函数的情况下,通过仿真可得到理想的控制方法;本发明生成的冲击响应严格符合国军标要求,并具有利用系统资源少,每次冲击下响应一致,可靠性高的特点。
(四)附图说明
图1为本发明的辨识波形图;
图2为本发明的系统辨识流程图;
图3为本发明的振动台控制驱动系统结构方框图;
图4为本发明的电动式振动台等效参数模型图;
图5为本发明的6ms宽半正弦冲击输入和输出响应图;
图6为本发明的辨识出的冲击的仿真输出与实际输出图;
图7为本发明的模型的PID控制方框图;
图8为本发明的开环控制的输出与输入图。
(五)具体实施方式
下面结合附图举例对本发明作进一步说明。
实施例1:结合图1、图2,本发明一种振动台冲击响应生成方法,所述的冲击响应生成方法步骤如下:
一、分析振动台的力学模型,得到其理论传递函数;根据理论传递函数推导其离散传递函数,进而确定其零极点个数;
二、根据辨识波形图(图1)所示形式作为振动台输入信号,通过振动台控制驱动系统加载到振动台;
三、加速度信号作为输出从振动台台面上的加速度传感器输出到可存储波形的示波器,示波器同时记录振动台输入信号;
四、将上一步输入输出数据保存至上位机,利用Matlab系统辨识工具箱的信号处理工具处理输入输出数据;
五、在Matlab系统辨识辨识工具箱中选择ARX模型,零极点个数按第二步结果选择;
六、进行系统辨识,如果辨识结果与实际波形拟合不好,改变第四步信号处理时滤波环节的阀值,直至拟合成功(拟合度超过60%可认定拟合成功),拟合成功会得到振动台的离散传递函数;
七、通Matlab的d2c命令将离散传递函数转换成连续传递函数;
八、通过理论模型形式修正系统辨识的结果,用数值代替原有参数;
九、将数据导入simulink参数估计,模型应用理论模型,参数初值采用上步获得数值;
十、进行参数估计,如果估计不收敛,改变迭代规则,直至计算收敛,最终得到接近真实模型的传递函数;
十一、根据得到的传递函数,在simulink中进行PID仿真计算,直至其生成符合国军标规定的波形复现法的冲击响应要求;
十二、将传真结果应用到实际,开环控制即满足要求;也可以将PID参数应用到闭环控制中,最终生成符合国军标要求的冲击响应。
实施例2,结合图1、图2、图3、图4、图5,本发明振动台冲击响应生成方法,具体实施步骤如下:
选择生成冲击的振动台是某国产小型电动式振动台。
第一步,分析振动台的力学模型,得到其理论传递函数;根据理论传递函数推导其离散传递函数,进而确定其零极点个数;(结合图3)
Figure A20091007225800071
Figure A20091007225800072
Figure A20091007225800073
式中uF-输入电压;Lo-滤波器等效电感;Co-滤波器等效电容;RL-滤波器等效电阻;iL-线圈电流;uo-线圈电压;R-等效电阻;L-等效电感;B-气隙磁密;F-电动力;m-电枢和工作台质量;c-阻尼比;k-弹性系数;x-台面位移;l-电枢等效长度;ue-振动台等效电压;i0-驱动电流。
通常情况下可忽略模型中滤波器作用,将式(3)、(4)代入式(2)中,可得
Figure A20091007225800074
经拉氏变换,可得输入电压u0与振动加速度
Figure A20091007225800075
的传递函数G(s)
G ( s ) = a ( s ) u o ( s ) = Bls 2 ( Ls + R ) ( ms 2 + cs + k ) + ( Bl ) 2 s - - - ( 6 )
将式(6)转换成零极点表示形式
G ( s ) = Bls 2 ( s - s 1 ) ( s - s 2 ) ( s - s 3 ) - - - ( 7 )
系统连续传函为三阶,同时含有三个极点和三个零点。为满足数字控制的要求,将理论模型的连续传递函数转换为离散传递函数,从而完成系统辨识。采用零阶保持器
Figure A20091007225800078
串接连续传函,由Z变换得
