CN101551762B - Spaceborne processing platform resisting single event effect - Google Patents
Spaceborne processing platform resisting single event effect Download PDFInfo
- Publication number
- CN101551762B CN101551762B CN2009100434226A CN200910043422A CN101551762B CN 101551762 B CN101551762 B CN 101551762B CN 2009100434226 A CN2009100434226 A CN 2009100434226A CN 200910043422 A CN200910043422 A CN 200910043422A CN 101551762 B CN101551762 B CN 101551762B
- Authority
- CN
- China
- Prior art keywords
- dsp
- fpga
- controller
- module
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012545 processing Methods 0.000 title claims abstract description 21
- 230000000694 effects Effects 0.000 title claims abstract description 20
- 230000008439 repair process Effects 0.000 claims abstract description 82
- 238000012544 monitoring process Methods 0.000 claims abstract description 71
- 230000015654 memory Effects 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 16
- 235000019800 disodium phosphate Nutrition 0.000 description 105
- 230000006870 function Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Stored Programmes (AREA)
Abstract
本发明公开了一种具有抗单粒子效应能力的星载处理平台,它包括由高可靠监控单元、非易失性存储器、现场可编程逻辑门阵列和一个以上的DSP,高可靠监控单元与其他各部分采用局部总线互联,现场可编程逻辑门阵列和DSP之间采用高速总线互联;所述高可靠监控单元用于对现场可编程逻辑门阵列和DSP内的单粒子翻转进行检测和修复。本发明是一种结构原理简单、操作简便、可靠性高、稳定性好的具有抗单粒子效应能力的星载处理平台。
The invention discloses an on-board processing platform with anti-single event effect capability, which includes a high-reliability monitoring unit, a non-volatile memory, a field programmable logic gate array and more than one DSP, the high-reliability monitoring unit and other All parts are connected by local bus, and the field programmable logic gate array and DSP are connected by high-speed bus; the high-reliability monitoring unit is used to detect and repair the single event reversal in the field programmable logic gate array and DSP. The invention is a space-borne processing platform with simple structure and principle, convenient operation, high reliability, good stability and anti-single event effect capability.
Description
技术领域technical field
本发明主要涉及到空间仪器工程领域,特指一种具有抗单粒子效应能力的星载处理平台。The invention mainly relates to the field of space instrument engineering, in particular to a space-borne processing platform capable of resisting single-event effects.
背景技术Background technique
宇宙空间中充满了来自浩瀚宇宙的各种粒子:质子、电子、α粒子、重离子、γ射线等,这些粒子引起的辐射效应,尤其是单粒子效应影响着空间电子仪器的可靠性。Cosmic space is full of various particles from the vast universe: protons, electrons, alpha particles, heavy ions, gamma rays, etc. The radiation effects caused by these particles, especially the single event effect, affect the reliability of space electronic instruments.
近年来,随着超大规模集成电路(VLSI,Very Large Scale Integrated circuits)技术的发展和应用,现场可编程逻辑门阵列(FPGA,Field Programmable Gate Array)和数字信号处理器(DSP,Digital Signal Processor),依靠其强大的信号处理能力和优越的接口性能逐渐取代传统单片机,成为星载高速信号处理平台的重要组成部分,开始在航天工程中得到应用。In recent years, with the development and application of VLSI (Very Large Scale Integrated circuits) technology, Field Programmable Logic Gate Array (FPGA, Field Programmable Gate Array) and Digital Signal Processor (DSP, Digital Signal Processor) , relying on its powerful signal processing capability and superior interface performance to gradually replace the traditional single-chip microcomputer, become an important part of the spaceborne high-speed signal processing platform, and began to be applied in aerospace engineering.
随着制造工艺的提高,VLSI的工作频率越来越高,工作电压越来越低,这使星载信号处理平台对单粒子效应表现出了更强的敏感性,FPGA、DSP等容易出现单粒子翻转等故障。FPGA、DSP等VLSI依靠其复杂的逻辑关系完成各种各样的功能,各个晶体管之间除了物理上的连接关系之外,通过后期逻辑功能设计,如FPGA的硬件功能描述或者DSP的程序设计,还在相互之间产生了基于逻辑功能的连接和时序关系。从应用角度来看,单粒子效应对FPGA和DSP的影响已经从短暂的、小面积的、单个晶体管的区域通过时序电路的逻辑功能,传递或耦合到更大的区域。可见,随着VLSI晶体管工艺特征尺寸的减小和密度的增加、内核工作电压的降低和工作频率的大幅度提高,星载信号处理平台受单粒子效应的影响越来越严重,空间电子仪器的单粒子效应故障比重将进一步增大。With the improvement of the manufacturing process, the operating frequency of VLSI is getting higher and lower, and the working voltage is getting lower and lower, which makes the on-board signal processing platform more sensitive to the single event effect, and FPGA, DSP, etc. are prone to single-event effects. Particle flipping and other glitches. VLSI such as FPGA and DSP rely on their complex logical relationships to complete various functions. In addition to the physical connection relationship between each transistor, through the later logical function design, such as FPGA hardware function description or DSP programming, Logical function-based connections and timing relationships are also created with each other. From an application point of view, the impact of single event effects on FPGAs and DSPs has been transmitted or coupled to larger areas from the transient, small-area, and single-transistor areas through the logic functions of sequential circuits. It can be seen that with the decrease of the feature size and the increase of the density of the VLSI transistor process, the reduction of the core operating voltage and the substantial increase of the operating frequency, the spaceborne signal processing platform is more and more seriously affected by the single event effect. The proportion of single event effect failures will further increase.
