CN101542201A - 燃烧方法和燃烧装置 - Google Patents

燃烧方法和燃烧装置 Download PDF

Info

Publication number
CN101542201A
CN101542201A CNA2008800001365A CN200880000136A CN101542201A CN 101542201 A CN101542201 A CN 101542201A CN A2008800001365 A CNA2008800001365 A CN A2008800001365A CN 200880000136 A CN200880000136 A CN 200880000136A CN 101542201 A CN101542201 A CN 101542201A
Authority
CN
China
Prior art keywords
mentioned
concentration
catalyst
oxygen
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008800001365A
Other languages
English (en)
Other versions
CN101542201B (zh
Inventor
田中收
德永幸博
冈本裕介
安井贤志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007107298A external-priority patent/JP4296603B2/ja
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Publication of CN101542201A publication Critical patent/CN101542201A/zh
Application granted granted Critical
Publication of CN101542201B publication Critical patent/CN101542201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • F22B21/04Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • F23J2215/101Nitrous oxide (N2O)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/40Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

一种应用于水管锅炉、吸收式冷冻机的再生器等的燃烧方法,该燃烧方法含有将来自气体产生源的气体中的氮氧化物、一氧化碳和氧的浓度比调节为标准规定浓度比的浓度比调节步骤,和利用具有下述特性的氧化催化剂降低氮氧化物的有害物质减少步骤,所述特性是在一次侧的上述浓度比为标准规定浓度比时使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性,浓度比调节步骤以检测氧化催化剂的二次侧的氧浓度、并使检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。根据该燃烧方法,可以将氮氧化物的排放量降低至无限接近于零,将一氧化碳排放量降低至容许范围内。另外,可以通过氧浓度的检测稳定地进行浓度比的控制。

Description

燃烧方法和燃烧装置
技术领域
本发明涉及应用于水管锅炉、吸收式冷冻机的再生器等的燃烧方法和燃烧装置。
背景技术
