CN101548236B - 不透明微孔化双轴拉伸膜、其制造方法和用其获得透明图案的方法 - Google Patents

不透明微孔化双轴拉伸膜、其制造方法和用其获得透明图案的方法 Download PDF

Info

Publication number
CN101548236B
CN101548236B CN2007800446896A CN200780044689A CN101548236B CN 101548236 B CN101548236 B CN 101548236B CN 2007800446896 A CN2007800446896 A CN 2007800446896A CN 200780044689 A CN200780044689 A CN 200780044689A CN 101548236 B CN101548236 B CN 101548236B
Authority
CN
China
Prior art keywords
film
transparent
polymeric membrane
optical density
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800446896A
Other languages
English (en)
Other versions
CN101548236A (zh
Inventor
D·昆滕斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority claimed from PCT/EP2007/060380 external-priority patent/WO2008040701A1/en
Publication of CN101548236A publication Critical patent/CN101548236A/zh
Application granted granted Critical
Publication of CN101548236B publication Critical patent/CN101548236B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/10Watermarks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/36Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/06Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

不透明微孔化双轴拉伸的自支撑非层压聚合膜,该膜包括线型聚酯作为连续相并且其中均匀地分散有玻璃化转变温度比所述连续相的玻璃化转变温度高的无定形高聚物和/或熔点比所述连续相的玻璃化转变温度高的结晶高聚物,其中所述线型聚酯基本上由芳族二羧酸酯和脂族二亚甲基单体单元组成;聚合膜具有用可见光滤光器透射测量的光学密度;且所述光学密度的至少50%归因于微孔;所述的不透明微孔化双轴拉伸膜作为合成纸的用途;包括所述的不透明微孔化双轴拉伸膜的图像记录元件;和用其获得透明图案的方法。