目前,在星载信号处理平台中,一方面是高性能、大规模、高等级的FPGA、DSP器件价格异常昂贵;另一方面,限于制造工艺和技术等方面的原因,普通工业级甚至是军品级等低价格FPGA、DSP器件由于大量采用片上SRAM(Static Random Access Memory),受空间高能粒子影响发生单粒子效应的概率大大提高,严重影响FPGA和DSP器件在空间环境中的正常工作。At present, in the on-board signal processing platform, on the one hand, high-performance, large-scale, high-grade FPGA and DSP devices are extremely expensive; Due to the large number of on-chip SRAM (Static Random Access Memory) used in low-priced FPGA and DSP devices, the probability of single event effects caused by high-energy particles in space is greatly increased, which seriously affects the normal operation of FPGA and DSP devices in the space environment.
发明内容Contents of the invention
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种结构原理简单、操作简便、可靠性高、稳定性好的具有抗单粒子效应能力的星载处理平台。The technical problem to be solved by the present invention is: aiming at the technical problems existing in the prior art, the present invention provides an on-board processing platform with simple structure, simple operation, high reliability, good stability and anti-single event effect ability .
为解决上述技术问题,本发明采用以下技术方案。In order to solve the above technical problems, the present invention adopts the following technical solutions.
一种具有抗单粒子效应能力的星载处理平台,其特征在于:它包括由高可靠监控单元、非易失性存储器、现场可编程逻辑门阵列和一个以上的DSP,高可靠监控单元与其他各部分采用局部总线互联,现场可编程逻辑门阵列和DSP之间采用高速总线互联;所述高可靠监控单元用于对现场可编程逻辑门阵列和DSP内的单粒子翻转进行检测和修复。An on-board processing platform with anti-single event effect capability is characterized in that it includes a highly reliable monitoring unit, a non-volatile memory, a field programmable logic gate array and more than one DSP, and the highly reliable monitoring unit and other All parts are connected by local bus, and the field programmable logic gate array and DSP are connected by high-speed bus; the high-reliability monitoring unit is used to detect and repair the single event reversal in the field programmable logic gate array and DSP.
作为本发明的进一步改进:As a further improvement of the present invention:
所述高可靠监控单元包括通过总线互连的检测修复控制器、DSP监控模块、DSP修复模块、FPGA检测模块、FPGA修复模块以及DSP监控接口、FPGA监控接口和NVRAM接口。The high-reliability monitoring unit includes a detection and repair controller, a DSP monitoring module, a DSP repair module, an FPGA detection module, an FPGA repair module, a DSP monitoring interface, an FPGA monitoring interface, and an NVRAM interface interconnected by a bus.
所述检测修复控制器用于监测并接收DSP监控模块和FPGA检测模块发出的器件修复请求指令,以及向DSP修复模块和FPGA修复模块发出器件修复命令。The detection and repair controller is used for monitoring and receiving device repair request instructions issued by the DSP monitoring module and the FPGA detection module, and sending device repair commands to the DSP repair module and the FPGA repair module.
所述FPGA检测模块包括FPGA配置数据读取控制器、FPGA配置数据回读控制器和FPGA配置数据检测控制器,所述FPGA配置数据读取控制器通过NVRAM接口从非易失性存储器中读取FPGA原始配置数据,FPGA配置数据回读控制器通过FPGA监控接口回读FPGA的运行配置数据,FPGA配置数据检测控制器对原始配置数据和运行配置数据进行比对分析,当发生比对不匹配时,通过内部数据总线向检测修复控制器发出FPGA修复请求指令。Described FPGA detection module comprises FPGA configuration data reading controller, FPGA configuration data read-back controller and FPGA configuration data detection controller, and described FPGA configuration data reading controller reads from non-volatile memory by NVRAM interface FPGA original configuration data, FPGA configuration data readback controller reads back FPGA running configuration data through the FPGA monitoring interface, FPGA configuration data detection controller compares and analyzes the original configuration data and running configuration data, when a comparison mismatch occurs , sending an FPGA repair request instruction to the detection and repair controller through the internal data bus.