一般地,作为抑制NOx产生的原理,已知有火焰(燃烧气体)温度的抑制、高温燃烧气体滞留时间的缩短等。然后,有应用了这些原理的各种低NOx化技术。例如,提出了2阶段燃烧法、浓差燃烧法、废气再循环燃烧法、水添加燃烧法、蒸汽喷射燃烧法、利用水管组的火焰冷却燃烧法等的提案,并将其实用化。
但是,即使对于水管锅炉等的容量较小的NOx产生源,人们对其给环境带来的影响的担心也在增加,开始要求进一步的低NOx化。在该低NOx化过程中,当减少NOx的生成时,CO的排放量增加,因此难以同时消减NOx和CO。
其原因是由于低NOx化与CO化是两个相反的技术课题。即,当为了促进低NOx而将燃烧气体温度急剧降低、抑制在900℃以下的低温时,CO大量产生,同时产生的CO不被氧化而直接排放,从而CO排放量增大。相反,当为了减少CO的排放量而将燃烧气体温度抑制在高的温度时,NOx生成量的抑制变得不充分。
为了解决该课题,申请人提出了以伴随低NOx化并尽可能地减少产生的CO量、以及将产生的CO氧化的方式来抑制燃烧气体温度的低NOx和低CO技术的方案,并进行商品化(参考专利文献1、2)。
但是,对于该专利文献1、2记述的低NOx化技术,在现实中,生成NOx值限于25ppm左右。
作为该课题的解决方案,申请人提出了一种低NOx燃烧方法,该方法以使抑制NOx产生优先于排放CO值的降低的方式抑制燃烧气体的温度,进行使生成的NOx值在规定值以下的低NOx化步骤,之后进行使来自上述低NOx化步骤的排放CO值在规定值以下的低CO化步骤(参考专利文献3、4)。根据该专利文献3、4记述的技术,可以进行使NOx值低于10ppm的低NOx化,但难以实现使NOx值低于5ppm的低NOx化。这是因为由于燃烧的特性,不可避免地生成5ppm以上的NOx的缘故。
专利文献3、4记述的低NOx化技术,如图18所示,属于空气比为1.38以上的所谓高空气比燃烧区域Z1。另一方面,在空气比为1.1以下(以下称作“低空气比”)的燃烧区域Z2,氮氧化物的产生量增加,难以同时实现低NOx和低CO化,以及当空气比为1以下时,有发生回火的可能性等,难以进行稳定的燃烧控制,因此低空气比燃烧的区域Z2迄今为止几乎不作为研究开发的对象。在图18中,线条F、E分别模式地表示本发明燃烧装置的一次侧的NOx特性和CO特性,线条U、J分别模式地表示本发明燃烧装置的NOx特性和CO特性。上述专利文献3、4的二次侧的低NOx化技术都是基本上通过在高空气比区域Z1使燃烧器(burner)燃烧来抑制NOx生成,并将产生的CO利用氧化催化剂除去的技术。
另一方面,作为时代背景,对于锅炉有进一步低NOx化的要求,同时要求节约能源的低空气比运行。
基于这种背景,本申请的发明人使用氧化催化剂进行了可将氮氧化物降低至无限接近于零的燃烧方法的研究开发。
但是,作为由燃烧器的燃烧而产生的含有氮氧化物的气体的处理方法,已知有专利文献5。
对于上述专利文献5的废气气体处理方法,在第一步骤中,通过使燃烧器在空气比小于1.0(比理论空气量少的量的燃烧空气量)的条件下燃烧,得到不含氧、含有CO、HC(烃)的未燃成分的燃烧废气气体,在氮氧化催化剂中通过未燃成分还原氮氧化物,将氮氧化物净化。在第二步骤中,在该净化后的废气气体中添加空气并利用氧化催化剂净化未燃成分。
该专利文献5的处理方法不是在氧的存在下减少一氧化碳和氮氧化物的方法,另外,根据该专利文献5,使用不同的催化剂进行氮氧化物的还原步骤和未燃成分的氧化步骤,因此装置的构成变得复杂,难以维修·管理。
另外,已知在专利文献6中有由燃气马达产生的含有氮氧化物的气体的净化方法。该专利文献6使用三元催化剂来净化氮氧化物和一氧化碳,但仅应用于在气体中必须存在烃,同时不存在过剩氧这样理论空气比的气体。因此,专利文献6的处理方法不适合利用燃烧器的燃烧产生的、含有过剩氧的锅炉燃烧气体的处理。
进而,已知在专利文献7中有使用氧化催化剂通过一氧化碳将焚烧炉的废气气体中的氮氧化物还原的技术。对于该专利文献7的技术,当在废气气体中存在氧时,氮氧化物的还原不进行,因此在一次燃烧中,通过在燃料浓度为过剩的状态(空气比小于1)下进行燃烧,而使废气气体形成无氧状态。在该专利文献7中,受到燃烧需在燃料浓度为过剩状态下进行这样的制约,因此难以应用于使用了燃烧器的锅炉这样的、在废气气体中含有氧的燃烧装置。