G ( z ) = Z [ 1 - e - Ts s G ( s ) ] = b 2 z 2 + b 1 z 1 + b 0 a 3 z 3 + a 2 z 2 + a 1 z + a 0 - - - ( 8 )
式中T-采样时间; a 0 = - a 3 e s 1 s 2 s 3 T ; a 1 = a 3 ( e s 1 s 2 T + e s 2 s 3 T + e s 1 s 3 T ) ;
a 2 = - a 3 ( e s 1 T + e s 2 T + e s 3 T ) ; a3=(s1-s2)(s2-s3)(s1-s3);
b 0 = s 1 ( s 2 - s 3 ) e s 2 s 3 T + s 2 ( s 3 - s 1 ) e s 1 s 3 T + s 3 ( s 1 - s 2 ) e s 1 s 2 T ; b1=-(b0+b2);
b 2 = s 1 ( s 2 - s 3 ) e s 1 T + s 2 ( s 3 - s 1 ) e s 2 T + s 3 ( s 1 - s 2 ) e s 3 T .
得到离散域的零、极点数,主要是目的是获得极点数,零点个数为3,极点个数为3。
第二步,根据图1的波形图所示形式作为振动台输入信号,通过振动台控制驱动系统加载到振动台;
第三步,加速度信号作为输出从振动台台面上的加速度传感器输出到可存储波形的示波器,示波器同时记录振动台输入信号;(结合图4)第四步,将上一步输入输出数据保存至上位机,利用Matlab系统辨识工具箱的信号处理工具处理输入输出数据;
第五步,在Matlab系统辨识辨识工具箱中选择ARX模型,零点个数为3,极点个数为3,延迟选择1(表示无延迟);
第六步,进行系统辨识,如果辨识结果与实际波形拟合不好,改变第四步信号处理时滤波环节的阀值,直至拟合成功(拟合度超过60%可认定拟合成功),拟合成功会得到振动台的离散传递函数;(结合图5)
G ( z ) = 0.8069 - 2.381 z - 1 + 2.342 z - 2 - 0.7676 z - 3 1 - 2.999 z - 1 + 2.998 z - 2 - 0.9988 z - 3 - - - ( 9 )
第七步,通Matlab的d2c命令将离散传递函数转换成连续传递函数;
G ( s ) = 0.02 s 3 + 488.3 s 2 - 24460 s - 1.061 s 3 + 499.8 s 2 + 231400 s + 19150000 - - - ( 10 )
第八步,通过理论模型形式修正系统辨识的结果,用数值代替原有参数;
G ( s ) = 488.3 s 2 s 3 + 499.8 s 2 + 231400 s + 19150000 - - - ( 11 )
第九步,将数据导入simulink参数估计,模型应用理论模型,参数初值采用上步获得数值;
G ( s ) = s 2 as 3 + bs 2 + cs + d - - - ( 12 )
第十步,进行参数估计,如果估计不收敛,改变迭代规则,直至计算收敛,最终得到接近真实模型的传递函数;
G ′ ( s ) = s 2 4.8451 × 10 - 5 s 3 + 0.028289 s 2 + 13.623 s + 1308.7 - - - ( 13 )
第十一步,根据得到的传递函数,在simulink中进行PID仿真计算,直至其生成符合国军标规定的波形复现法的冲击响应要求;(结合图6)
第十二步,将传真结果应用到实际,开环控制即满足要求;也可以将PID参数应用到闭环控制中,最终生成符合国军标要求的冲击响应。(结合图7)
产生一个时间为6ms的半正弦冲击,冲击之后15ms产生了一个向下的冲击,这是因为图8所示是加速度波形,振动台台面在冲击后会保持静止,加速度的积分值也就是振动台台面的运动速度应为零,在仿真时PID闭环控制下,使得这个向下的补偿冲击延迟了15ms,满足了国军标对冲击的要求。