Description

不透明微孔化双轴拉伸膜、其制造方法和用其获得透明图案的方法
发明领域
本发明涉及不透明微孔化双轴拉伸膜、其制造方法,其作为合成纸的用途和包含该膜的图像记录元件。
发明背景
US 3,755,499公开了用于书写用途的合成片材,其基本由选自聚对苯二甲酸乙二酯、聚间苯二甲酸乙二酯和对苯二甲酸乙二酯与间苯二甲酸乙二酯的共聚物的线型聚酯和玻璃化转变点高于所述线型聚酯的高聚物构成,该高聚物的混合比率为该聚合物混合物的7至35重量%,该高聚物选自聚甲基丙烯酸甲酯、丙烯腈与苯乙烯的共聚物、丙烯腈、丁二烯与苯乙烯的共聚物,由于均匀分散在所述线型聚酯中以构成其不规则表面的核的所述高聚物,所述合成片材具有非常精细粗化的表面。这些混合聚合物材料的同时和相继拉伸都据公开通常在85至95℃下进行,拉伸比为原始长度的2至3.5倍,根据其最终用途调节片材的可写性和不透明性。US 3,755,499的发明目的据说是提供具有改进的表面条件、不透明性和其它必要性质的用于书写和类似的其它用途的合成片材。US3,755,499进一步公开,要混入的热塑性树脂可以具有或不具有与该线型聚酯的相容性,只要其可以在成型时与该线型聚酯基本均匀混合并分散在该线型聚酯中,形成的膜无论是否透明都可以在拉伸后产生均匀消光表面,且由此获得的膜可热收缩、具有可接受的书写性质并具有充足不透明度,且为了进一步改进高温下的膜尺寸稳定性,其可以在高于该线型聚酯的拉伸温度和低于混合热塑性树脂和线型聚酯的熔点的温度下热处理。实施例2例举了玻璃化转变温度为100至105℃的丙烯腈和苯乙烯的共聚物与浓度为7至35重量%的聚对苯二甲酸乙二酯的混合,并通过T-模头熔体挤出以形成150微米厚的膜样品。这些膜片随后用双轴拉伸机在85℃下在其纵向以及横向上以膜原始长度两倍大的拉伸比同时拉伸,并也在85℃下以纵向三倍和横向三倍同时双轴拉伸。所得膜据报道具有下列性质:
  丙烯腈-苯乙烯共聚物(重量%)   7   7   35   35
  聚对苯二甲酸乙二酯(重量%)   93   93   65   65
  拉伸比(L x W)倍数   2x2   3x3   2x2   3X3
  拉伸后的厚度(μm)   48   26   45   25
  断裂强度(kg/cm)   880   1210   650   730
  致断伸长(%)   110   45   55   23
  透光系数(%)   80.8   84.2   72.3   77.6
  浊度值(%)   92.5   90.6   94.3   96.6
  可写性[铅笔硬度]   ≤4H   ≤3H   ≤4H   ≤3H
US 3,755,499没有公开无机不透明化颜料(opacifying pigment)的添加或依图像加热对其中公开的不透明微孔膜的影响。
US 4,174,883公开了包含由熔融混合物构成的光散射元件的背投式屏幕,该熔融混合物基本由分散介质聚合物和分散在其中的分散相聚合物构成,所述熔融混合物通过熔融然后混合所述聚合物而得,其中分散介质聚合物的折光指数与分散相聚合物的最大折光指数之差的绝对值为0.01至0.25,且其中分散介质聚合物是选自高密度聚乙烯、低密度聚乙烯、聚丙烯、6,6-尼龙、聚对苯二甲酸乙二酯和聚苯乙烯的成员,且分散相聚合物是选自高密度聚乙烯、低密度聚乙烯、聚丙烯、聚对苯二甲酸乙二酯、6-尼龙、6,6-尼龙、6,10-尼龙、聚甲基丙烯酸甲酯、聚丙烯酸甲酯、聚氯乙烯树脂、聚乙酸乙烯酯树脂、聚缩醛树脂、聚苯乙烯、聚碳酸酯、腈橡胶、氯丁橡胶、氯丁二烯橡胶、苯乙烯-丁二烯橡胶、乙烯-乙酸乙烯酯共聚物和苯乙烯丙烯腈共聚物的至少一员。
US 4,128,689公开了制备热塑性片材或纤网的方法,该方法包括下列步骤:(i)通过螺杆挤出机的模头挤出可发泡热塑性聚合物混合物以制造片材或纤网形式的发泡挤出物,该可发泡热塑性聚合物混合物含有至少第一和第二热塑性聚合物,该第一热塑性聚合物是基本结晶的并具有比第二热塑性聚合物高的熔点且与其基本不混溶,挤出温度等于或大于第一热塑性聚合物的熔点;(ii)来自步骤(i)的发泡挤出物在其离开模头时在挤出方向上拉伸以使该发泡挤出物的大部分气孔破裂并使坍塌气孔壁在拉伸方向上伸长;(iii)在其保持塑性的同时压制来自步骤(ii)的拉伸挤出物;和(iv)冷却来自步骤(iii)的发泡、拉伸和压制的挤出物。此外,US 4,128,689公开了,第一热塑性聚合物优选选自高密度聚乙烯、聚丙烯、聚丁烯-1、聚4-甲基戊烯-1、聚对苯二甲酸乙二酯、尼龙6、尼龙66和尼龙11,第二热塑性聚合物优选是非晶热塑性聚合物,优选选自乙酸纤维素、丙酸纤维素、乙酸丁酸纤维素、乙基纤维素、聚苯乙烯、苯乙烯-丙烯腈共聚物、聚碳酸酯、苯乙烯和甲基苯乙烯共聚物以及苯醚聚合物。
US 4,243,769公开了提供了聚合物的大致均匀的持久混溶混合物的方法,该混合物具有在聚合物的简单共混物中不明显的性质并且不会自发分离成组分聚合物,该方法包括在聚合物和酸的混合物的大约0.001至8重量%的酸增容剂存在下将(a)含有腈官能的聚合物组分与(b)含有可与腈缩合的羟基或酯化羟基官能团的聚合物组分均匀混合足以提供在环境温度下为固体形式的上述持久混溶的聚合物混合物的时间,所述聚合物组分(a)和(b)容易从其简单共混物中自发分离。此外,US 4,243,769公开了,该腈基材料优选选自聚丙烯腈、聚甲基丙烯腈、甲基丙烯腈-丙烯腈-乙酸乙烯酯三元共聚物、苯乙烯-丙烯腈共聚物、丙烯腈-丙烯酸酯共聚物、丙烯腈-丁二烯-苯乙烯三元共聚物、丙烯腈-苯乙烯-α甲基苯乙烯三元共聚物、腈橡胶、聚己内酰胺-丙烯腈接枝共聚物、聚乙烯-丙烯腈接枝共聚物、聚对苯二甲酸乙二酯-丙烯腈接枝共聚物、氰基苯乙烯-甲基丙烯酸甲酯共聚物、丙烯腈-甲基乙烯基醚共聚物、甲基丙烯腈-α甲基苯乙烯共聚物、氰乙基化纤维素、氰乙基化聚乙烯醇、氰乙基化聚酰胺、氰乙基化聚苯乙烯和氰乙基化硅氧烷聚合物;该可化学缩合材料优选选自聚乙烯醇、含未反应的醇基团的聚乙烯醇缩丁醛、乙烯-乙酸乙烯酯、皂化或部分皂化的乙烯-乙酸乙烯酯共聚物、乙烯-乙酸乙烯酯-二氧化硫三元共聚物、氯乙烯-乙酸乙烯酯、与乙酸乙烯酯接枝的尼龙、与乙酸乙烯酯接枝的聚四氟乙烯、与甲基丙烯酸丁酯接枝的聚乙烯醇、乙酸乙烯酯-异丁基乙烯基醚共聚物、苯乙烯-烯丙基醇共聚物、聚己二酸乙二酯、马来酸和邻苯二甲酸与乙二醇和丙二醇的苯乙烯化聚酯、聚(对苯二甲酸乙二酯)、纤维素、甲基丙烯酸羟乙酯共聚物、羟丁基乙烯基醚共聚物、羟乙基甲基丙烯酰胺共聚物、聚乙二醇、羟基封端的聚苯乙烯、羟基封端的聚丁二烯和羟基封端的聚异戊二烯。
US 4,342,846公开了一种共混物,其包含:(1)通过二羧酸和二醇的反应形成的聚酯树脂,优选为聚(对苯二甲酸乙二酯);和(2)包含交联(甲基)丙烯酸酯、交联苯乙烯-丙烯腈和未交联苯乙烯-丙烯腈聚合组分的抗冲互聚物。
EP 0 436 178A2公开了一种聚合成型制品,其特征在于所述制品由其中分散着交联聚合物微珠的连续取向聚合物基质构成,所述微珠至少部分与空隙空间毗邻,所述微珠以所述取向聚合物重量的5-50重量%的量存在,所述空隙空间占据所述制品的2-60体积%。EP 0 436 178A2进一步公开,所述交联聚合物优选包含可聚合有机材料,其是选自下列的成员:具有通式Ar-C(-R)=CH2(其中Ar代表芳烃基团或苯系芳族卤代烃基且R是氢或甲基)的链烯基芳族化合物;丙烯酸酯型单体,包括式CH2=C(-R’)-C(-OR)=O的单体,其中R选自氢和含有大约1至12个碳原子的烷基且R′选自氢和甲基;氯乙烯与偏二氯乙烯、丙烯腈与氯乙烯、乙烯基溴、具有式CH2=CH-O-C(-R)=O(其中R是含有2至18个碳原子的烷基)的乙烯基酯的共聚物;丙烯酸、甲基丙烯酸、衣康酸、柠康酸、马来酸、富马酸、油酸、乙烯基苯甲酸;通过使对苯二甲酸和二烷基对苯二甲酸类或其成酯衍生物与HO(CH2)nOH系(其中n是在2-10范围内的整数)二醇反应而制成的并在聚合物分子内具有反应性烯烃键的合成聚酯树脂,上述聚酯包括共聚在其中的最多20重量%的具有反应性烯属不饱和的第二酸或其酯及其混合物,和选自二乙烯基苯、二甲基丙烯酸二乙二醇酯、富马酸二烯丙酯、邻苯二甲酸二烯丙酯及其混合物的交联剂。
EP-A 0 654 503公开了由50至97重量%线型聚酯和3至50重量%含苯乙烯的聚合物(例如丙烯腈、丁二烯和苯乙烯的接枝聚合物(ABS)、苯乙烯-丙烯腈共聚物或高抗冲聚苯乙烯(HIPS))的共混聚合物制成的成型制品,其中该百分比是相对于该聚酯和含苯乙烯的聚合物的总和。EP-A 0 654 503进一步公开,根据该发明的载体材料可以含有其它添加剂,例如颜料,特别是TiO2、BaSO4、CaCO3、光学增白剂或蓝色染料,它们进一步提高覆盖力和改进锐度,特别添加占所用成分总重量的0.5至10重量%,优选2至10,优选3.5至6.5重量%的TiO2颜料,优选为锐钛矿型。
US 6,703,193公开了包含微孔层的图像记录元件,该微孔层包含连续相聚酯基质,其中分散着交联有机微珠和与所述微孔层的聚酯基质不混溶的未交联聚合物粒子。US 6,703,193进一步公开,如果在卤化银显示介质的微孔层中只使用与该聚酯基质不混溶的未交联聚合物粒子,则原材料和制造成本低,因为不需要配混步骤,但由于产生的相对较大的空隙,图像锐度非常差。因此,尽管在成像介质中使用不混溶聚合物粒子作为成孔剂从成本角度看是有吸引力的,但锐度方面的品质太差。US6,703,193也公开了,已经出乎意料地发现,通过将交联有机微珠和与聚酯不混溶的未交联聚合物粒子都混入微孔层的聚酯基质中,协同克服了空隙引发剂单独使用时的缺陷,尤其是在图像品质和可制造性方面。交联的有机珠粒和在聚酯基质中不混溶的未交联聚合物粒子的组合在微珠成孔介质的锐度方面具有优异品质,且没有与具有差锐度品质的材料的添加相联的预期劣化,并且由于需要使用较便宜的原材料,成本显著降低且制造时间和努力降低,这又降低了将微珠与基质聚合物配混所需的时间和努力。US 6,703,193也公开了空隙层可以含有已知改进摄影响应,如白度或锐度的白色颜料,如二氧化钛、硫酸钡、粘土、碳酸钙或二氧化硅;并且可以向该层中添加附加物以改变成像元件的颜色。US6,703,193没有公开依图像加热对其中公开的不透明微孔膜的影响。
现有技术的不透明微孔化双轴拉伸膜受制于不透明性不足且缺乏尺寸稳定性,或尺寸稳定性充足但不透明性不足。此外,对于特定用途,不透明微孔化双轴拉伸膜的白度不足。
现有技术:
因此,申请人已知如下现有技术文件:
US3,755,499,公开于1973年8月28日,
US4,174,883,公开于1979年11月20日
US4,128,689,公开于1978年12月5日,
US4,243,769,公开于1981年1月6日,
US4,342,846,公开于1982年8月3日,
EP0 436 178A2,公开于1991年7月10日,
EP-A 0 654 503,公开于1995年5月24日,
US6,703,193,公开于2004年3月9日。
发明方面
因此本发明的一个方面是提供改进的不透明微孔化双轴拉伸膜。
因此本发明的另一方面是提供制造改进的不透明微孔化双轴拉伸膜的方法。
因此本发明的一个方面还包括提供在不透明微孔化双轴拉伸膜中获得透明图案的方法。
本发明的其它方面和优点从下文的描述中变得显而易见。
发明概述
可以通过在充分低的温度双轴拉伸来实现包括线型芳族聚酯作为连续相和其中均匀地分散无定形高聚物的聚合膜,该高聚物的玻璃化转变温度比连续相的玻璃化转变温度高,通过用可见光滤光器透射测量的光学密度增加系数(factor)为19或更多,由此提供可接受的不透明性用作合成纸和用于图像记录元件并在热处理时显示出光学密度的实质性变化。甚至在2wt%的二氧化钛着色聚合膜时,可以实现200%或更多的光学密度增加。特别地,相比于无定形和结晶聚对苯二甲酸乙二酯的文献值,分别为1.34克/毫升和1.5克/毫升,可以在等于或低于1.2克/毫升的聚合膜密度实现高光学密度,参见“Properties of Polymers-Correlations with Chemical Structure”,D.W.Van Krevelen,Elsevier,Amsterdam(1972)。
本发明的方面通过不透明微孔化双轴拉伸的自支撑非层压聚合膜实现,该膜包括线型聚酯作为连续相并且其中均匀地分散有玻璃化转变温度比连续相的玻璃化转变温度高的无定形高聚物和/或熔点比所述连续相的玻璃化转变温度高的结晶高聚物,其中所述线型聚酯基本上由芳族二羧酸酯和脂族二亚甲基单体单元组成;聚合膜具有用可见光滤光器透射测量的光学密度;且光学密度的至少50%归因于微孔。
本发明的方面也通过利用以上所述的不透明微孔化双轴拉伸膜作为合成纸来实现。
本发明的方面也通过包括以上所述的不透明微孔化双轴拉伸膜的图像记录元件实现。
本发明的方面也通过用于获得透明图案的方法实现,该方法包括步骤:依图像施加热任选地辅以施加压力至以上所述的不透明微孔化双轴拉伸膜。
在发明详述中公开本发明的优选实施方案。
发明详述
定义
用于公开本发明的术语空隙或微孔是指例如由于与聚酯基质不混溶的粒子引发的空隙引发粒子,在拉伸过程中可以在取向聚合膜中形成的微孔隙、微小闭孔、空腔、气泡或孔隙或孔化(cellulation)。该空隙或微孔可以是未填充的或被空气或某类蒸气填充。即使一开始未填充,该空隙或微孔也可能随时间经过而被空气或某类蒸气填充。
术语“不透明的”是指根据ASTM D589-97或根据TAPPI,360Lexington Avenue,New York,USA出版的不透明度试验T425m-60测得的大于90%的对可见光的不透百分率。
用于公开本发明的术语膜是具有特定组成的挤出片材、或由通过具有相同或不同组成的液体的共挤制成的具有相同或不同组成的多个膜彼此接触构成的片材。术语膜和箔在本公开中可互换使用。
用于公开本发明的术语泡沫是指通过将许多气泡截留在液体或固体中而形成的物质。
用于公开本发明的术语“线型聚酯中的二羧酸酯单体单元”是指衍生自二羧酸或其酯的单体单元。
用于公开本发明的术语“线型聚酯中的二亚甲基脂族单体单元”是指衍生自二亚甲基脂族二醇或其醚的单体单元,其中该术语脂族包括脂环族。
用于公开本发明的术语线型聚酯是指包含烃二亚甲基和二羧酸酯单体单元的聚酯。
用于公开本发明的术语线型芳族聚酯是指包含脂族二亚甲基和芳族二羧酸酯单体单元的聚酯。
用于公开本发明的术语密度是指100毫米×100毫米、具有一定厚度(用具有直径3毫米的球尖的感应探针接触测量)的膜片的重量除以其体积。该值假定膜片的表面是平的且彼此平行。该值对应于EP-A 0 496323和WO 2005/105903A中报道的表观密度值。
用于公开本申请的术语无机不透明化颜料是指能够不透明化(即导致更不透明)的颜料,其包括折光指数至少1.4的基本白色的无机颜料,和分散在聚合物中时能够在拉伸时由于微孔化而造成不透明性的颜料。
用于公开本发明的术语增白剂是指在环境紫外线的影响下表现出蓝光的白色/无色有机化合物。
用于公开本发明的术语“载体”是指“自支撑材料”以将其与可作为溶液或分散体涂布、蒸发或溅射在载体上但本身不自支撑的“层”相区分。其也包括任选的导电表面层和粘合所必需的任何处理或为了助粘而施加的层。
用于公开本发明的术语“链式-聚合的嵌段”不包括缩合聚合物且是指这样的链式-聚合的聚合物链:其可以在嵌段共聚物或者接枝共聚物中的嵌段或者可以仅仅是链式-聚合的聚合物链。
用于公开本发明的术语可套印是指能够通过常规击打式和/或非击打印刷法套印。
用于公开本发明的术语常规印刷法包括,但不限于,喷墨印刷、凹版印刷、丝网印刷、苯胺印刷、胶印、压印(stamp printing)、照相凹版印刷、染料转印、热升华印刷以及热和激光诱发法。
用于公开本发明的术语图案是指可以具有线、正方形、圆形或任何无规构造的任何形式的不连续层。
用于公开本发明的术语层是指覆盖被称作例如载体的实体的整个区域的(连续)涂层。
用于公开本发明的术语“不透明膜”是指能提供与透明图像的足够对比度以使该图像清晰可见的膜。不透明膜可以是“不透光(opaque)膜”,但不必完全不透光以致没有残留的半透明性,即没有光透过膜。用MacBeth TR924密度计透过可见光滤光器以透射方式测得的光密度可以提供膜不透明度的衡量标准。ISO 2471涉及纸背衬的不透明度并在涉及纸的该性质时适用,该性质控制一片材在视觉上遮蔽下方的类似纸片上的印刷品的程度,并将不透明度定义为是“以百分率表示的带有黑色背衬的单张纸的光反射系数与带有白色反射背衬的相同样品的本征光反射系数的比率。80克/平米复印纸例如是白色不透明的并具有根据ISO5-2用MacBeth TR924密度计测得透过黄色滤光器的0.5的光学密度,金属化膜通常具有2.0至3.0的光学密度。
用于公开本发明的术语透明是指具有透射至少50%入射可见光而不使其漫反射,优选透射至少70%入射可见光而不使其漫反射的性质。
用于公开本发明的术语挠性是指能够在不破损的情况下依循曲面物体(如鼓)的曲率。
用于公开本发明的术语“着色剂”是指染料和颜料。
用于公开本发明的术语“染料”是指在其应用介质中和在相关环境温度下具有10毫克/升或更大的溶解度的着色剂。
术语“颜料”在经此引用并入本文的DIN 55943中定义为是在相关环境条件下几乎不溶于分散介质因此在其中具有小于10毫克/升溶解度的无机或有机、彩色或非彩色着色剂。