所述FPGA修复模块包括FPGA配置数据读取控制器和FPGA配置数据写入控制器,FPGA配置数据读取控制器通过局部总线接收检测修复控制器的FPGA修复命令、通过NVRAM接口读取存储在非易失性存储器中的FPGA原始配置数据,FPGA配置数据写入控制器通过FPGA监控接口将FPGA原始配置数据写入FPGA中,完成对FPGA的修复。Described FPGA repairing module comprises FPGA configuration data reading controller and FPGA configuration data writing controller, and FPGA configuration data reading controller receives the FPGA repairing command of detecting and repairing controller by local bus, reads and stores in non-volatile memory by NVRAM interface. The FPGA original configuration data in the volatile memory, the FPGA configuration data writing controller writes the FPGA original configuration data into the FPGA through the FPGA monitoring interface, and completes the restoration of the FPGA.
所述DSP监控模块包括DSP状态信息回读控制器和DSP状态判别器,回读控制器通过DSP监控接口监测并接收DSP运行状态信息,判别器根据DSP运行状态信息对DSP状态进行判别,当监测到DSP“跑死”或“跑飞”时,产生DSP内核复位命令发送给DSP进行复位,或者产生DSP修复请求指令给检测修复控制器等待修复DSP。Described DSP monitoring module comprises DSP state information read-back controller and DSP state discriminator, and read-back controller monitors and receives DSP running state information by DSP monitoring interface, and discriminator discriminates DSP state according to DSP running state information, when monitoring When the DSP "runs to death" or "runs away", a DSP core reset command is generated and sent to the DSP for reset, or a DSP repair request command is generated to the detection and repair controller to wait for the DSP to be repaired.
所述DSP修复模块包括DSP程序数据读取控制器和DSP程序数据写入控制器,DSP程序数据读取控制器通过内部数据总线接收检测修复控制器的DSP修复命令、通过NVRAM接口读取存储在非易失性存储器中的DSP程序数据,DSP程序数据写入控制器通过DSP监控接口将DSP程序数据写入DSP中,完成对DSP的修复。Described DSP repairing module comprises DSP program data reading controller and DSP program data writing controller, and DSP program data reading controller receives the DSP repairing order of detecting and repairing controller by internal data bus, reads and stores in by NVRAM interface The DSP program data in the non-volatile memory, the DSP program data writing controller writes the DSP program data into the DSP through the DSP monitoring interface, and completes the repair of the DSP.
与现有技术相比,本发明的优点就在于:Compared with the prior art, the present invention has the advantages of:
1.本发明采用“FPGA加多DSP”的互联结构,大大提高了平台的扩展性以及处理性能和计算能力;1. The present invention adopts the interconnection structure of "FPGA plus multiple DSPs", which greatly improves the expansibility, processing performance and computing power of the platform;
2.本发明设置了高可靠监控单元,用于完成对FPGA和DSP单粒子翻转进行检测和修复,降低了星载处理平台对FPGA和DSP器件等级的要求,从而可以将低等级FPGA和DSP器件应用于空间仪器工程,大大降低成本;2. The present invention is equipped with a highly reliable monitoring unit, which is used to detect and repair FPGA and DSP single event flipping, and reduces the requirements of the on-board processing platform for FPGA and DSP device levels, so that low-level FPGA and DSP devices can be used Applied to space instrument engineering, greatly reducing costs;
3.本发明FPGA配置存储器回读流程,采用特定时序并以独立配置帧为单位进行FPGA配置存储器回读,不干扰FPGA正常逻辑功能的运行;3. The readback process of the FPGA configuration memory of the present invention adopts a specific timing and uses an independent configuration frame as a unit to read back the FPGA configuration memory, without interfering with the operation of the normal logic function of the FPGA;
4.本发明FPGA配置存储器修复流程,采用特定时序并以独立配置帧为单位对FPGA配置存储器错误配置帧进行修复,不干扰FPGA其他逻辑功能的正常运行;4. The repair process of the FPGA configuration memory of the present invention adopts a specific timing and uses an independent configuration frame as a unit to repair the wrong configuration frame of the FPGA configuration memory, without interfering with the normal operation of other logic functions of the FPGA;
5.本发明高可靠监控单元是一个集成电路,在单片FPGA上实现,结构简单,模块化程度高。5. The highly reliable monitoring unit of the present invention is an integrated circuit, implemented on a single FPGA, with simple structure and high degree of modularization.