Claims (1)

1.一种振动台冲击响应生成方法,其特征在于:振动台冲击响应生成方法步骤如下:
一、分析振动台的力学模型,得到其理论传递函数;根据理论传递函数推导其离散传递函数,进而确定其零极点个数;
二、根据辨识波形图所示形式作为振动台输入信号,通过振动台控制驱动系统加载到振动台;
三、加速度信号作为输出从振动台台面上的加速度传感器输出到可存储波形的示波器,示波器同时记录振动台输入信号;
四、将上一步输入输出数据保存至上位机,利用Matlab系统辨识工具箱的信号处理工具处理输入输出数据;
五、在Matlab系统辨识辨识工具箱中选择ARX模型,零极点个数按第二步结果选择;
六、进行系统辨识,如果辨识结果与实际波形拟合不好,改变第四步信号处理时滤波环节的阀值,直至拟合成功(拟合度超过60%可认定拟合成功),拟合成功会得到振动台的离散传递函数;
七、通过Matlab的d2c命令将离散传递函数转换成连续传递函数;
八、通过理论模型形式修正系统辨识的结果,用数值代替原有参数;
九、将数据导入simulink参数估计,模型应用理论模型,参数初值采用上步获得数值;
十、进行参数估计,如果估计不收敛,改变迭代规则,直至计算收敛,最终得到接近真实模型的传递函数;
十一、根据得到的传递函数,在simulink中进行PID仿真计算,直至其生成符合国军标规定的波形复现法的冲击响应要求;
十二、将仿真结果应用到实际,开环控制即满足要求;也可以将PID参数应用到闭环控制中,最终生成符合国军标要求的冲击响应。
CN2009100722581A 2009-06-12 2009-06-12 振动台冲击响应生成方法 Expired - Fee Related CN101576432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100722581A CN101576432B (zh) 2009-06-12 2009-06-12 振动台冲击响应生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100722581A CN101576432B (zh) 2009-06-12 2009-06-12 振动台冲击响应生成方法

Publications (2)

Publication Number Publication Date
CN101576432A true CN101576432A (zh) 2009-11-11
CN101576432B CN101576432B (zh) 2011-11-09

Family

ID=41271423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100722581A Expired - Fee Related CN101576432B (zh) 2009-06-12 2009-06-12 振动台冲击响应生成方法

Country Status (1)

Country Link
CN (1) CN101576432B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832849A (zh) * 2010-04-09 2010-09-15 北京工业大学 基于三参量控制的振动台软启动控制方法
CN102567575A (zh) * 2011-12-09 2012-07-11 北京卫星环境工程研究所 航天器虚拟正弦振动试验方法
CN102830249A (zh) * 2012-08-17 2012-12-19 长春工业大学 一种加速度传感器传递函数的辨识方法
CN103512718A (zh) * 2013-10-09 2014-01-15 江苏交科工程检测技术有限公司 一种基于地震模型的预测-修正混合试验方法
CN103714252A (zh) * 2013-12-29 2014-04-09 中国地震局工程力学研究所 基于地震反应记录尾部数据的结构振动台模型模态参数识别方法
CN106325104A (zh) * 2016-10-28 2017-01-11 黑龙江省电力科学研究院 基于matlab建模仿真的热控pid参数设定调整方法
CN108254146A (zh) * 2018-01-22 2018-07-06 中国地震局工程力学研究所 改进的基于楼面响应谱的振动台离线迭代控制方法
CN108287047A (zh) * 2017-12-22 2018-07-17 中国地震局工程力学研究所 高精度地震模拟振动台的波形再现在线迭代方法
CN110031171A (zh) * 2019-04-30 2019-07-19 中国工程物理研究院总体工程研究所 一种电动振动台冲击响应谱试验的加权控制方法
CN110538998A (zh) * 2019-08-07 2019-12-06 佛山市岁之博新材料科技有限公司 一种能够自动更换雾化漏包的方法及装置
CN110907827A (zh) * 2019-11-22 2020-03-24 瑞声科技(新加坡)有限公司 一种马达瞬态失真测量方法及系统
CN111426443A (zh) * 2020-03-18 2020-07-17 天津航天瑞莱科技有限公司 一种基于振动台的拦阻冲击试验方法
CN112444367A (zh) * 2020-12-18 2021-03-05 中国工程物理研究院总体工程研究所 一种多振动台并推单轴振动试验控制方法
CN112595479A (zh) * 2020-06-05 2021-04-02 中国航空无线电电子研究所 一种用于拦阻冲击试验的正弦波波形组合补偿方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2567674Y (zh) * 2002-12-12 2003-08-20 谌德荣 冲击信号处理芯片
CN101354423A (zh) * 2008-09-16 2009-01-28 华北电力大学 基于实测的冲击负荷建模系统及方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832849A (zh) * 2010-04-09 2010-09-15 北京工业大学 基于三参量控制的振动台软启动控制方法
CN102567575A (zh) * 2011-12-09 2012-07-11 北京卫星环境工程研究所 航天器虚拟正弦振动试验方法
CN102830249A (zh) * 2012-08-17 2012-12-19 长春工业大学 一种加速度传感器传递函数的辨识方法
CN103512718A (zh) * 2013-10-09 2014-01-15 江苏交科工程检测技术有限公司 一种基于地震模型的预测-修正混合试验方法
CN103714252A (zh) * 2013-12-29 2014-04-09 中国地震局工程力学研究所 基于地震反应记录尾部数据的结构振动台模型模态参数识别方法
CN106325104A (zh) * 2016-10-28 2017-01-11 黑龙江省电力科学研究院 基于matlab建模仿真的热控pid参数设定调整方法
CN108287047A (zh) * 2017-12-22 2018-07-17 中国地震局工程力学研究所 高精度地震模拟振动台的波形再现在线迭代方法
CN108254146A (zh) * 2018-01-22 2018-07-06 中国地震局工程力学研究所 改进的基于楼面响应谱的振动台离线迭代控制方法
CN110031171A (zh) * 2019-04-30 2019-07-19 中国工程物理研究院总体工程研究所 一种电动振动台冲击响应谱试验的加权控制方法
CN110538998A (zh) * 2019-08-07 2019-12-06 佛山市岁之博新材料科技有限公司 一种能够自动更换雾化漏包的方法及装置
CN110907827A (zh) * 2019-11-22 2020-03-24 瑞声科技(新加坡)有限公司 一种马达瞬态失真测量方法及系统
CN110907827B (zh) * 2019-11-22 2022-04-01 瑞声科技(新加坡)有限公司 一种马达瞬态失真测量方法及系统
CN111426443A (zh) * 2020-03-18 2020-07-17 天津航天瑞莱科技有限公司 一种基于振动台的拦阻冲击试验方法
CN111426443B (zh) * 2020-03-18 2023-03-10 天津航天瑞莱科技有限公司 一种基于振动台的拦阻冲击试验方法
CN112595479A (zh) * 2020-06-05 2021-04-02 中国航空无线电电子研究所 一种用于拦阻冲击试验的正弦波波形组合补偿方法
CN112595479B (zh) * 2020-06-05 2023-03-31 中国航空无线电电子研究所 一种用于拦阻冲击试验的正弦波波形组合补偿方法
CN112444367A (zh) * 2020-12-18 2021-03-05 中国工程物理研究院总体工程研究所 一种多振动台并推单轴振动试验控制方法