聚合膜
本发明的方面通过不透明微孔化双轴拉伸的自支撑非层压聚合膜实现,膜包括线型聚酯作为连续相并且其中均匀地分散有玻璃化转变温度比连续相的玻璃化转变温度高的无定形高聚物和/或熔点比所述连续相的玻璃化转变温度高的结晶高聚物,其中所述线型聚酯基本上由芳族二羧酸酯和脂族二亚甲基单体单元组成;聚合膜具有用可见光滤光器透射测量的光学密度;且光学密度的至少50%归因于微孔,优选至少60%的光学密度归因于微孔,特别优选至少70%的光学密度归因于微孔。芳族二羧酸酯单体单元源自于芳族二羧酸或芳族二羧酸酯且脂族二亚甲基单体单元源自于脂族二醇或脂族二醇醚。
根据本发明的聚合膜的第二实施方案,聚合物膜中均匀分散的无定形高聚物或结晶高聚物浓度是5至35wt%,优选地9至25wt%。
根据本发明的聚合膜第三实施方案,线型聚酯与分散其中的无定形聚合物或结晶高聚物的重量比为1.85∶1至19.0∶1,优选2.7∶1至13∶1,特别优选3.0∶1至10∶1。
根据本发明的聚合膜第四实施方案,分散在该连续相中的无定形高聚物粒子具有小于10微米的直径,优选粒子具有数均粒度0.5-5微米,特别优选粒子具有平均粒度1至2微米。粒度越小,不透明性越高。
根据本发明的聚合膜第五实施方案,聚合膜进一步包括选自增白剂,紫外线吸收剂,光稳定剂,抗氧化剂,阻燃剂和着色剂的成分。
根据本发明的聚合膜第六实施方案,聚合物膜不包括聚醚比如聚氧化乙烯。这样的聚醚降低密度且可能分解产生另外的非均匀分布的空隙。
根据本发明的聚合膜第七实施方案,聚合物膜是共挤出物。共挤出包括进料至少两种聚合膜组合物入单独的挤出机,层压熔融状态的组合物并从模头挤出它们。共挤出的层中的至少一种将具有线型聚酯作为连续相并且其中均匀地分散有玻璃化转变温度比连续相的玻璃化转变温度高的无定形高聚物和/或熔点比所述连续相的玻璃化转变温度高的结晶高聚物。
根据本发明的聚合膜第八实施方案,聚合膜具有字母数字,压花图案,任选地压花的全息图和连续的半色调或数字图像中的至少一种。
根据本发明的聚合膜第九实施方案,膜在至少一面上提供有透明的可套印层,即适合击打或非击打式印刷。该透明的可套印层可以提供在不透明微孔化双轴拉伸的自支撑膜表面上的字母数字,压花图案,任选地压花的全息图和连续的半色调或数字图像的至少一种之上。
根据本发明的聚合膜第十实施方案,膜在至少一面上提供有可透明化的多孔的可套印层,即适合击打或非击打式印刷例如喷墨印刷。通过施加具有适当折光指数的液体(其也可以依图像施加)而透明化的可透明化的多孔层如EP-A 1 362 710和EP-A 1 398 175中所公开。可以在带有透明图案的不透明微孔化双轴拉伸的自支撑膜表面上的字母数字,压花图案,任选地压花的全息图和连续的半色调或数字图像的至少一种上提供这种可透明化的可套印层。
一部分该可透明化的多孔接收层的透明化可独自产生图像,或不透明多孔接收层的未透明化区域可独自构成图像。透明图案可以例如是纸币、股票、票证、信用卡、身份证件或行李和包装标签的一部分。
根据本发明的聚合膜第十一实施方案,聚合膜具有厚度约10微米-约500微米,优选约50微米-约300微米。
根据本发明的聚合膜第十二实施方案,聚合膜具有胶层。该胶层使其可以改善聚合膜的湿润性和粘结性能,优选包括聚酯树脂,聚氨酯树脂,聚(酯氨基甲酸乙酯)树脂或丙烯酸树脂。
根据本发明,根据聚合膜第十三实施方案,密度是1.2克/毫升或更少,优选密度1.15克/毫升或更少,特别优选密度1.1克/毫升或更少。
根据本发明的聚合膜,可以通过用于制备不透明微孔化双轴拉伸膜的方法实现,包括步骤:i)在捏和机或挤出机中混合至少一种线型聚酯,和无定形高聚物和/或结晶高聚物,和任选的至少一种选自无机不透明化颜料,增白剂,紫外线吸收剂,光稳定剂,抗氧化剂和阻燃剂的成分,该线型聚酯具有基本上由至少一种芳族二羧酸和至少一种脂族二醇组成的单体组分,该无定形高聚物的玻璃化转变温度比所述连续相的玻璃化转变温度高,该结晶高聚物的熔点比所述连续相的玻璃化转变温度高,ii)以厚膜形成步骤i)中产生的混合物,随后骤冷至室温;iii)在无定形聚合物的玻璃化转变温度和线型聚酯的玻璃化转变温度之间的温度或者在结晶聚合物的熔点和线型聚酯的玻璃化转变温度之间的温度,以>4N/平方毫米的拉伸张力纵向地拉伸该厚膜至初始长度的至少两倍;和iv)在无定形聚合物的玻璃化转变温度和线型聚酯的玻璃化转变温度之间的温度或者在结晶聚合物的熔点和线型聚酯的玻璃化转变温度之间的温度,以>4N/平方毫米的拉伸张力横向地拉伸来自步骤(iii)的纵向拉伸膜至初始长度的至少两倍,其中线型聚酯与无定形聚合物或结晶聚合物的重量比为1.85∶1到19.0∶1。
骤冷的挤出厚膜具有厚度大约10至大约6000微米,优选厚度大约100微米至5000微米。
通过首先在一个方向(例如纵向=MD)上拉伸,然后在第二方向[例如垂直于纵向=TD(横向)]上拉伸,由此实现根据本发明的双轴拉伸聚合膜。这使聚合物链取向,由此提高密度和结晶度。可以借助以符合所需拉伸比的不同速度运行的两个辊,通过将旋转辊的表面速度设为V2而线性挤出速度为V1以使拉伸比为V2/V1,进行在挤出方向上的纵向取向。纵向拉伸比应足以制造空隙。
可以使用本领域已知用于制造双轴取向聚酯膜的纵向拉伸操作。例如,使合并的膜层从一对红外线加热器之间通过,其在发生拉伸的区域中将这些层加热至高于聚酯玻璃化转变温度(对于聚对苯二甲酸乙二酯为大约80℃)的温度。上述温度应该接近连续相聚合物的玻璃化转变温度以改进不透明性。在聚对苯二甲酸乙二酯的情况下,通常在大约80至大约130℃下进行纵向拉伸。在纵向拉伸过程中,由于在纵向延伸的膜中由分散聚合物的各粒子产生的空隙,实现不透明性。
与纵向拉伸的方向基本成90°角进行横向拉伸,该角度通常为大约70°和90°之间。对于横向取向,通常使用适当的拉辐机,将膜的两个边缘都夹住然后通过例如穿过热空气加热器(其将膜加热至高于玻璃化转变温度)来加热其上带有底漆层的合并层,由此拉向两条边。在聚对苯二甲酸乙二酯及其共聚物的情况下,在大约80至大约170℃,优选大约85至大约150℃下进行横向拉伸。膜的横向拉伸导致空隙横向延伸。
根据本发明的双轴拉伸聚合膜的产生,优选通过以>2.5N/平方毫米的拉伸张力纵向拉伸该厚膜,优选拉伸张力>5.0N/平方毫米,和特别优选拉伸张力>7.0N/平方毫米。在任选的中间骤冷后,纵向拉伸继之以与该第一拉伸过程呈基本90°的角度横向拉伸至初始长度的至少两倍,拉伸张力>2.5N/平方毫米,优选拉伸张力>4.0N/平方毫米,拉伸温度优选地在连续相的玻璃化转变温度之上最多30℃,和优选地在连续相的玻璃化转变温度之上最多20℃。可实现的拉伸张力随着拉伸温度降低而增加。
纵向和横向拉伸可以同时地用例如Brückner产生的装置执行。
生产过程可以进一步包括,作为进一步的步骤,热固着步骤来对抗收缩。
用于纵向拉伸的拉伸比优选在约2和约6之间,优选在约2.5和约5之间,特别优选3和4之间。拉伸比越高,不透明性越高。
横向拉伸比优选在约2-约6范围内,优选2.5-约5,和特别优选约3-约4。不透明性在更高的拉伸速率(以%/分钟计)以及在较低的横向拉伸温度增加。
该双轴拉伸膜最后穿过第二组热空气加热器,其将温度140至240℃的热空气吹到膜层上以热定形或热固着膜层。热定形温度必须足以获得聚酯的结晶,但必须小心不使该层过热,因为空隙会坍塌。另一方面,提高热定形温度改进了膜的尺寸稳定性。通过改变热定形温度,可以获得性能的适当混合。在聚对苯二甲酸乙二酯或聚萘二甲酸乙二酯的情况下,优选的热定形或热固着温度为大于等于140℃。
在纵向拉伸之前和之后,可以通过涂布装置,如气刀涂布系统将第一胶层,所谓的底漆层涂施到未成孔聚酯层上。该第一胶层例如由作为含水分散体涂施的胶乳形式的(甲基)丙烯酸酯共聚物、聚(甲基)丙烯酸酯、聚氨酯、磺化聚酯、苯乙烯-(甲基)丙烯酸酯共聚物或含氯化物的共聚物如偏二氯乙烯共聚物形成,其由于存在共聚的不饱和羧酸而具有一定的亲水官能性。
根据本发明的聚合膜的第十四实施方案,聚合膜不含泡沫。
根据本发明的聚合膜的第十五实施方案,聚合膜不含发泡剂和/或发泡剂分解产物。
归因于微孔的膜光学密度
通过随膜厚度测量无成孔成分的膜的光学密度以提供对比值,获得用可见光滤光器透射测得的归因于微孔的膜光学密度。随后如下获得用可见光滤光器透射测得的归因于空隙的膜光学密度:双轴拉伸已添加了空隙诱发成分的组合物,并从具有根据纵向和横向拉伸比预计出的膜厚度的无空隙诱发成分的膜组合物的用可见光滤光器透射测得的光学密度中减去该用可见光滤光器透射测得的光学密度。
线型聚酯
根据本发明的聚合膜的第十六实施方案,线型聚酯的数均分子量是10,000至30,000。
根据本发明的聚合膜的第十七实施方案,线型聚酯是聚(对苯二甲酸乙二酯)或其共聚物。
合适的芳族二羧酸酯的实例包括对苯二甲酸酯,间苯二甲酸酯,邻苯二甲酸酯和萘二甲酸酯,和其混合物。
根据本发明的聚合膜的第十八实施方案,芳族二羧酸酯单体单元选自对苯二甲酸酯,间苯二甲酸酯和萘二甲酸酯。
根据本发明的聚合膜的第十九实施方案,线型聚酯中至少1mol%的芳族二羧酸酯单体单元是间苯二甲酸酯单体单元,优选至少3mol%和特别优选至少5mol%。
根据本发明的聚合膜的第二十实施方案,线型聚酯中30mol%或更少的芳族二羧酸酯酸单体单元是间苯二甲酸酯单体单元,优选20mol%或更少,特别优选18mol%或更少,和特别优选15%或更少。
合适的脂族二亚甲基的实例包括亚乙基、亚丙基、甲基亚丙基、四亚甲基、五亚甲基、六亚甲基、新亚戊基[-CH2C(CH3)2-CH2]、1,4-环己烷-二亚甲基、1,3-环己烷-二亚甲基、1,3-环戊烷-二亚甲基、降冰片烷-二亚甲基、-CH2CH2(OCH2CH2)n-(其中n是整数,1至5是优选的)及其混合物。
根据本发明的聚合膜的第二十一实施方案,脂族二亚甲基单体单元选自亚乙基,二亚乙基醚,四亚甲基,新亚戊基,2-内,3-内降冰片烷二亚甲基和1,4-环己烷-二亚甲基。
根据本发明的聚合膜第二十二实施方案,线型聚酯中至少1mol%的脂族二亚甲基单体单元是新亚戊基或1,4-环己烷二亚甲基单体单元,优选至少3mol%和特别优选至少5mol%。
根据本发明的聚合膜的第二十三实施方案,线型聚酯中30mol%或更少的脂族二亚甲基单体单元是新亚戊基或1,4-环己烷二亚甲基单体单元,优选20mol%或更少,特别优选18mol%或更少和特别优选15%或更少。
根据本发明的聚合膜的第二十四实施方案,线型聚酯包括至少一种线型芳族聚酯树脂。在加热时,例如在混入挤出机期间,存在的不同线型芳族聚酯树脂将经历复分解、缩合和解聚(decondensing)以在足够长的加热后演化成单一树脂。
这样的聚酯在本领域中是众所周知的且可以通过众所周知的技术制备,例如US 2,465,319和US 2,901,466中所述的那些。
根据本发明的聚合膜的第二十五实施方案,聚合膜进一步包含导电性增强添加剂,例如在熔体中电离产生增强的导电性的金属盐比如乙酸镁,锰盐和硫酸钴。合适的盐浓度为约3.5x10-4摩尔/摩尔聚酯。提高的聚酯熔体粘度能实现熔体在保持在5至25℃(优选15至30℃)以冷却挤出物的冷却辊上的增强的钉销式固定(pinning),由此能实现更高拉伸力并因此实现提高的空隙形成和更高的不透明化程度。
根据本发明的聚合膜的第二十六实施方案,线型聚酯是具有选自对苯二甲酸酯,间苯二甲酸酯和萘二甲酸酯的芳族二羧酸酯单体单元和选自亚乙基,四亚甲基,新亚戊基和1,4-环己烷二亚甲基的脂族二亚甲基单体单元的聚合物。
可以用少量其它单体改性的聚(对苯二甲酸乙二酯)尤其优选。其它合适的聚酯包括通过掺入合适量的共酸(co-acid)组分,如均二苯代乙烯二羧酸而形成的液晶共聚酯。这类液晶共聚酯的实例是US 4,420,607、US 4,459,402和US 4,468,510中公开的那些。
在本发明中利用的线型聚酯应该具有40℃-150℃的玻璃化转变温度,优选地50到120℃,且应该是可取向的。
根据本发明的聚合膜的第二十七实施方案,该线型聚酯具有在60重量%苯酚和40重量%邻二氯苯的0.5g/dL溶液中在25℃测得的至少0.45dl/g的特性粘度,0.48至0.9dl/g的特性粘度是优选的,0.5至0.8dl/g的特性粘度尤其优选。
合适的连续相的实例包括包含聚(对苯二甲酸乙二酯)和聚(1,4-亚环己基二亚甲基对苯二甲酸酯)的共混物和包含聚(对苯二甲酸乙二酯)和聚(新亚戊基对苯二甲酸酯)的共混物。
无定形高聚物
用于本发明的聚合膜的无定形高聚物具有的玻璃化转变温度高于其分散在其中的连续相例如线型聚酯的玻璃化转变温度。聚(对苯二甲酸乙二酯),例如,具有大约80℃的玻璃化转变温度。
各种无定形高聚物的玻璃化转变温度和折光指数在下表给出:
  Tg[℃]   在589.3nm的钠线折光指数[ASTM D642]
  聚苯乙烯   100   1.57-160
  聚-α-甲基-苯乙烯   168   1.610
  聚-4-甲基-苯乙烯   93   -
  聚-α-乙烯基-萘   159   1.6818
  聚丙烯腈   85   1.514,1.5187
  聚甲基丙烯腈   120   1.520
  聚甲基丙烯酸甲酯   105   1.49,1.4893
  聚丙烯酰胺   165   -
  丙烯腈和苯乙烯的共聚物   112   1.56-1.57,1.57
  28.5wt%丙烯腈和71.5wt%苯乙烯的共聚物   108   1.56-1.57,1.57
  ABS   110   1.53-1.54
根据本发明的聚合膜的第二十八实施方案,均匀分散的无定形高聚物是交联的或非交联的。
根据本发明的聚合膜的第二十九实施方案,无定形高聚物包括至少一个链式-聚合的嵌段。
根据本发明的聚合膜的第三十实施方案,无定形高聚物包括至少一个链式-聚合的嵌段且该至少一个链式-聚合的嵌段选自聚苯乙烯,苯乙烯共聚物,SAN-聚合物,聚丙烯酸酯,丙烯酸酯-共聚物,聚甲基丙烯酸酯和甲基丙烯酸酯-共聚物。
根据本发明的聚合膜的第三十一实施方案,无定形高聚物包括选自SAN-聚合物,ABS-聚合物和SBS-聚合物的至少一个链式-聚合的苯乙烯共聚物嵌段。
根据本发明的聚合膜的第三十二实施方案,无定形高聚物包括至少一个链式-聚合的SAN-聚合物嵌段,其中SAN-聚合物中AN-单体单元的浓度是15至35wt%。
根据本发明的聚合膜的第三十三实施方案,无定形高聚物是SAN-聚合物且SAN-聚合物为2.0∶1-9.0∶1范围。
根据本发明的聚合膜的第三十四实施方案,无定形高聚物不包括纤维素酯。
根据本发明的聚合膜的第三十五实施方案,无定形高聚物为至少部分交联的例如至少部分交联的聚(甲基丙烯酸甲酯)或至少部分交联的丙烯腈和苯乙烯的共聚物。
根据本发明的聚合膜的第三十六实施方案,膜具有线型聚酯作为连续相且其中分散具有交联度为至少10%的高聚物。
根据本发明的聚合膜的第三十七实施方案,无定形高聚物是SAN聚合物,SAN聚合物浓度优选为膜重量的至少5%,特别优选膜重量的至少10%。
本组合物的SAN聚合物添加剂是基本由苯乙烯类单体组分(包括苯乙烯以及α-低碳烷基取代的苯乙烯或其混合物)和丙烯腈类单体组分(包括丙烯腈以及α-低碳烷基取代的丙烯腈或其混合物)的无规共聚物构成的已知类属的聚合物。低碳烷基是指具有1至4个碳原子的直链或支链烷基,例如甲基、乙基、异丙基和叔丁基。在易得的SAN聚合物中,苯乙烯组分通常是苯乙烯、α-直链烷基取代的苯乙烯,通常α-甲基-苯乙烯,或其混合物,其中苯乙烯是优选的。类似地,在易得的SAN聚合物中,丙烯腈组分通常是丙烯腈、α-甲基-丙烯腈或其混合物,其中丙烯腈是优选的。
在SAN聚合物中,苯乙烯组分以主要重量比例,即以苯乙烯组分和丙烯腈组分总重量的高于50%,通常大约65%至大约90%,尤其是大约70%至大约80%的重量比例存在。丙烯腈组分以次要比例,即以苯乙烯单体组分和丙烯腈单体组分总重量的小于50%,通常大约10%至大约35%,尤其大约20%至30%的重量比例存在。苯乙烯-丙烯腈共聚物是目前市售可得的,丙烯腈含量15至35wt%,优选18至32%重量和特别优选21至30%重量。
根据本发明的聚合膜的第三十八实施方案,无定形高聚物是SAN聚合物,其中AN-单体单元的浓度是15至35wt%。
在下列文献中更特别地确认和描述了SAN聚合物类型:R.E.Gallagher,US专利No.3,988,393,1976年10月26日颁发(尤其是在第9栏,第14-16行和权利要求8中),″Whittington′s Dictionary of Plastics″,Technomic Publishing Co.,第一版,1968,第231页,标题为“苯乙烯-丙烯腈共聚物(SAN)”的部分中,和R.B.Seymour,″Introduction to PolymerChemistry″,McGraw-Hill,Inc.,1971,第200页(最后两行)至第201页(第一行)。在″Encyclopedia of Polymer Science and Technology″,JohnWiley and Sons,Inc.,第1卷,1964,第425-435页中更特别描述通过苯乙烯和丙烯腈的共聚制备SAN聚合物。