附图说明Description of drawings
图1是本发明星载处理平台的结构示意图;Fig. 1 is a structural representation of the on-board processing platform of the present invention;
图2是本发明高可靠监控单元的结构示意图;Fig. 2 is a schematic structural view of the highly reliable monitoring unit of the present invention;
图3是本发明FPGA检测模块的结构示意图;Fig. 3 is the structural representation of FPGA detection module of the present invention;
图4是本发明FPGA修复模块的结构示意图;Fig. 4 is the structural representation of FPGA repair module of the present invention;
图5是本发明DSP监控模块的结构示意图;Fig. 5 is the structural representation of DSP monitoring module of the present invention;
图6是本发明DSP修复模块的结构示意图;Fig. 6 is the structural representation of DSP repairing module of the present invention;
图7是本发明FPGA检测修复流程图;Fig. 7 is a flowchart of FPGA detection and repair of the present invention;
图8是本发明FPGA配置存储器回读流程图;Fig. 8 is the read-back flowchart of FPGA configuration memory of the present invention;
图9是本发明FPGA配置存储器修复流程图;Fig. 9 is a flowchart of repairing FPGA configuration memory of the present invention;
图10是本发明DSP检测修复流程图。Fig. 10 is a flow chart of DSP detection and repair in the present invention.
具体实施方式Detailed ways
以下将结合具体实施例和说明书附图对本发明做进一步详细说明。The present invention will be further described in detail below in conjunction with specific embodiments and accompanying drawings.
如图1所示,本发明的一种具有抗单粒子效应能力的星载处理平台,它由高可靠监控单元、非易失性存储器、DSP和FPGA组成;高可靠监控单元分别与非易失性存储器、DSP和FPGA通过标准接口连接,FPGA与各个DSP之间采用高速数据总线互联;As shown in Figure 1, a kind of on-board processing platform with anti-single event effect ability of the present invention is made up of highly reliable monitoring unit, nonvolatile memory, DSP and FPGA; Non-volatile memory, DSP and FPGA are connected through standard interfaces, and FPGA and each DSP are interconnected by high-speed data bus;
如图2所示,本实施例中高可靠监控单元由高等级抗辐照器件反熔丝一次编程的ActelFPGA设计实现,包括检测修复控制器、FPGA检测模块、FPGA修复模块、DSP监控模块、DSP修复模块以及FPGA监控接口、DSP监控接口以及NVRAM接口,各个模块以及接口之间通过局部总线互联;检测修复控制器是高可靠监控单元中一个逻辑处理器,监测并接收FPGA监控模块和DSP检测模块发出的修复请求指令,向FPGA修复模块和DSP修复模块发出修复命令;FPGA检测模块对FPGA原始配置数据和运行配置数据进行比对分析,检测单粒子翻转,并通过局部总线向检测修复控制器发出FPGA修复请求指令;FPGA修复模块通过局部总线接收来自检测修复控制器的FPGA修复命令、通过NVRAM接口读取存储在非易失性存储器中的FPGA原始配置数据以及通过FPGA监控接口将FPGA原始配置数据写入FPGA中,完成对FPGA的修复;DSP监控模块通过DSP监控接口接收DSP定时上报运行状态信息并对其进行判别,当监测到DSP“跑死”或“跑飞”时,产生DSP内核复位命令发送给DSP进行复位,或者产生DSP修复请求指令给检测修复控制器等待修复DSP;DSP修复模块通过局部总线接收来自检测修复控制器的DSP修复命令、通过NVRAM接口读取存储在非易失性存储器中的DSP程序数据以及通过DSP监控接口将DSP程序数据写入DSP中,完成对DSP的修复;FPGA监控接口、DSP监控接口和NVRAM接口实现高可靠监控单元内部各相关模块与FPGA、DSP和非易失性存储器之间的数据传输。As shown in Figure 2, the high-reliability monitoring unit in this embodiment is designed and implemented by ActelFPGA, which is programmed once for high-grade radiation-resistant device antifuse, including a detection and repair controller, an FPGA detection module, an FPGA repair module, a DSP monitoring module, and a DSP repair The module and FPGA monitoring interface, DSP monitoring interface and NVRAM interface, each module and interface are interconnected through the local bus; the detection and repair controller is a logic processor in the high reliability monitoring unit, which monitors and receives the signals sent by the FPGA monitoring module and DSP detection module. The repair request command is sent to the FPGA repair module and the DSP repair module; the FPGA detection module compares and analyzes the FPGA original configuration data and the running configuration data, detects the single event flip, and sends the FPGA repair command to the detection and repair controller through the local bus. Repair request command; the FPGA repair module receives the FPGA repair command from the detection and repair controller through the local bus, reads the FPGA original configuration data stored in the non-volatile memory through the NVRAM interface, and writes the FPGA original configuration data through the FPGA monitoring interface. into the FPGA to complete the repair of the FPGA; the DSP monitoring module receives the running status information regularly reported by the DSP through the DSP monitoring interface and judges it. When it detects that the DSP is "running dead" or "running away", it will generate a DSP core reset command Send to the DSP for reset, or generate a DSP repair request command to the detection and repair controller to wait for the DSP to be repaired; the DSP repair module receives the DSP repair command from the detection and repair controller through the local bus, and reads the DSP stored in the non-volatile memory through the NVRAM interface. DSP program data in DSP and write DSP program data into DSP through DSP monitoring interface to complete the repair of DSP; data transfer between volatile memories.