Also Published As

Publication number Publication date
CN101576432B (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
CN101576432B (zh) 振动台冲击响应生成方法
CN105353789B (zh) 连续振动信号时间历程复现控制方法
CN109753689A (zh) 一种电力系统机电振荡模态特征参数在线辩识方法
CN111965537B (zh) 马达参数测试方法
CN106227964B (zh) 基于扩张状态观测器的迟滞非线性系统参数辨识方法
CN106786567B (zh) 一种基于pmu类噪声数据的在线负荷建模方法
CN105929201A (zh) 一种基于细化谱分析的加速度计动态模型结构参数辨识的方法
CN106707021A (zh) 一种分布式光伏发电集群并网系统的谐振检测方法
CN109470888B (zh) 基于深度学习的高g值加速度计的标定系统及标定方法
CN104020664B (zh) 一种基于偏微分方程的柔性机械臂干扰观测器设计方法
Dudzik et al. Analysis of the error generated by the voltage output accelerometer using the optimal structure of an artificial neural network
US11144692B2 (en) Co-simulation system with delay compensation and method for control of co-simulation system
CN106706285A (zh) 一种制动盘固有频率在线检测方法
CN110098610A (zh) 故障扰动下电力系统振荡主导模式的实时辨识方法及系统
Romani et al. Fast and reliable modeling of piezoelectric transducers for energy harvesting applications
Naranpanawe et al. Finite element modelling of a transformer winding for vibration analysis
CN105406788A (zh) 一种基于电网动态特性的发电机主导参数辨识方法
CN110991101B (zh) 一种压缩式压电加速度计结构优化设计方法
CN111106783B (zh) 一种信号制作方法、信号制作装置、振动马达及触屏设备
Tomczyk Assessment of convergence of the algorithm for determining the upper bound of dynamic error on the example of acceleration sensors
Saeidtehrani et al. Study on the time-variability of hydrodynamic coefficients for wave energy converter heave plates
JP4209266B2 (ja) リアルタイムシミュレーション装置およびリアルタイムシミュレーション方法
Shelke et al. Fluid-structure interaction-based simulation methods for fluid sloshing in tanks
CN113465850B (zh) 机械振动信号路径识别的方法、试验装置和试验方法
CN109782608B (zh) 一种电液加速度伺服系统随机波再现控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111109

Termination date: 20160612