根据本发明的聚合膜的第三十九实施方案,无定形高聚物是非交联的SAN聚合物,其具有的数均分子量为30,000至100,000,40,000至80,000是优选的。典型的SAN-聚合物具有45,000至60,000的数均分子量和1.2至2.5的聚合物分散度(Mw/Mn)。
根据本发明的聚合膜的第四十实施方案,无定形高聚物是非交联的SAN聚合物,具有重均分子量50,000至200,000,优选地75,000至150,000。SAN聚合物分子量越高,分散的SAN聚合物粒子的尺寸越大。
结晶高聚物
用于根据本发明的聚合膜的结晶高聚物,具有的熔点高于其分散于其中的连续相聚合物例如线型聚酯的玻璃化转变温度。具有充分高熔点的结晶高聚物包括聚乙烯,聚丙烯和聚(4-甲基-1-戊烯)。
根据本发明的聚合膜的第四十一实施方案,该膜具有线型聚酯作为连续相且分散其中的是具有数均粒度0.5至5微米,优选1至2微米的结晶高聚物粒子。
对于各种聚乙烯和聚丙烯的熔点和折光指数在下表给出:
  Tm[℃]   在589.3nm的钠线折光指数[ASTM D642]
  聚乙烯   95   1.51-1.54
  高密度聚乙烯   141   1.51-1.54
  全同立构聚丙烯   165   1.49
  间同立构聚丙烯   189   1.49
  聚丙烯(无规立构的)   1.4735
  聚(4-甲基戊烯)   235   1.4630
无机不透明化颜料
根据本发明的聚合膜的第四十二实施方案,聚合膜进一步包括至少一种无机不透明化颜料。
根据本发明的聚合膜的第四十三实施方案,该膜进一步包含选自二氧化硅、氧化锌、硫化锌、锌钡白、硫酸钡、碳酸钙、二氧化钛、磷酸铝和粘土的至少一种无机不透明化颜料。该二氧化钛可以具有锐钛矿或金红石形态并且可以用氧化铝和/或二氧化硅稳定化。磷酸铝可以是无定形中空颜料,例如来自BUNGE的BiphorTM颜料。
这些颜料的折光指数列在下表中。
  无机不透明化颜料   在589.3纳米的钠线折光指数
  高岭石   1.53-1.57
  膨润土   1.557
  陶土   1.56
  二氧化硅-硅胶   1.55
  二氧化硅-方石英   1.487,1.484
  二氧化硅-石英   1.544,1.553
  碳酸钙   1.59,1.6,1.58
  碳酸钙-方解石   1.486,1.64-1.66
  硫酸钡-重晶石   1.637,1.638,1.649,1.64
  锌钡白30%(硫化锌/硫酸钡)   1.84
  氧化锌(超细)   1.9
  氧化锌(红锌矿)   2.008,2.029
  硫化锌   2.37
  二氧化钛-锐钛矿   2.554,2.493,2.55
  二氧化钛-金红石   2.616,2.903,2.76
根据聚合膜第四十四实施方案,该膜包括≤5%重量的无机不透明化颜料,即存在的无机不透明化颜料的总量,无论其类型,是≤5%重量,优选≤3%重量的无机不透明化颜料。
根据本发明的聚合膜的第四十五实施方案,该膜进一步包括具有数均粒度在0.1-10微米之间,优选0.2-2微米的无机不透明化颜料。
无机不透明化颜料的添加具有使聚酯的取向稳定化的优点,从而可以在基本不影响该不透明微孔化双轴拉伸自支撑膜的不透明度的情况下在175℃下使该不透明微孔化双轴拉伸自支撑膜稳定化。在不存在无机不透明化颜料,如BaSO4或TiO2的情况下,聚酯的热固着只有以不透明微孔化双轴拉伸自支撑膜的一些不透明度为代价才能实现。此外,折光指数低于2.0的颜料,由于该颜料与聚合物基质之间的小折光指数差,不能独自提供显著不透明度。
已经发现分散在聚合物膜中的二氧化钛粒子在拉伸膜时不会诱导微孔化。
增白剂
根据本发明的聚合膜的第四十六实施方案,根据本发明,增白剂的浓度为≤0.5重量%,≤0.1重量%是优选的,≤0.05重量%特别优选,≤0.035重量%尤其优选。
根据本发明的聚合膜的第四十七实施方案,该膜进一步包含选自双-苯并噁唑,例如双-苯并噁唑基-均二苯代乙烯和双-苯并噁唑基-噻吩;苯并三唑-苯基香豆素;萘并三唑-苯基香豆素;三嗪-苯基香豆素和双(苯乙烯基)联苯的增白剂。
合适的增白剂是:
Figure G2007800446896D00191
阻燃剂
根据本发明的聚合膜的第四十八实施方案,该膜进一步包含阻燃剂。
根据本发明的聚合膜的第四十九实施方案,该膜进一步包含选自:溴化化合物;有机磷化合物;三聚氰胺;三聚氰胺-衍生物(例如与有机或无机酸,如硼酸、氰尿酸、磷酸或焦/多磷酸的三聚氰胺盐),和三聚氰胺同系物(如蜜白胺、蜜勒胺和melon);金属氢氧化物(例如氢氧化铵和氢氧化镁);多磷酸铵和硼酸锌(例如组成为xZnO.yB2O3.zH2O,如2ZnO.3B2O3.3.5H2O)的阻燃剂。
合适的阻燃剂包括:
Figure G2007800446896D00201
抗氧化剂
根据本发明的聚合膜的第五十实施方案,该膜进一步包含抗氧化剂。
根据本发明的聚合膜的五十一实施方案,该膜进一步包含选自有机锡衍生物、位阻酚、位阻酚衍生物和亚磷酸酯的抗氧化剂。
合适的阻燃剂包括:
Figure G2007800446896D00221
光稳定剂
根据本发明的聚合膜的第五十二实施方案,该膜进一步包含光稳定剂。
根据本发明的聚合膜的第五十三实施方案,该膜进一步包含受阻胺光稳定剂。
合适的光稳定剂包括:
Figure G2007800446896D00222
Figure G2007800446896D00231
紫外线吸收剂
根据本发明的聚合膜的第五十四实施方案,该膜进一步包含紫外线吸收剂。
根据本发明的聚合膜的第五十五实施方案,该膜进一步包含选自苯并三唑衍生物和三嗪衍生物的紫外线吸收剂。
合适的紫外线吸收剂包括:
Figure G2007800446896D00232
图像记录元件
也通过包含本发明的不透明微孔化双轴拉伸膜的图像记录元件实现本发明的方面。
根据本发明的图像记录元件的第一实施方案,该膜在至少一面上带有透明可套印层,即用于击打式和非击打式印刷。
根据本发明的图像记录元件的第二实施方案,该膜在至少一面上带有不透明可套印层,即适用于至少一种击打式和非击打式印刷技术。
根据本发明的图像记录元件的第三实施方案,该膜在至少一面上带有不透明的可透明化可套印层,即适用于至少一种击打式和非击打式印刷技术。
根据本发明的图像记录元件的第四实施方案,该膜在至少一面上带有喷墨接收层。典型的接收层在水性或溶剂油墨或糊料的情况下是多孔的以实现迅速的触摸干燥,或在相变油墨或可固化油墨,例如可辐射固化油墨的情况下是无孔的。多孔接收层通常包含至少一种颜料,如二氧化硅或氧化铝;至少一种粘合剂,如苯乙烯-丙烯酸酯-丙烯酸三元共聚物的铵盐;表面活性剂,例如阴离子型表面活性剂,如脂族磺酸盐;任选均化剂,如聚二甲基硅氧烷,和任选媒染剂。
根据本发明的图像记录元件的第五实施方案,该膜在至少一面上带有成像层,例如摄影层,例如卤化银乳剂层;光敏热成像元件和基本不感光的热成像元件;和染料热转印系统的染料接收层。
根据本发明的图像记录元件的第六实施方案,该膜在至少一面上带有可写层,例如可用铅笔、圆珠笔和自来水笔书写。
获得透明图案的方法
本发明的方面已经实现通过一种用于获得透明图案的方法来实现,其包括步骤:依图像施加热,任选辅以施加压力,至不透明微孔化双轴拉伸的自支撑非层压聚合膜,该膜包括线型聚酯作为连续相并且其中均匀地分散有玻璃化转变温度比连续相的玻璃化转变温度高的无定形高聚物和/或熔点比所述连续相的玻璃化转变温度高的结晶高聚物,其中所述线型聚酯基本上由芳族二羧酸酯和脂族二亚甲基单体单元组成;聚合膜具有用可见光滤光器透射测量的光学密度;且光学密度的至少50%归因于微孔。
根据本发明的获得透明图案的方法的第一实施方案,通过加热的或热的压模、热头、加热的或热的条或激光施加热。加热可以从该膜的一面或两面进行。可以在膜厚度没有显著改变的情况下容易地实现至少0.4或最多40%的光学密度变化。此外,通过本发明的获得透明图案的方法实现的透明化作用来自热源供应的热、热源与膜之间的压力和热源使用时间的组合。必须连续或断续施热至少1毫秒。可以用单次热脉冲进行用热头的加热,但多次短加热脉冲是优选的以避免加热元件的过热。当使用热头时,可以在加热过程中在热头与不透明微孔化双轴拉伸自支撑膜之间使用箔,例如可以在不透明微孔化膜与热头之间夹入6微米厚PET膜以防止热头的可能污染。可以使用热头印刷机,如AGFA-GEVAERT N.V.供应的DRYSTAR-印刷机制造本发明的透明图案,例如个性化水印。
通过浮雕图案实现这种透明化效应,该图案可以触知,即以触觉方式感知,和通过光泽度的变化感知。热源的温度越高,这种浮雕图案越明显,例如在SAN-聚合物作为分散相的情况下,这种压花效应随着在110℃至190℃之间的温度而提高。通过将热压模施加到不透明微孔化双轴拉伸自支撑膜上而获得的触知浮雕比使用热头获得的明显得多。
所实现的透明度取决于压模/热头印刷条件:时间、温度和压力。材料的热固着史也是重要的。不透明微孔化双轴拉伸自支撑膜的热诱导的透明化可以在任选施加喷墨接收层之类的层之前或之后和在透明化之前或之后进行。透明化区域的相对位置和载体中的透明度可以有价值地作为额外安全措施。
根据本发明的获得透明图案的方法的第二实施方案,断续施热。
根据本发明的获得透明图案的方法的第三实施方案,在依图像施热之前在该膜上提供透明可套印层。
根据本发明的获得透明图案的方法的第四实施方案,在依图像施热之后在该膜上提供透明可套印层。
工业应用
本发明的不透明微孔化双轴拉伸膜可用作用于印刷和其它用途的合成纸、用作LCD显示器和光电器件中的relector、用作成像材料(例如击打式和非击打式(例如电子照相术、电记录术和喷墨)接收材料、光敏热成像记录材料、基本不感光的热成像记录材料、染料升华印刷、热转印等)的载体,用在安全和防伪用途中,例如在票证、标签、签条、身份证、银行卡、法律文书、纸币和包装中,并且也可以整合到包装中。
下面通过对比例和实施例例证本发明。除非另行指明,这些实施例中给出的百分比和比率按重量计。
在载体的乳剂侧上的胶层Nr.01:
Figure G2007800446896D00261
实施例中所用的成分:
聚酯:
  PET-nr   MFI 270℃/1.20kg[cm3/10min]   特性粘度**[η]dl/g]   Tg[℃]
  01   T03*   聚对苯二甲酸乙二酯   34.8   0.60   80.5
  02   T04*   聚对苯二甲酸乙二酯   34.8   0.60   80.5
  03   WP75#   98.5摩尔%对苯二甲酸酯、1.5摩尔%间苯二甲酸酯和100摩尔%乙烯单元的聚酯   0.77   80
  04   DP9990#   90摩尔%对苯二甲酸酯、10摩尔%间苯二甲酸酯和100摩尔%乙烯单元的聚酯   0.60
  05   DP9970#   70摩尔%对苯二甲酸酯、30摩尔%间苯二甲酸酯和100摩尔%乙烯单元的聚酯
  06   RADICRON1480#   100摩尔%对苯二甲酸酯、73摩尔%乙烯和27摩尔%新戊烯单元的聚酯
* AGFA-GEVAERT N.V.
# La Seda
** 特性粘度在Ubbelohde粘度计中在60重量%苯酚和40重量%邻二氯苯的0.5g/dL溶液中在25℃下测定
苯乙烯-丙烯腈共聚物:
  SAN-nr   Wt%丙烯腈   Wt%苯乙烯   MFI 270℃/1.20kg[mL/10min]   Mn   Mw   Tg[℃]
  01   TYRIL 905*   20   80   7.1   105.2
  02   TYRIL 867E*   25   75   5.8   106.5
  03   SAN 140*   27.5   72.5   53.2   47,640   99,820   108.8
  04   LURAN 368R#   28   72   3.9   107.3
  05   TYRIL 790*   29   71   12.1   106.3
  06   SAN 124*   28.5   71.5   37.9   53,940   109,350   108.1
  07   LURAN 388S#   33   67   3.6   108.7
* DOW CHEMICAL
# BASF
MFI=熔体流动指数
MAGNUM 8391:ABS 树脂,Vicat 软化温度95℃,来自DOW
             CHEMICAL
TPX DX820:  高刚性聚(4-甲基戊烯),来自MITSUI CHEMICAL
二氧化钛:   Renol-white/PTX 506,来自CLARIANT GmbH的母料,
             含有65重量%TiO2和35重量%聚酯
             对比例1至3
用于产生对比例1至3的膜中所用的挤出物的PET型和SAN型在表1中给出。PET,SAN,TiO2和UVITEX OB-one以表3中给出的重量百分数混合,然后在真空条件下(<100毫巴)在150℃干燥4小时,混合物然后熔融于PET-挤出机且挤出穿过片材模头并冷却以生产对比例1至3的挤出物。
表1:
  对比例nr   PET01[wt%]   PET02[wt%]   PET03[wt%]   SAN型   TiO2[wt%]   OB-one[ppm]
  1   98   -   -   -   2   150
  2   47   -   47   -   6   -
  3   44   -   44   -   12   -
对比例1至3的挤出物然后用INSTRON装置纵向拉伸,其中挤出物在安装在该装置上的炉中以表2中给出的条件加热。
表2:
  对比例nr.   拉伸比   拉伸力[N/mm2]   厚度[微米]   OD TR924
  1/LS1   3.3   6.0   319   0.81
  2/LS1   3.3   5.0   340   1.26
  3/LS1   3.3   5.0   335   159
然后对纵向拉伸膜以表3中给出的条件进行横向拉伸,拉伸时间30s,拉伸速度1000%/分钟。最后在175℃热固着膜1分钟,产生基本上不透明的对比例1/LS1,2/LS2和3/LS3的膜。
对比例1/LS1/BS1,2/LS1/BS1和3/LS1/BS1的膜的光学密度用具有可见光滤光器的MACBETH TR924密度计以透射模式测量,且结果在表3中给出。
表3:
  对比例nr.   拉伸比   拉伸温度[℃]   厚度[微米]   热固着后的OD(TR924)
  1/LS1/BS1   3.3   135   120   0.45
  2/LS1/BS1   3.3   135   140   0.90
  3/LS1/BS1   3.3   135   135   1.12
* 拉伸张力越高,拉伸温度越低
将对比例的膜1/LS/BS,2/LS/BS和3/LS/BS各自安装在Instron 4411装置中并在120至190℃的各种温度下加热5秒,上方夹钳中的烙铁以0.5N/平方毫米的压力与该膜接触。用带有可见光滤光器的MacBethTR924密度计透射测量试验后膜的光学密度,还测量了膜厚度。结果分别地概述在下表4和5中。
表4:
Figure G2007800446896D00291
表5:
Figure G2007800446896D00292
在实验误差范围内没有观察到在加热对比例的膜1/LS/BS,2/LS/BS和3/LS/BS的透明化。由此可见缺乏分散的SAN-聚合物粒子时,包含二氧化钛的膜没有透明化,即没有微孔形成。
对比例4
如对实施例1至58所述制造组成为2重量%二氧化钛、100ppmUVITEX OB-one和98重量%PETO2的对比例4的1083微米厚的挤出物并具有用带有可见光滤光器的MacBeth TR924密度计以透射模式测得的1.35的光学密度。挤出物在表6中给出的条件下在长度方向如对比例1至3所述拉伸。厚度值的测量是通过平均在16个不同的位置、使用具有1微米的分辨度、2微米的精度和直径为3mm的接触球的SONYU30A厚度计在0.8N测量力下接触上表面获得的测量值。
表6:
  对比例nr.   拉伸比   拉伸力[N/平方毫米]   厚度[微米]   OD(TR924)   OD[X-rite]
  4/LS1   3.3   6   323   0.805   0.55
  4/LS2   3.3   4   328   0.84   -
然后在表7中给出的条件下在纵向拉伸的膜上进行横向拉伸,拉伸时间30s,拉伸速度1000%/分钟。用带有可见光滤光器的MacBeth TR924密度计以透射模式测量的厚度和测量的光学密度也在表7中给出。
表7:
  对比例nr.   拉伸比   拉伸温度[℃]   厚度[微米]   ODTR924   OD[X-rite]
  4/LS1/BS1   3.3   135   120   0.47   0.30
  4/LS2/BS1   3.3   135   124   0.53   0.33
由于如从对比例1至3中可以看出的那样,对于对比例4的组合物,在双轴拉伸时不存在成孔对光学密度的贡献,可以利用光学密度对膜厚度的依赖性提供基线,对于在双轴拉伸时形成空隙的含2重量%相同二氧化钛颜料的基于芳族聚酯的那些组合物,用该基线评估成孔对光学密度的贡献。