如图3所示,本实施例中FPGA检测模块是高可靠监控单元中的一个逻辑处理器,由FPGA配置数据读取控制器、FPGA配置数据回读控制器和FPGA配置数据检测器组成,读取控制器通过NVRAM接口与非易失性存储器连接,回读控制器通过标准FPGA监控接口与FPGA器件连接,检测器通过局部总线与检测修复控制器连接,读取控制器、回读控制器和检测器之间通过局部总线互联;FPGA配置数据读取控制器读取存储在非易失性存储器中的FPGA原始配置数据,FPGA配置数据回读控制器通过FPGA监控接口回读FPGA运行配置数据,FPGA配置数据检测器对原始配置数据和运行配置数据进行逐字节比对分析,当发生比对不匹配时,向检测修复控制器发出FPGA修复请求指令。As shown in Figure 3, the FPGA detection module in this embodiment is a logic processor in the highly reliable monitoring unit, and is made up of FPGA configuration data reading controller, FPGA configuration data readback controller and FPGA configuration data detector, reads The fetch controller is connected to the non-volatile memory through the NVRAM interface, the read-back controller is connected to the FPGA device through the standard FPGA monitoring interface, the detector is connected to the detection and repair controller through the local bus, and the read-out controller, read-back controller and The detectors are interconnected through a local bus; the FPGA configuration data reading controller reads the original FPGA configuration data stored in the non-volatile memory, and the FPGA configuration data readback controller reads back the FPGA running configuration data through the FPGA monitoring interface. The FPGA configuration data detector compares and analyzes the original configuration data and the running configuration data byte by byte, and sends an FPGA repair request command to the detection and repair controller when a comparison mismatch occurs.
如图4所示,本实施例中FPGA修复模块是高可靠监控单元中的一个逻辑处理器,由FPGA配置数据读取控制器和FPGA配置数据写入控制器组成,读取控制器通过内部数据总线与检测修复控制器连接,写入控制器通过标准FPGA监控接口与FPGA器件连接,读取控制器与写入控制器之间通过内部数据总线互联;读取控制器接收来自检测修复控制器的FPGA修复命令、读取存储在非易失性存储器中的FPGA原始配置数据;FPGA配置数据写入控制器将FPGA原始配置数据写入FPGA中,完成FPGA修复。As shown in Figure 4, the FPGA repair module in this embodiment is a logic processor in the highly reliable monitoring unit, which is composed of an FPGA configuration data reading controller and an FPGA configuration data writing controller, and the reading controller passes internal data The bus is connected to the detection and repair controller, the write controller is connected to the FPGA device through the standard FPGA monitoring interface, and the read controller and the write controller are interconnected through the internal data bus; the read controller receives the data from the detection and repair controller. The FPGA repair command reads the FPGA original configuration data stored in the non-volatile memory; the FPGA configuration data writing controller writes the FPGA original configuration data into the FPGA to complete the FPGA repair.
如图5所示,本实施例中DSP监控模块是高可靠监控单元中的一个逻辑处理器,由DSP状态信息回读控制器和DSP状态判别器组成,回读控制器通过标准DSP监控接口与DSP器件连接,判别器通过局部总线与检测修复控制器连接,回读控制器与判别器之间通过局部总线进行互联;回读控制器通过DSP监控接口监测并接收DSP运行状态信息;判别器根据DSP运行状态信息对DSP状态进行判别,当监测到DSP“跑死”或“跑飞”时,产生DSP内核复位命令发送给DSP进行复位,或者产生DSP修复请求指令给检测修复控制器等待修复DSP。As shown in Figure 5, the DSP monitoring module in this embodiment is a logic processor in the highly reliable monitoring unit, is made up of DSP state information read-back controller and DSP state discriminator, read-back controller communicates with through standard DSP monitoring interface The DSP device is connected, the discriminator is connected with the detection and repair controller through the local bus, and the readback controller and the discriminator are interconnected through the local bus; the readback controller monitors and receives DSP operation status information through the DSP monitoring interface; the discriminator according to The DSP running status information judges the DSP status. When the DSP is detected as "running dead" or "running away", a DSP core reset command is generated and sent to the DSP for reset, or a DSP repair request command is generated to the detection and repair controller to wait for the DSP to be repaired. .