专利文献1:日本专利第3221582号公报
专利文献2:美国专利第5353748号说明书
专利文献3:特开2004-125378号公报
专利文献4:美国专利第6792895号说明书
专利文献5:特开2001-241619号公报
专利文献6:特开平5-38421号公报
专利文献7:特开平2003-275543号公报
发明内容
本发明欲解决的课题是通过简单的方法将氮氧化物和一氧化碳的排放量降低至无限接近于零的值,或者降低至容许范围,同时通过氧浓度的检测,得到稳定的有害物质减少效果。
本申请的发明人为了解决上述课题进行了反复研究,结果发现,对于在专利文献3、4中记述的具有用于减少一氧化碳的氧化催化剂的锅炉,在迄今为止几乎没有进行研究过的无限接近于1的低空气比的燃烧器燃烧区域(图18的区域Z2),氮氧化物和一氧化碳的排放量基本上为零这一点。于是,可以使氮氧化物和一氧化碳的排放量基本上为零。
究其原因,结果得到下述的新的发现,即,通过使氧化催化剂的一次侧的氧、氮氧化物和一氧化碳的浓度比为标准规定浓度比,可以使用氧化催化剂将氮氧化物和一氧化碳的排放量降低至无限接近于零,同时通过在上述标准规定浓度比的附近来对上述浓度比进行调节,可以将有害物质(氮氧化物和一氧化碳)的排放量基本上降低至零或者容许值。本发明基于该发现而完成。根据本发明,不仅可以使有害物质的排放浓度基本为零,还可以利用无限接近于空气比1.0来实现有害物质排放量的降低,因此能够实现显著节约能源的目的。
以下,对于只是称为浓度比的情况,是指氧化催化剂的一次侧的氧、氮氧化物和一氧化碳的浓度比。上述氧化催化剂可以使用公知的氧化催化剂,也可以使用新型的氧化催化剂。
即,本申请的发明人突破了如专利文献7中所述的、在基于氧化催化剂的作用来通过一氧化碳还原氮氧化物时、氧成为阻碍这一技术常识,通过采用有效利用氧、将在氧化催化剂一次侧的氧、氮氧化物和一氧化碳的浓度关系调节至规定的关系(规定浓度比)这样的新型技术手段,使上述课题得到解决。
另外,作为欲解决本发明的进一步的课题,为了以使上述氧化催化剂的二次侧的氮氧化物浓度基本为零的方式将上述浓度比一定地控制为上述标准规定浓度比,并使上述标准规定浓度比的变化范围为最小限度,需要分辨率高、高应答的传感器。
该申请的发明人得到下述的新发现,即,通过如上述那样在上述氧化催化剂的一次侧有意地含有氧、并使上述氧化催化剂的二次侧的氧浓度基本为零,可以将上述浓度比一定地控制为上述标准规定浓度比。
在本发明中,基于该发现,通过检测上述氧化催化剂的二次侧的氧浓度、并使检测氧浓度基本上为零的方式进行控制,可以解决上述课题。并且,使上述氧化催化剂的二次侧的氮氧化物浓度基本上为零的控制,也可以通过检测氮氧化物浓度的传感器来进行,但目前没有发现分辨率高、高应答且价格便宜的传感器。
如上所述,本发明是不仅显著具有有害物质减少效果、而且使用现有的燃烧器、氧化催化剂、氧浓度传感器和空气比控制、或者使用其延伸的技术就可以简单地解决上述课题的划时代的发明。并且,在本发明中,优选上述气体产生源为燃烧器,但只要能够应用本发明的原理即可,上述气体产生源不限定于燃烧器,所述本发明的原理是通过使上述浓度比为上述标准规定浓度比,可以使上述氧化催化剂的二次侧的氮氧化物浓度基本为零这样的原理。