Beer-Lambert关系不适用于含光散射颜料,如二氧化钛着色的膜。如果膜厚度小于散射光的平均自由行程长度,光会在散射后逸出,否则,光不会逸出并实际上干扰进一步散射光,从而提供光学密度对膜厚度的准指数依赖性。这种情况太复杂以致不能在理论上描述,因此唯一可能的途径是测量在特定膜厚度下观察到的实际光学密度。上述光学密度看似相当接近于线性依赖在层厚度范围1084至120微米内的膜厚度的对数,得出下列关系式:
OD=0.891log[厚度,微米计]-1.3727
该关系式提供作为膜厚度的函数的可归因于所用2重量%浓度二氧化钛颜料的光学密度。
本发明的实施例1至18
如下制造都含2重量%二氧化钛和15重量%SAN 06的实施例1至18的大约1100微米厚的挤出物:将表8中的成分以表8中给出的比例混合,然后将该混合物在150℃下在真空(<100毫巴)下干燥4小时,再在PET-挤出机中熔融,挤过片材模头并冷却以制造具有如表8中概括的大约1.3克/毫升的密度以及间苯二甲酸酯(IPA)∶对苯二甲酸酯(TPA)比率的实施例1至18的挤出物。
表8:
  本发明实施例nr.   PET02[wt%]   PET04[wt%]   PET05[wt%]   IPA∶TPA比   SAN型   SAN[wt%]   UVITEXOB-one[ppm]   TiO2[wt%]   密度[克/毫升]
  1   83   0   -   0   06   15   -   2.0   1.294
  2   58   25   -   0.0310   06   15   -   2.0   1.289
  3   41.5   41.5   -   0.0526   06   15   100   2.0   1.284
  4   33.35   49.7   -   0.0636   06   15   -   1.95
  5   33.3   49.7   -   0.0637   06   15   100   2.0
  6   32.3   50.7   -   0.0650   06   15   100   2.0
  7   32.3   50.7   -   0.0650   06   15   100   2.0
  8   26.29   56.71   -   0.0733   06   15   100   2.0
  9   25.25   57.75   -   0.0748   06   15   100   2.0
  10   25   58   -   0.0751   06   15   100   2.0   1.304
  11   24.3   58.7   -   0.0761   06   15   100   2.0
  12   1.05   82.0   -   0.109   06   15   -   1.95
  13   -   83   -   0.111   06   15   -   2.0   1.299
  14   -   83   -   0.111   06   15   100   2.0
  15   28.25   22.3   32.5   0.168   06   15   100   1.95
  16   14.85   22.3   45.9   0.239   06   15   -   1.95
  17   1.05   22.3   59.7   0.320   06   15   -   1.95
  18   1.05   -   82.0   0.421   06   15   -   1.95
在表9中给出的条件下如对比例1至3中所述对各挤出物进行纵向拉伸。预期厚度是基于挤出物厚度的厚度并且是纵向(如对未成孔膜观察互的那样)。
纵向拉伸伴随着由成孔引起的密度降低,这种密度降低明显随IPA∶TPA比率提高而提高,令人惊讶地表明,IPA∶TPA比率的提高有利于膜中提高的成孔。
表9:
Figure G2007800446896D00321
Figure G2007800446896D00331
表10给出测得厚度;预期厚度,即基于挤出物厚度的如果未成孔的厚度,纵向拉伸比和横向拉伸比;用带有可见光滤光器的MacBethTR924密度计以透射模式测得的光学密度;预期光学密度,即使用对比例4中公开的关系式使用理论层厚度值计算出的光学密度;和观察到的光学密度与归因于2重量%浓度的所用特定二氧化钛颜料的预期光学密度之差,ΔOD。
表10:
  本发明实施例nr.   IPA∶TPA比   厚度[微米]   V1速度[m/min]   预期的厚度[微米]   ODTR924   预期的OD   ΔOD   ΔOD/OD   OD[X-rite]
  1/LS1   0   320   4.0   286   1.00   0.81   0.19   0.19   0.76
  2/LS1   0.0310   325   4.0   286   1.05   0.81   0.24   0.23   0.82
  2/LS2   0.0310   323   4.0   301   1.00   0.83   0.17   0.17   0.78
  3/LS1   0.0526   318   4.0   286   1.06   0.81   0.25   0.23   0.85
  本发明实施例nr.   IPA∶TPA比   厚度[微米]   V1速度[m/min]   预期的厚度[微米]   ODTR924   预期的OD   ΔOD   ΔOD/OD   OD[X-rite]
  4/LS1   0.0636   380   4.0   333   1.17   0.87   0.30   0.26   0.96
  4/LS2   0.0636   380   4.0   333   1.15   0.87   0.28   0.24   0.97
  4/LS3   0.0636   375   8.0   333   1.12   0.87   0.25   0.22   0.92
  5/LS1   0.0637   350   4.0   333   1.21   0.87   0.34   0.28   0.98
  5/LS2   0.0637   330   4.0   333   1.02   0.87   0.15   0.15   0.80
  6/LS1   0.0650   365   4.0   333   0.87
  7/LS1   0.0650   300   4.0   290
  7/LS2   0.0650   335   4.0   305
  7/LS3   0.0650   350   4.0   319
  8/LS1   0.0733   360   4.0   333   1.17   0.87   0.30   0.26   0.97
  9/LS1   0.0748   330   4.0   333   1.08   0.87   0.21   0.19   0.90
  10/LS1   0.0751   330   4.0   286   1.13   0.81   0.32   0.28   0.92
  11/LS1   0.0761   350   4.0   333   1.18   0.87   0.31   0.26   1.00
  11/LS2   0.0761   333   4.0   333   1.10   0.87   0.23   0.21   0.89
  12/LS1   0.109   370   4.0   333   1.15   0.87   0.28   0.24   0.93
  12/LS2   0.109   385   4.0   333   1.28   0.87   0.41   0.32   1.01
  13/LS1   0.1111   345   4.0   286   1.20   0.81   0.39   0.32   1.02
  13/LS2   0.1111   380   4.0   301   1.23   0.83   0.40   0.32   1.00
  14/LS1   0.1111   320   4.0   286   1.24   0.81   0.43   0.35   1.00
  14/LS2   0.1111   4.0   286   1.02   0.81   0.21   0.20   0.83
  14/LS3   0.1111   4.0   286   1.10   0.81   0.29   0.26   0.83
  15/LS1   0.168   393   4.0   333   1.15   0.87   0.28   0.24   0.97
  16/LS1   0.239   390   4.0   333   1.12   0.87   0.25   0.22   0.91
  17/LS1   0.320   392   4.0   327   1.37   0.87   0.50   0.36   1.10
  17/LS2   0.320   400   4.0   327   1.10   0.87   0.23   0.21   0.89
  18/LS1   0.421   375   4.0   333   1.13   0.87   0.26   0.23   0.76
  18/LS2   0.421   380   4.0   333   0.97   0.87   0.10   0.10   0.89
纵向拉伸伴随着由成孔引起的密度降低,这种密度降低明显随PET04比例的提高而提高,即令人惊讶地表明,芳族聚酯中间苯二甲酸单元浓度的提高有利于膜中提高的成孔。归因于成孔的光学密度的提高为17至36。
然后在纵向拉伸的膜上在表11中给出的条件下以30秒拉伸时间和1000%/分钟拉伸速度进行横向拉伸。密度、测得的厚度和预期厚度(即基于挤出物厚度的如果未成孔的厚度)、纵向拉伸比和横向拉伸比也列在表11中。
横向拉伸进一步降低膜密度,当PET04比例提高时,密度降低程度更大。这再次令人惊讶地表明,芳族聚酯中间苯二甲酸单元浓度的提高有利于膜中提高的成孔。这种密度降低小于简单根据测得的厚度(与未成孔膜的预期厚度相比较)预计的程度。
令人惊讶地,在0.0650的IPA∶TPA比率下,横向拉伸在高于113℃不可行,但在低至85℃的温度(其比线型聚酯基质的玻璃化转变温度高不到10℃)下可行。这能通过双轴拉伸实现高得多的光学密度。
表11:
Figure G2007800446896D00351
Figure G2007800446896D00361
Figure G2007800446896D00371
表12给出测得厚度;预期厚度;用带有可见光滤光器的MacBethTR924密度计以透射模式测得的光学密度;预期光学密度,即使用对比例4中公开的关系式使用理论层厚度值计算出的光学密度;和观察到的光学密度与归因于2重量%浓度的所用特定二氧化钛颜料的预期光学密度之差,ΔOD。
表12:
  本发明实施例nr   IPA∶TPA比   LS速度[m/min]   厚度[微米]   预期的厚度[微米]   ODTR924   预期的OD   ΔOD   ΔOD/OD   OD[X-rite]
  1/LS1/BS1   0   4.0   101   87   1.00   0.35   0.65   0.65   0.78
  2/LS1/BS1   0.0310   4.0   95   87   1.01   0.35   0.66   0.65   0.78
  2/LS2/BS1   0.0310   4.0   102   91   0.99   0.37   0.62   0.63   0.75
  3/LS1/BS1   0.0526   4.0   100   87   1.04   0.35   0.69   0.66   0.80
  3/LS1/BS2   0.0526   4.0   97   87   (1.04)   (0.35)   (0.69)   0.66   (0.80)
  4/LS1/BS1   0.0636   4.0   145   95   1.02   0.39   0.63   0.62   0.85
  4/LS2/BS1   0.0636   4.0   150   95   1.11   0.39   0.72   0.65   0.90
  4/LS3/BS1   0.0636   8.0   126   95   1.03   0.39   0.64   0.62   0.77
  5/LS1/BS1   0.0637   4.0   140   95   1.20   0.39   0.81   0.67   0.97
  5/LS1/BS2   0.0637   4.0   135   95   1.25   0.39   0.86   0.69   1.00
  本发明实施例nr   IPA∶TPA比   LS速度[m/min]   厚度[微米]   预期的厚度[微米]   ODTR924   预期的OD   ΔOD   ΔOD/OD   OD[X-rite]
  5/LS2/BS1   0.0637   4.0   116   95   1.10   0.39   0.71   0.64   0.86
  6/LS1/BS1   0.0650   4.0   140   101   1.10   0.41   0.69   0.63   0.85
  7/LS1/BS1   0.0650   4.0   110   88   1.06   0.36   0.70   0.66   0.84
  7/LS2/BS1   0.0650   4.0   135   93   1.18   0.38   0.80   0.68   0.94
  7/LS3/BS1   0.0650   4.0   150   97   1.11   0.40   0.71   0.64   0.88
  8/LS1/BS1   0.0733   4.0   145   95   1.21   0.39   0.82   0.68   0.94
  9/LS1/BS1   0.0748   4.0   138   95   1.20   0.39   0.81   0.67   0.97
  10/LS1/BS1   0.0751   4.0   105   87   1.10   0.35   0.75   0.68   0.90
  11/LS1/BS1   0.0761   4.0   147   95   1.20   0.39   0.81   0.67   0.97
  11/LS2/BS1   0.0761   4.0   112   95   1.05   0.39   0.66   0.63   0.82
  12/LS1/BS1   0.109   4.0   207   95   1.26   0.39   0.87   0.69   1.04
  12/LS1/BS2   0.109   4.0   199   95   1.28   0.39   0.89   0.69   1.04
  12/LS1/BS3   0.109   4.0   198   95   1.27   0.39   0.88   0.69   1.03
  12/LS2/BS1   0.109   4.0   205   95   1.34   0.39   0.95   0.71   1.12
  12/LS2/BS2   0.109   4.0   210   95   1.34   0.39   0.95   0.71   1.08
  12/LS2/BS3   0.109   4.0   214   95   1.35   0.39   0.96   0.71   1.11
  13/LS1/BS1   0.111   4.0   169   87   1.32   0.35   0.97   0.73   1.06
  13/LS2/BS1   0.111   4.0   185156   91   1.26   0.37   0.89   0.71   1.00
  14/LS1/BS1   0.111   4.0   130   86   1.24   0.35   0.89   0.72   1.00
  14/LS2/BS1   0.111   4.0   125   86   0.95   0.35   0.60   0.63   0.74
  14/LS3/BS1   0.111   4.0   120   86   0.98   0.35   0.63   0.64   0.74
  15/LS1/BS1   0.168   4.0   198   95   1.30   0.39   0.91   0.70   1.05