如图6所示,本实施例中DSP修复模块是高可靠监控单元中的一个逻辑处理器,由DSP程序数据读取控制器和DSP程序数据写入控制器组成,读取控制器通过NVRAM接口与非易失性存储器连接,写入控制器通过DSP监控接口与DSP器件连接,读取控制器与写入控制器之间通过局部总线进行互联;读取控制器接收检测修复控制器的DSP修复命令、读取存储在非易失性存储器中的DSP程序数据,写入控制器将DSP程序数据写入DSP中,完成对DSP的修复。As shown in Figure 6, the DSP repair module in this embodiment is a logical processor in the highly reliable monitoring unit, which is composed of a DSP program data read controller and a DSP program data write controller, and the read controller passes through the NVRAM interface It is connected with the non-volatile memory, the write controller is connected with the DSP device through the DSP monitoring interface, and the read controller and the write controller are interconnected through the local bus; the read controller receives the DSP repair of the detection and repair controller Command, read the DSP program data stored in the non-volatile memory, write the DSP program data into the DSP in the controller, and complete the repair of the DSP.
如图7所示,在本实施例中,本发明采用的FPGA检测修复方法具体实施例的步骤为:As shown in Figure 7, in the present embodiment, the steps of the specific embodiment of the FPGA detection and repair method adopted by the present invention are:
①通过标准FPGA监控接口执行FPGA配置存储器回读流程获得FPGA配置数据信息;① Obtain FPGA configuration data information by executing the FPGA configuration memory readback process through the standard FPGA monitoring interface;
②通过NVRAM接口从非易失性存储器中读取FPGA原始配置数据;②Read FPGA original configuration data from non-volatile memory through NVRAM interface;
③对步骤①和步骤②获得的FPGA配置数据进行比对分析,如果发现比对不匹配,则认为发生单粒子翻转,进行步骤④,否则进行步骤①;③ Compare and analyze the FPGA configuration data obtained in step ① and step ②. If the comparison is found to be mismatched, it is considered that a single event flip has occurred, and step ④ is performed; otherwise, step ① is performed;
④通过标准FPGA监控接口执行FPGA配置存储器修复流程修复FPGA配置存储器中的配置数据,进行步骤①。④ Execute the FPGA configuration memory repair process through the standard FPGA monitoring interface to repair the configuration data in the FPGA configuration memory, and proceed to step ①.
如图8所示,在本实施例中,本发明采用的FPGA配置存储器回读流程,其步骤及命令字与功能在于:As shown in Figure 8, in the present embodiment, the FPGA configuration memory read-back process that the present invention adopts, its steps and command word and function are:
①通过标准FPGA监控接口向FPGA发送同步命令字(AA-99-55-66),启动FPGA配置存储器回读;②通过标准FPGA监控接口向FPGA发送器件ID命令字(30-00-C0-01),向FPGA的IDCODE寄存器写器件ID号;③通过标准FPGA监控接口向FPGA发送循环校验复位命令字(00-00-00-07),FPGA的复位循环校验CRC计算逻辑;④通过标准FPGA监控接口向FPGA发送起始帧地址命令字(30-00-20-01),设置回读配置帧的起始地址;⑤通过标准FPGA监控接口向FPGA发送回读配置存储器命令字(00-00-00-04),标志准备回读FPGA的配置存储器数据;⑥通过标准FPGA监控接口向FPGA发送配置帧长度命令字(28-00-60-00),设置回读配置帧的长度;⑦通过标准FPGA监控接口从FPGA回读一个配置帧数据,从FPGA返回FPGA配置帧数据;⑧通过标准FPGA监控接口向FPGA发送取消同步状态命令字(00-00-00-0D),结束FPGA配置存储器回读。①Send a synchronous command word (AA-99-55-66) to the FPGA through the standard FPGA monitoring interface to start FPGA configuration memory readback; ②Send the device ID command word (30-00-C0-01 ), write the device ID number to the IDCODE register of the FPGA; ③ send the cyclic verification reset command word (00-00-00-07) to the FPGA through the standard FPGA monitoring interface, and reset the cyclic verification CRC calculation logic of the FPGA; ④ pass the standard The FPGA monitoring interface sends the start frame address command word (30-00-20-01) to the FPGA to set the start address of the readback configuration frame; ⑤ send the readback configuration memory command word (00- 00-00-04), the flag is ready to read back the configuration memory data of the FPGA; ⑥ send the configuration frame length command word (28-00-60-00) to the FPGA through the standard FPGA monitoring interface, and set the length of the readback configuration frame; ⑦ Read back a configuration frame data from the FPGA through the standard FPGA monitoring interface, and return the FPGA configuration frame data from the FPGA; ⑧ Send the cancel synchronization status command word (00-00-00-0D) to the FPGA through the standard FPGA monitoring interface, and end the FPGA configuration memory read back.