本发明涉及的第一发明是一种燃烧方法,其包含:将在含有来自气体产生源的氮氧化物、一氧化碳和氧的上述气体中的氮氧化物、一氧化碳和氧的浓度比调节为标准规定浓度比的浓度比调节步骤;和利用具有下述特性的氧化催化剂降低氮氧化物的有害物质减少步骤,所述特性是通过与上述气体接触,利用氧氧化一氧化碳、利用一氧化碳还原氮氧化物、同时在一次侧的上述浓度比为上述标准规定浓度比时使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性。另外,上述浓度比调节步骤以检测上述氧化催化剂的二次侧的氧浓度、并使检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。这里,“检测氧浓度基本上为零附近”不仅包含使上述氧化催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零的氧浓度、还含有使上述氧化催化剂的二次侧的氮氧化物浓度和一氧化碳浓度为规定值以下的氧浓度。
另外,氮氧化物浓度基本为零是指优选为5ppm、进而优选3ppm、进而优选零。一氧化碳浓度基本为零是指30ppm、进而优选10ppm。另外,氧浓度基本为零是指100ppm以下,优选为计测限度值以下。另外,氮氧化物浓度、一氧化碳浓度为规定值以下,是指在各国、各地区规定的排放标准浓度以下的意思,是优选设定在无限基本接近于零的值。即,“规定值”以下,换言之可以是“容许值”、“排放标准值”。
根据本发明,通过在上述浓度比调节步骤中使上述气体的浓度比为上述规定浓度比,可以使用上述氧化催化剂使上述氧化催化剂的二次侧的氮氧化物浓度减少至基本为零或规定值以下、使一氧化碳浓度减少至基本为零或规定值以下。另外,通过在上述氧化催化剂的一次侧的气体中含有氧,可以利用氧浓度的检测对上述标准规定浓度比进行一定的控制。顺便指出,对于如上述专利文献7所述的、氧化催化剂的一次侧的气体为无氧状态的技术,不能通过检测氧浓度而进行浓度比调节。
在上述第一发明中,上述浓度比调节步骤优选以检测上述氧化催化剂的二次侧的氧浓度和一氧化碳浓度、并使检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
该情况下,上述氧化催化剂由于上述特性,因此当上述浓度比恰好为上述标准规定浓度时,可以使二次侧的氧浓度基本为零,当上述浓度比在上述标准规定浓度上下时,在上述氧化催化剂的二次侧的氧浓度为零,并可以检测到一氧化碳浓度。因此通过不仅检测氧浓度、还将一氧化碳浓度一起进行检测,可以容易地进行使上述氧化催化剂的二次侧的氧浓度基本为零的控制。
本发明涉及的第二发明是具有浓度比调节手段和氧化催化剂的燃烧装置,所述浓度比调节手段将在含有来自气体产生源的氮氧化物、一氧化碳和氧的上述气体中的氮氧化物、一氧化碳和氧的浓度比调节至标准规定浓度比,所述氧化催化剂具有以下的特性,即,通过与上述气体接触,利用氧氧化一氧化碳、利用一氧化碳还原氮氧化物、同时在一次侧的上述浓度比为上述标准规定浓度比时使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性。另外,该装置具有检测上述氧化催化剂的二次侧的氧浓度的传感器,上述浓度比调节手段以利用上述传感器测定的检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
根据本发明,通过利用上述浓度比调节手段使上述气体的浓度比为上述规定浓度比,可以使用上述氧化催化剂使上述氧化催化剂的二次侧的氮氧化物浓度减少至基本为零或规定值以下、使一氧化碳浓度减少至基本为零或规定值以下。另外,通过在上述氧化催化剂的一次侧的气体中含有氧,可以由利用了上述传感器的氧浓度的检测来进行上述标准规定浓度比的一定控制,因此可以利用高分辨率、且高应答的传感器。
在上述第二发明中,上述传感器优选是检测上述氧化催化剂的二次侧的氧浓度和一氧化碳浓度的传感器,上述浓度比调节手段优选以使利用了上述传感器的检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
根据本发明,加上上述第二发明的效果,通过一同检测一氧化碳浓度,可以容易地进行使上述氧化催化剂的二次侧的氧浓度基本为零的控制,同时能够使用可用于汽车等的高分辨率、高应答且价格便宜的空气燃料比传感器。