  15/LS1/BS2   0.168   4.0   201   95   1.28   0.39   0.89   0.69   1.04
  15/LS1/BS3   0.168   4.0   204   95   1.30   0.39   0.91   0.70   1.08
  16/LS1/BS1   0.239   4.0   191   95   1.20   0.39   0.81   0.67   0.99
  16/LS1/BS2   0.239   4.0   186   95   1.19   0.39   0.80   0.67   0.97
  17/LS1/BS1   0.320   4.0   211   95   1.26   0.39   0.87   0.69   1.00
  本发明实施例nr   IPA∶TPA比   LS速度[m/min]   厚度[微米]   预期的厚度[微米]   ODTR924   预期的OD   ΔOD   ΔOD/OD   OD[X-rite]
  17/LS1/BS2   0.320   4.0   210   95   1.30   0.39   0.91   0.70   1.08
  17/LS2/BS1   0.320   4.0   190   95   1.19   0.39   0.80   0.67   0.95
  17/LS2/BS2   0.320   4.0   200   95   1.21   0.39   0.82   0.68   0.98
  18/LS1/BS1   0.421   4.0   190   95   1.14   0.39   0.75   0.66   0.91
  18/LS1/BS2   0.421   4.0   170   95   1.14   0.39   0.75   0.66   0.90
  18/LS1/BS3   0.421   4.0   170   95   1.16   0.39   0.77   0.66   0.91
  18/LS2/BS1   0.421   4.0   150   95   1.03   0.39   0.64   0.62   0.81
  18/LS2/BS2   0.421   4.0   150   95   1.07   0.39   0.68   0.63   0.83
表12的结果表明,在大致相同的拉伸温度下,随着IPA∶TPA比率升至0.132,微孔化对双轴拉伸膜的光学密度的贡献提高至超过70%。在0.132的IPA∶TPA比率以上,其稳定降至在0.421的IPA∶TPA比率(相当于30摩尔%间苯二甲酸酯)下0.66的仍然显著的贡献份额。
通过将膜夹在Instron 4411装置中并在膜与烙铁在150℃下接触5秒后观察膜厚度和光学密度的变化,证实几个双轴拉伸膜存在成孔。这些实验的结果列在表13中。
表13:
实施例19
如对实施例1至58所述制造组成为2重量%二氧化钛、100ppmUVITEX OB-one[ppm]、15重量%SAN 06和83重量%PET04的实施例19的1100微米厚的挤出物。如对比例1-3中所述在如表14中给出的四组不同条件下对挤出物进行长度方向的拉伸。预期厚度是基于挤出物厚度的厚度并且是纵向(如对未成孔膜观察到的那样)。
表14:
Figure G2007800446896D00401
然后在纵向拉伸的膜上在表15中给出的条件下如对比例1-3中所述进行横向拉伸。密度、测得的厚度和预期厚度(即基于挤出物厚度的如果未成孔的厚度)且纵向拉伸比和横向拉伸比也列在表15中。
双轴拉伸降低膜密度,其中横向拉伸温度越低,密度降低得越多。但是,密度的降低小于简单根据测得的厚度(与基于挤出物厚度的预期厚度相比较)预计的程度、纵向拉伸比和横向拉伸比(如针对未成孔膜观察到的),这可以部分解释为两种效应的组合:一方面由成孔引起的密度降低在一定程度上由于另一方面由双轴拉伸引起的聚酯基质的结晶度的提高而获得补偿。
表15:
Figure G2007800446896D00402
Figure G2007800446896D00411
表16给出测得的厚度、预期厚度(即基于挤出物厚度的如果未成孔的厚度)和纵向拉伸和横向拉伸比、用带有可见光滤光器的MacBethTR924密度计以透射模式测得的光学密度、预期光学密度(即使用对比例4中公开的关系式使用理论层厚度值计算出的光学密度)和观察到的光学密度与归因于2重量%浓度的所用特定二氧化钛颜料的预期光学密度之差,ΔOD、以及进行横向拉伸时的温度。
表16:
Figure G2007800446896D00421
*拉伸比=3.5
从表16中的结果清楚看出,如不归因于所存在的2重量%二氧化钛的光学密度所示,成孔程度随横向拉伸温度的降低而提高到70%,无论横向拉伸过程中其它相关条件如何。
表17概括了对于在大约110℃拉伸温度下获得的不同膜,拉伸条件、厚度、基于挤出物厚度的预期厚度、纵向拉伸比和横向拉伸比、光学密度、预期光学密度和由成孔引起的非贡献性(non-attibutable)的光学密度提高。
表17中的数据表明,拉伸时间从30秒降至10秒且拉伸速度从1000%/min提高至2000%/min也有助于成孔。
表17:
Figure G2007800446896D00431
*拉伸比=3.5
通过将膜夹在Instron 4411装置中并在膜与烙铁在各种温度下接触5秒后观察膜厚度和光学密度的变化,证实实施例19/LS1/BS1的双轴拉伸膜存在成孔。这些实验的结果列在表18和19中。
表18:
Figure G2007800446896D00432
表19:
Figure G2007800446896D00441
对于实施例19/LS1/BS1的膜,观察到在150℃下0.42的光学密度降低,相当于25%,伴随着层厚度降低26%。
实施例20-24
如对对比例1-3所述制备全部具有2%重量的二氧化钛和15%重量的SAN的大约1100微米厚的实施例20-24的挤出物,具有15%重量的SAN或15%重量的ABS(MAGNUM 8391)和不同的PET02与PET04重量比,如表20中所概括。
表20:
  实施例nr.   PET02[wt%]   PET04[wt%]   MAGNUM 8391[%重量]   SAN 06[wt%]   UVITEX OB-one[ppm]   TiO2[wt%]
  20   83   0   15   -   -   2.0
  21   41.2   41.8   -   15   100   2.0
  22   32.3   50.7   -   15   100   2.0
  23   32   51   -   15   100   2.0
  24   -   83   -   15   100   2.0
如对比例1-3中所述在如表21中给出的条件下对各挤出物进行长度方向的拉伸。预期厚度是基于挤出物厚度的厚度并且是纵向(如对未成孔膜观察到的那样)。
表21:
Figure G2007800446896D00451
*拉伸速度4.0m/min
然后在纵向拉伸的膜上在表22中给出的条件下以30秒拉伸时间和1000%/分钟拉伸速度进行横向拉伸。测得的厚度、预期厚度(即基于挤出物厚度的如果未成孔的厚度)、纵向拉伸比和横向拉伸比、用带有可见光滤光器的MacBeth TR924密度计以透射模式测得的光学密度、预期光学密度(即使用对比例4中公开的关系式使用理论层厚度值计算出的光学密度)和观察到的光学密度与归因于2重量%浓度的所用特定二氧化钛颜料的预期光学密度之差,ΔOD,也在表22中给出。
表22:
Figure G2007800446896D00452
Figure G2007800446896D00461
*拉伸速度2000%/min
随着来自实施例20/LS1/BS1的连续相中PET04百分比(无PET04)到具有100%PET04的实施例24/LS1/BS1,归因于成孔的光学密度增加明显地从50%贡献增加到71%贡献。
测量本发明实施例21/LS1/BS1,21/LS1/BS2和21/LS2/BS1的双轴拉伸的挤出物的弹性(Young’s)模量和屈服应力,结果概括在下表23:
表23:
Figure G2007800446896D00462
通过将膜夹在Instron 4411装置中并在膜与烙铁在150℃下接触5秒后观察膜厚度和光学密度的变化,证实实施例20/LS1/BS1的双轴拉伸膜存在成孔。这些实验的结果列在表24中。
表24:
Figure G2007800446896D00471
表24的结果表明,在大致相同的拉伸温度下,当该组合物中PET04的浓度提高(即聚酯中间苯二甲酸单元的浓度提高至PET04本身中的芳族二羧酸的10摩尔%的浓度)时,对双轴拉伸膜的光学密度的贡献明显提高。
也通过将膜夹在Instron 4411装置中并在膜与烙铁在各种温度下接触5秒后观察膜厚度和光学密度的变化,证实实施例23/LS1/BS1和24/LS1/BS1的双轴拉伸膜存在成孔。这些实验的结果列在表25和26中。
表25:
Figure G2007800446896D00472
表26:
对于实施例20/LS1/BS1,23/LS1/BS1和24/LS1/BS1的膜观察到在150℃的光学密度减少为0.19,0.42和0.60,分别对应于26,38和50%。
实施例25-27
如对对比例1-3所述以表27中概括的SAN 06、PET02和PET04的不同浓度制造SAN06在芳族聚酯中的未着色分散体的本发明的实施例25至27的大约1100微米厚的挤出物。
表27:
  本发明实施例nr.   PET02[%重量]   PET04[%重量]   SAN 06[%重量]   乙酸镁[ppm]   UVITEX OB-one[ppm]
  25   57.7   25.3   17   -   100
  26   25.3   57.7   17   -   100
  27   -   85.0   15   33   -
如对比例1至3中所述在如表28中给出的条件下对各挤出物进行长度方向的拉伸。预期厚度是基于挤出物厚度的厚度并且是纵向(如对未成孔膜观察到的那样)。
表28:
Figure G2007800446896D00481
然后在长度拉伸的膜上在表29中给出的条件下以30秒拉伸时间和1000%/分钟拉伸速度进行横向拉伸。测得的厚度、预期厚度(即基于挤出物厚度的如果未成孔的厚度)、纵向拉伸比和横向拉伸比、用带有可见光滤光器的MacBeth TR924密度计以透射模式测得的光学密度、预期光学密度(即0.05,几乎完全通过膜两面上的折射效应测得的聚对苯二甲酸乙二酯的光学密度)和观察到的光学密度与归因于芳族聚酯的预期光学密度之差,ΔOD也列在表29中。
表29:
Figure G2007800446896D00491
表29中的结果表明,与本发明的实施例25/LS2/BS1的膜(其中线型聚酯基质含3摩尔%间苯二甲酸酯)的归因于成孔的0.78的不透明化光学密度相比,本发明的实施例27/LS2/BS4和27/LS2/BS5的膜(其中线型聚酯基质含10摩尔%间苯二甲酸酯)的归因于成孔的不透明化光学密度显著提高,为1.28和1.29。
通过将膜夹在Instron 4411装置中并在膜与烙铁在各种温度下接触5秒后观察膜厚度和光学密度的变化,证实实施例25/LS2/BS1、26/LS1/BS1和26/LS2/BS1和本发明的实施例27系列的双轴拉伸膜存在成孔。这些实验的结果列在表30和31中。
表30:
Figure G2007800446896D00501
表31:
Figure G2007800446896D00502
Figure G2007800446896D00511
对于本发明的实施例25/LS2/BS1、26/LS1/BS1和26/LS2/BS1的膜,观察到在190℃下0.67、0.85和0.88的光学密度降低,分别相当于81、86和85%。在本发明实施例27系列中,在190℃下的光学密度降低在0.84和1.01之间变动,相当于64至84%。
这些光学密度降低伴随着层厚度的13、16和19%的降低,其中对于本发明的实施例27系列,观察到25至36%的厚度降低。这些结果表明,在使含15或17重量%SAN 06的聚酯层透明化时,光学密度极大降低,最多为1.01。
实施例28-34
如对对比例1-3所述制备具有2%重量的二氧化钛和15%重量的SAN 06的大约1100微米厚的本发明实施例28-34的挤出物,具有不同的PET02与PET06浓度,如表32中所概括。
表32:
  本发明实施例nr.   NP*[mol%]   PET02[%重量]   PET06[%重量]   SAN 06[%重量]   UVITEXOB-one[ppm]   TiO2[wt%]
  28   5.2   66.3   16.7   15   100   2.0
  29   8.5   55.7   27.3   15   100   2.0
  30   12.6   43.0   40.0   15   100   2.0
  31   15.8   33.3   49.7   15   -   2.0
  32   17.0   29.7   53.3   15   100   2.0
  本发明实施例nr.   NP*[mol%]   PET02[%重量]   PET06[%重量]   SAN 06[%重量]   UVITEXOB-one[ppm]   TiO2[wt%]
  33   21.5   16.3   66.7   15   -   2.0
  34   26.7   1.0   82.0   15   -   2.0
*NP=聚酯中的新戊烯单体单元
如对比例1-3中所述在如表33中给出的条件下对各挤出物进行长度方向的拉伸。预期厚度是基于挤出物厚度的厚度并且是纵向(如对未成孔膜观察到的那样)。
表33:
Figure G2007800446896D00521
然后在长度拉伸的膜上在表34中给出的条件下以30秒拉伸时间和1000%/分钟拉伸速度进行横向拉伸。测得的厚度、预期厚度(即基于挤出物厚度的如果未成孔的厚度)、纵向拉伸比和横向拉伸比、用带有可见光滤光器的MacBeth TR924密度计以透射模式测得的光学密度、预期光学密度和观察到的光学密度与归因于芳族聚酯的预期光学密度之差,ΔOD,也在表34中给出。
表34:
Figure G2007800446896D00531
表34中的结果清楚表明由于用PET和PETG的共混物的基质,而非PET或者PET与对苯二甲酸、间苯二甲酸和乙二醇例如PET03、PET04和PET05的聚酯的共混物,而产生的成孔实现了光学密度的极大不透明化,69%。
通过将膜夹在Instron 4411装置中并在膜与烙铁在各种温度下接触5秒后观察膜厚度和光学密度的变化,证实本发明实施例28/LS1/BS1、29/LS1/BS2、30/LS1/BS1、32/LS1/BS1、和33/LS1/BS1的双轴拉伸膜存在成孔。这些实验的结果列在35中。
表35:
Figure G2007800446896D00532
在170℃的光学密度减少从本发明实施例28/LS1/BS1的膜的0.413变化至本发明实施例33/LS1/BS1的膜的0.654,对应于41.6到61.7%。这些光学密度减少伴随有16至47.7%的层厚度减少。这些结果显示在透明化具有15wt%SAN 06和2wt%TiO2的聚酯层时,光学密度大量减少至高达0.654。
实施例35
如对实施例1至58所述制造含2重量%二氧化钛、15重量%
Figure G2007800446896D00541
DX820,聚(4-甲基戊烯)、33.3重量%PET02和49.7重量%PET04的实施例35(SP54)的大约1100微米厚的挤出物。如实施例1至58中所述在如表36中给出的条件下对各挤出物进行长度方向的拉伸。预期厚度是基于挤出物厚度的厚度并且是纵向(如对未成孔膜观察到的那样)。
表36:
Figure G2007800446896D00542
然后在长度拉伸的膜上在表37中给出的条件下以30秒拉伸时间和1000%/分钟拉伸速度进行横向拉伸。测得的厚度、预期厚度(即基于挤出物厚度的如果未成孔的厚度)、纵向拉伸比和横向拉伸比、用带有可见光滤光器的MacBeth TR924密度计以透射模式测得的光学密度、预期光学密度和观察到的光学密度与归因于芳族聚酯的预期光学密度之差,ΔOD也列在表37中。
表37:
Figure G2007800446896D00543
表37中的结果清楚表明,由于使用含有TPX作为粒度大约10微米的结晶分散相的PET04基质时的成孔,实现光学密度的64%的极大不透明化。但是,在1258N/mm2下的纵向弹性(Young’s)模量和在26.4N/mm2下的纵向屈服应力明显低于使用SAN作为不透明化产生试剂的材料,参见本发明的实施例21/LS1/BS1、21/LS1/BS2和21/LS2/BS1的结果。
本发明可以包括本文中明示或暗示公开的任何特征或特征的组合或其任何泛化,无论其是否涉及目前要求保护的本发明。考虑到上述描述,本领域技术人员显而易见的是,可以在本发明的范围内作出各种修改。