如图9所示,在本实施例中,本发明采用的FPGA配置存储器修复流程具体实施例的步骤为:As shown in Figure 9, in the present embodiment, the steps of the specific embodiment of the FPGA configuration memory repair process adopted by the present invention are:
①通过标准FPGA监控接口向FPGA发送同步命令字(AA-99-55-66),启动FPGA配置存储器写入;②通过标准FPGA监控接口向FPGA发送循环校验逻辑复位命令字(00-00-00-07),复位FPGA的循环校验CRC计算逻辑;③通过标准FPGA监控接口向FPGA发送器件ID命令字(30-01-C0-01),向FPGA的IDCODE寄存器写器件ID号;④通过标准FPGA监控接口向FPGA发送配置帧长度命令字(30-01-60-01),设置写入配置帧的长度;⑤通过标准FPGA监控接口向FPGA发送准备写数据命令字(00-00-00-01),标志准备写入FPGA的配置存储器数据;⑥通过标准FPGA监控接口向FPGA发送配置帧地址命令字(30-00-20-01),设置写入配置帧的起始地址;⑦通过标准FPGA监控接口向FPGA发送一个配置帧数据,向FPGA写入一个配置帧数据,共52个字;⑧通过标准FPGA监控接口向FPGA发送取消同步状态命令字(00-00-00-0D),结束FPGA配置存储器写入。①Send a synchronous command word (AA-99-55-66) to the FPGA through the standard FPGA monitoring interface to start writing the FPGA configuration memory; ②Send the cycle check logic reset command word (00-00- 00-07), reset the cyclical check CRC calculation logic of the FPGA; ③ send the device ID command word (30-01-C0-01) to the FPGA through the standard FPGA monitoring interface, and write the device ID number to the IDCODE register of the FPGA; ④ pass The standard FPGA monitoring interface sends the configuration frame length command word (30-01-60-01) to the FPGA to set the length of the configuration frame to be written; ⑤ Send the ready to write data command word (00-00-00 -01), the flag is ready to be written into the configuration memory data of the FPGA; ⑥ Send the configuration frame address command word (30-00-20-01) to the FPGA through the standard FPGA monitoring interface, and set the starting address for writing the configuration frame; ⑦ Pass The standard FPGA monitoring interface sends a configuration frame data to the FPGA, and writes a configuration frame data to the FPGA, with a total of 52 words; ⑧ sending the cancel synchronization status command word (00-00-00-0D) to the FPGA through the standard FPGA monitoring interface, End FPGA configuration memory write.
如图10所示,在本实施例中,本发明采用的DSP检测修复方法具体实施例的步骤为:As shown in Figure 10, in the present embodiment, the steps of the specific embodiment of the DSP detection and repair method adopted by the present invention are:
①通过标准DSP监控接口回读获得DSP运行状态信息;① Obtain the DSP running status information by reading back through the standard DSP monitoring interface;
②判别DSP状态信息,如果判别为DSP程序流程异常,进行步骤③,如果判别为DSP内存发生单粒子翻转,进行步骤⑤,否则继续进行步骤①;②Discrimination of DSP status information, if it is judged that the DSP program flow is abnormal, proceed to step ③, if it is judged that a single event flip occurs in the DSP memory, proceed to step 5, otherwise proceed to step ①;
③复位DSP内核,等待DSP程序引导,如果DSP程序引导成功,进行步骤④,否则继续进行步骤⑤;③ Reset the DSP core, wait for the DSP program to boot, if the DSP program boots successfully, proceed to step ④, otherwise proceed to step ⑤;
④激活DSP,进行步骤①;④Activate DSP, go to step ①;
⑤通过NVRAM接口从非易失性存储器中读取DSP程序数据,通过标准DSP监控接口将DSP程序数据写入DSP器件中,进行步骤①。⑤ Read the DSP program data from the non-volatile memory through the NVRAM interface, write the DSP program data into the DSP device through the standard DSP monitoring interface, and proceed to step ①.