根据本发明,通过调节上述浓度比,可以使用上述氧化催化剂,将氮氧化物和一氧化碳的排放量减少至无限接近于零,或者减少至规定值以下。另外,能够检测上述氧化催化剂的二次侧的氧浓度来进行使上述浓度比为上述标准规定浓度比的控制,因此可以利用高分辨率且高应答的传感器。
附图说明
[图1]是本发明的实施例1的蒸气锅炉的纵截面的说明图。
[图2]是沿图1的II-II线的截面图。
[图3]是表示从废气的流动方向观察图2的氧化催化剂的主要部分构成的附图。
[图4]是表示本发明实施例1的空气比-NOx·CO特性的附图。
[图5]是本发明的实施例1的挡板位置调节装置使用状态的一部分截面的说明图。
[图6]是该挡板位置调节装置的主要部分的截面说明图。
[图7]是说明本发明的实施例1的燃烧器和吸热手段特性和催化剂特性的模式图。
[图8]是说明本发明的实施例1的传感器的输出特性的附图。
[图9]是说明本发明的实施例1的马达控制特性的附图。
[图10]是说明本发明的实施例1的NOx和CO减少特性的附图。
[图11]是本发明的实施例2的蒸气锅炉的纵截面的说明图。
[图12]是说明本发明的实施例2的马达控制特性的附图。
[图13]是说明本发明的实施例3的使用了空气比-NOx·CO特性的空气比控制的附图。
[图14]是本发明的实施例4的蒸气锅炉的纵截面的说明图。
[图15]是本发明的实施例5、6涉及的蒸气锅炉的纵截面的说明图。
[图16]是本发明的实施例5、6中图16的横截面的说明图。
[图17]是表示本发明的实施例5所涉及的燃烧装置中燃烧特性等一例的模式图。
[图18]是说明本发明的NOx·CO一次特性和二次特性的附图。
符号说明
1燃烧器
4氧化催化剂
7传感器
8控制器
28空气比调节手段
29挡板
30挡板位置调节装置
34马达
具体实施方式
以下对于本发明的实施方式进行说明。在说明本发明的实施方式之前,对于在该申请中使用的用语进行说明。“气体”是指从燃烧器至完全通过氧化催化剂(可以称作“氧化·还原催化剂”或者仅称作“催化剂”)为止的气体,将通过催化剂后的气体称为“废气”。因此,气体含有燃烧反应中(燃烧过程)的气体和燃烧反应结束的气体,可以称作为“燃烧气体”。另外,当上述催化剂沿着气体的流动以多段来设置时,
“气体”是指至完全通过最终段的催化剂为止的气体,“废气”是指通过最终段的催化剂后的气体。
“催化剂的一次侧”是相对于催化剂设置了燃烧器的一侧,如果没有特别的说明,是指气体即将通过该催化剂之前,“催化剂的二次侧”是指催化剂的一次侧的相对侧。
另外,“不含有烃”不是在燃烧过程中完全不生成烃的意思,而是指在燃烧反应的过程中,有少许的烃生成,但在燃烧反应结束的阶段、即流入上述催化剂的气体中基本不含有(在测定限度以下)将氮氧化物还原的烃的意思。
进而,空气比m定义为m=21/(21-[O2])。其中,[O2]表示催化剂的二次侧的废气中的氧浓度,但求空气比时所用的[O2]在氧过剩区域表示过剩氧浓度,在燃料过剩区域以负值表示对于在空气比m=1的条件下使一氧化碳等未燃烧气体进行燃烧所需要的不足氧浓度。
以下对于本发明的实施方式进行说明。本发明应用于小型直流锅炉等的水管锅炉等的供热水器、吸收式冷冻机的再生器等的燃烧装置(也可以称作为热机器或者燃烧机器)。
(燃烧方法的实施方式1)
可应用本发明的燃烧方法的实施方式1的锅炉等燃烧装置,典型地,作为主要部分具有:燃烧器、罐体、催化剂、向上述燃烧器供给气体燃料的燃料供给手段、向上述燃烧器供给燃烧空气的燃烧空气供给手段、在上述催化剂的下流检测氧浓度的传感器、将该传感器等的信号输入来控制上述燃料供给手段和上述燃烧空气供给手段等的控制器,所述罐体含有作为从由该燃烧器生成的气体中进行吸热的吸热手段的传热管(水管)组,所述催化剂与分别以规定浓度比含有通过上述传热管组后的氧、氮氧化物和一氧化碳的气体接触并使其通过,而使一氧化碳氧化、同时使氮氧化物还原。