Claims (28)

1.不透明微孔化双轴拉伸的自支撑非层压聚合膜,该膜包括线型聚酯作为连续相并且其中均匀地分散有玻璃化转变温度比所述连续相的玻璃化转变温度高的无定形高聚物和/或熔点比所述连续相的玻璃化转变温度高的结晶高聚物,其中所述线型聚酯基本上由芳族二羧酸酯和脂族二亚甲基单体单元组成;所述聚合膜具有用可见光滤光器透射测量的光学密度;且所述光学密度的至少50%归因于微孔;其中所述膜具有1.2克/毫升或更小的密度。
2.根据权利要求1的膜,其中所述均匀分散的无定形高聚物或所述结晶高聚物在所述膜中的浓度是5至35wt%。
3.根据权利要求1或2的膜,其中所述均匀分散的无定形高聚物是交联的或非交联的。
4.根据权利要求1的聚合膜,其中所述无定形高聚物包括至少一个链式-聚合的嵌段。
5.根据权利要求4的聚合膜,其中所述至少一个链式-聚合的嵌段选自聚苯乙烯,苯乙烯共聚物,SAN-聚合物,聚丙烯酸酯,丙烯酸酯-共聚物,聚甲基丙烯酸酯和甲基丙烯酸酯-共聚物。
6.根据权利要求5的聚合膜,其中所述苯乙烯共聚物选自SAN-聚合物和ABS-聚合物。
7.根据权利要求6的膜,其中AN-单体单元在所述SAN-聚合物中的浓度是15至35wt%。
8.根据权利要求6或7的膜,其中所述线型聚酯与所述SAN-聚合物的重量比在2.0∶1至9.0∶1的范围。
9.根据权利要求1或2的聚合膜,其中所述无定形高聚物不含纤维素酯。
10.根据权利要求1或2的膜,其中所述均匀分散的无定形高聚物在所述连续相中作为直径小于10微米的粒子存在。
11.根据权利要求1的膜,其中所述膜进一步包括至少一种无机不透明化颜料。
12.根据权利要求11的膜,其中所述至少一种无机不透明化颜料选自二氧化硅,氧化锌,硫化锌,锌钡白,硫酸钡,碳酸钙,二氧化钛,磷酸铝和粘土。
13.根据权利要求11或12的膜,其中所述膜包括≤5%重量的无机不透明化颜料。
14.根据权利要求1或2的膜,其中所述芳族二羧酸酯单体单元选自对苯二甲酸酯,间苯二甲酸酯和萘二甲酸酯。
15.根据权利要求1或2的膜,其中所述脂族二亚甲基单体单元选自亚乙基,二亚乙基醚,四亚甲基,新亚戊基和1,4-环己烷二亚甲基。
16.根据权利要求1或2的膜,其中所述线型聚酯中30mol%或更少的所述芳族二羧酸酯单体单元是间苯二甲酸酯单体单元。
17.根据权利要求1或2的膜,其中所述线型聚酯中至少3mol%的所述芳族二羧酸酯单体单元是间苯二甲酸酯单体单元。
18.根据权利要求1或2的膜,其中所述线型聚酯包括至少一种线型芳族聚酯树脂。
19.根据权利要求18的膜,其中所述至少一种线型芳族聚酯树脂中的所述至少一种具有在60重量%苯酚和40重量%邻二氯苯的0.5g/dL溶液中在25℃测得的至少0.45dl/g的特性粘度。
20.根据权利要求1或2的膜,其中所述膜进一步包括选自增白剂,紫外线吸收剂,光稳定剂,抗氧化剂,阻燃剂和着色剂的成分。
21.根据权利要求1至20中任一项的不透明微孔化双轴拉伸膜作为合成纸的用途。
22.图像记录元件,包括根据权利要求1至20中任一项的不透明微孔化双轴拉伸膜。
23.根据权利要求22的图像记录元件,其中所述膜在至少一面上提供有透明的可套印层。
24.根据权利要求22的图像记录元件,其中所述膜在至少一面上提供有不透明的可透明化的可套印层。
25.根据权利要求22至24中任一项的图像记录元件,其中所述膜在至少一面上提供有喷墨接收层。
26.根据权利要求22或23的图像记录元件,其中所述膜在至少一面上提供有成像层。
27.根据权利要求22或23的图像记录元件,其中所述膜具有可写的层。
28.用于获得透明的图案的方法,包括步骤:依图像施加热并任选辅以施加压力至根据权利要求1至20中任一项的不透明微孔化双轴拉伸膜。
CN2007800446896A 2006-10-03 2007-10-01 不透明微孔化双轴拉伸膜、其制造方法和用其获得透明图案的方法 Expired - Fee Related CN101548236B (zh)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
EP06121665 2006-10-03
EP06121669 2006-10-03
EP06121665.1 2006-10-03
EP06121669.3 2006-10-03
EP07104947 2007-03-27
EP07104950.6 2007-03-27
EP07104953 2007-03-27
EP07104953.0 2007-03-27
EP07104947.2 2007-03-27
EP07104948.0 2007-03-27
EP07104948 2007-03-27
EP07104950 2007-03-27
PCT/EP2007/060380 WO2008040701A1 (en) 2006-10-03 2007-10-01 Non-transparent microvoided biaxially stretched film, production process therefor and process for obtaining a transparent pattern therewith