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above descriptions are only preferred implementations of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principles of the present invention should also be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100434226A CN101551762B (en) | 2009-05-15 | 2009-05-15 | Spaceborne processing platform resisting single event effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100434226A CN101551762B (en) | 2009-05-15 | 2009-05-15 | Spaceborne processing platform resisting single event effect |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101551762A CN101551762A (en) | 2009-10-07 |
CN101551762B true CN101551762B (en) | 2011-04-06 |
Family
ID=41156011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100434226A Expired - Fee Related CN101551762B (en) | 2009-05-15 | 2009-05-15 | Spaceborne processing platform resisting single event effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101551762B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976212B (en) * | 2010-10-27 | 2012-01-25 | 西安空间无线电技术研究所 | Small amount code reloading-based DSP anti-single particle error correction method |
CN102043754A (en) * | 2010-12-30 | 2011-05-04 | 浙江大学 | Method for improving satellite borne DSP (Digital Signal Processing) loading guiding reliability |
CN103064810B (en) * | 2011-10-18 | 2016-05-25 | 上海航天控制工程研究所 | A kind of method that realizes satellite serial communication |
CN104092629A (en) * | 2014-07-08 | 2014-10-08 | 中国航空无线电电子研究所 | AFDX switch for resisting single event upset |
CN104133738B (en) * | 2014-07-11 | 2017-04-12 | 中国人民解放军信息工程大学 | SEU-resistant method for satellite-borne MIMO detector based on SEC-DED |
CN104281742A (en) * | 2014-09-11 | 2015-01-14 | 上海卫星工程研究所 | SRAM (static random access memory) type large-scale FPGA (field programmable gate array) anti-single-particle device and method |
CN105045335A (en) * | 2015-06-23 | 2015-11-11 | 上海航天测控通信研究所 | FPGA information processing system with embedded 8051IP core |
CN105068969B (en) * | 2015-07-17 | 2018-02-09 | 西安空间无线电技术研究所 | Single particle effect guard system and method for digital signal processing platform framework |
CN108766491B (en) * | 2018-06-01 | 2019-05-31 | 北京理工大学 | A kind of track loop single-particle inversion errors repair method in SRAM type FPGA piece |
CN109213632B (en) * | 2018-08-23 | 2022-06-17 | 湖南斯北图科技有限公司 | Spaceborne electronic system with anti-radiation reinforcement design and reinforcement method |
-
2009
- 2009-05-15 CN CN2009100434226A patent/CN101551762B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101551762A (en) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101551762B (en) | Spaceborne processing platform resisting single event effect | |
CN101551763B (en) | Method and device for repairing single event upset in field programmable logic gate array | |
US9697147B2 (en) | Stacked memory device with metadata management | |
CN103218272B (en) | A kind of spaceborne digital signal processor upset reinforcement means | |
CN103984630B (en) | Single event upset fault processing method based on AT697 processor | |
CN103558574B (en) | Testing method for software fault tolerance of smart energy meter based on EEPROM data reading and writing | |
CN102332307A (en) | SRAM type FPGA single event effect test system and method | |
CN106484581A (en) | Programmable SOC device single-particle inversion detecting system and method under space radiation environment | |
CN101561477A (en) | Method and device for testing single event upset in in-field programmable logic gate array | |
Cho et al. | System-level effects of soft errors in uncore components | |
US9043683B2 (en) | Error protection for integrated circuits | |
US20140197863A1 (en) | Placement of storage cells on an integrated circuit | |
US9201727B2 (en) | Error protection for a data bus | |
Xie et al. | Soft error mitigation and recovery of SRAM-based FPGAs using brain-inspired hybrid-grained scrubbing mechanism | |
Valadimas et al. | Timing error tolerance in small core designs for SoC applications | |
CN101582294B (en) | A Method for Solving SRAM Module Latch-up Problem and Enhancing the Reliability of SRAM Module | |
Zhang et al. | Design and verification of SRAM self-detection repair based on ECC and BISR circuit | |
CN112181735A (en) | Error detection device and method for single event effect of FPGA chip default value and parameters | |
CN115421967B (en) | Method and system for evaluating storage abnormal risk point of secondary equipment | |
CN114974388A (en) | High-speed DDR memory single-particle error evaluation system and method | |
CN201828914U (en) | System for positioning FPGA (field-programmable gate array) chip sensitive area | |
Lu et al. | Architectural-level error-tolerant techniques for low supply voltage cache operation | |
US20140201599A1 (en) | Error protection for integrated circuits in an insensitive direction | |
Lai et al. | MPSoC Based Smart Read-Back and Scrubbing Mechanism for FPGA with Frame Granularity | |
CN117891759B (en) | High-reliability NAND-Flash controller based on FPGA and data processing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110406 Termination date: 20210515 |