Publications (2)

Publication Number Publication Date
CN101548236A CN101548236A (zh) 2009-09-30
CN101548236B true CN101548236B (zh) 2012-10-03

Family

ID=37733745

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007800446839A Active CN101548235B (zh) 2006-10-03 2007-10-01 制备不透明微孔化自支撑膜的方法
CN2007800446896A Expired - Fee Related CN101548236B (zh) 2006-10-03 2007-10-01 不透明微孔化双轴拉伸膜、其制造方法和用其获得透明图案的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2007800446839A Active CN101548235B (zh) 2006-10-03 2007-10-01 制备不透明微孔化自支撑膜的方法

Country Status (1)

Country Link
CN (2) CN101548235B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220225B1 (ko) * 2011-09-02 2013-01-09 에스케이씨 주식회사 백색 다공성 폴리에스테르 필름 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457018A (en) * 1993-11-24 1995-10-10 Agfa Gevaert Ag Shaped plastic article
CN1416451A (zh) * 2000-02-15 2003-05-07 拜尔公司 含聚碳酸酯和颜料的组合物
JP2004196951A (ja) * 2002-12-18 2004-07-15 Mitsubishi Engineering Plastics Corp 易引裂き性ポリエステルフィルム及びその用途
CN1524109A (zh) * 2001-06-07 2004-08-25 ����ɭ���ڻ�ѧר����˾ 粘度增加的卤化异丁烯基共聚物和其热塑性组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457018A (en) * 1993-11-24 1995-10-10 Agfa Gevaert Ag Shaped plastic article
CN1416451A (zh) * 2000-02-15 2003-05-07 拜尔公司 含聚碳酸酯和颜料的组合物
CN1524109A (zh) * 2001-06-07 2004-08-25 ����ɭ���ڻ�ѧר����˾ 粘度增加的卤化异丁烯基共聚物和其热塑性组合物
JP2004196951A (ja) * 2002-12-18 2004-07-15 Mitsubishi Engineering Plastics Corp 易引裂き性ポリエステルフィルム及びその用途

Also Published As

Publication number Publication date
CN101548235A (zh) 2009-09-30
CN101548235B (zh) 2012-09-05
CN101548236A (zh) 2009-09-30

Similar Documents

Publication Publication Date Title
CN101681089B (zh) 不透明的微孔化的轴向拉伸的膜、其制造方法和用其获得透明图案的方法
US7498125B2 (en) Non-transparent microvoided biaxially stretched film, production process therefor and process for obtaining a transparent pattern therewith
CN101548237B (zh) 不透明微孔化轴向拉伸膜、其制造方法和用其获得透明图案的方法
CN101548236B (zh) 不透明微孔化双轴拉伸膜、其制造方法和用其获得透明图案的方法
JP2010522784A (ja) 非透明な微孔形成された二軸延伸されたフィルム、合成紙中でのその使用およびそれを含んでなる像記録要素

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121003

CF01 Termination of patent right due to non-payment of annual fee