在这种燃烧装置中优选实施的本发明的燃烧方法的实施方式1是一种燃烧方法,其包含:使在含有来自气体产生源的氮氧化物的气体中含有一氧化碳和氧、同时将上述气体中的氮氧化物、一氧化碳和氧的浓度比调节至标准规定浓度比的浓度比调节步骤;和利用催化剂减少氮氧化物的有害物质减少步骤,所述催化剂具有通过与上述气体接触,利用氧氧化一氧化碳、利用一氧化碳还原氮氧化物、同时在一次侧的上述浓度比为上述标准规定浓度比时使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性。上述浓度比调节步骤以检测上述氧化催化剂的二次侧的氧浓度、并使检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
该实施方式1中的上述浓度比与下述的实时方式2同样,是指下式(1)所代表的一氧化碳浓度、氮氧化物浓度和氧浓度的相互关系。
在该燃烧方法的实施方式1中,上述浓度比调节步骤包含使在含有来自气体产生源的氮氧化物的气体中含有一氧化碳和氧、同时将上述浓度比调节至标准规定浓度比的第一步骤;和检测上述催化剂的二次侧的氧浓度并保持一定的上述标准规定浓度的第二步骤。对于在来自上述气体产生源的气体中含有一氧化碳和氧的情况、和不含有的情况的任一者,在上述第一步骤中,可以注入氧和/或一氧化碳等,以使上述浓度比为上述标准规定浓度比的方式来相对于氮氧化物浓度调节上述一氧化碳和上述氧的浓度。由此来实质性减少上述氧化催化剂的二次侧的氮氧化物浓度和一氧化碳浓度。另外,通过使上述浓度比以上述标准规定浓度比为中心进行变化,可以选择性地进行使上述氮氧化物浓度基本为零、使上述一氧化碳浓度为规定值以下的第一控制,和使上述一氧化碳浓度基本为零、使氮氧化物浓度为规定值以下的第二控制。并且,通过进行上述第二步骤,利用检测氧浓度,可以使上述标准规定浓度保持一定。
另外,当上述气体产生源为燃烧器时,优选在上述第一步骤中仅利用燃烧器特性、或者使用燃烧器和吸热手段的特性。通过对向上述燃烧器供给的燃料量与燃烧空气量的比例进行调节的空气比调节手段来控制空气比,由此构成上述浓度比调节手段。这样,不需要氧和/或一氧化碳的注入或者除去手段。
另外,在流入上述催化剂的气体中优选不含有烃。该条件可以通过在上述气体产生源中使含有烃的燃料燃烧而容易地实现。进而,即使对于在流入上述催化剂的气体中含有微量的烃的情况,只要可以实现使上述氧化催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零的方式的本发明的作用,也包含在本发明的实施方式中。
(燃烧方法的实施方式2)
上述燃烧方法的实施方式1应用于以下的实施方式2。在该实施方式2中与上述实施方式1同样,检测上述催化剂的二次侧的氧浓度,进行上述标准规定浓度比的控制,省略该说明。该实施方式2是使通过在燃烧器中燃烧燃料而产生的气体与氧化催化剂接触,来减少在上述气体中含有的氮氧化物的燃烧方法。该燃烧方法包含下述步骤,即,使含有烃的燃料在上述燃烧器中燃烧来生成不含有烃而含有氧、氮氧化物和一氧化碳的气体的燃烧步骤;通过吸热手段从由该燃烧步骤产生的气体中吸热的吸热步骤;在该吸热步骤后使上述气体与氧化催化剂接触而利用氧氧化在上述气体中含有的一氧化碳、利用一氧化碳还原氮氧化物的有害物质减少步骤;根据上述燃烧器和上述吸热手段的浓度比特性、使用上述燃烧器的空气比调节手段,将上述氧化催化剂的一次侧的气体中的氧、氮氧化物和一氧化碳的浓度比,调节为使上述催化剂的二次侧的氮氧化物浓度基本为零或者规定值以下、使一氧化碳浓度基本为零或者规定值以下的规定浓度比的浓度比调节步骤。
更具体地说,该方法是使通过在燃烧器中燃烧燃料而产生的气体与氧化催化剂接触,来减少在上述气体中含有的氮氧化物的燃烧方法,其含有下述步骤,即,使含有烃的燃料在上述燃烧器中燃烧来生成不含有烃而含有氧、氮氧化物和一氧化碳的气体的燃烧步骤;通过吸热手段从由该燃烧步骤产生的气体中吸热的吸热步骤;在该吸热步骤后使上述气体与氧化催化剂接触而利用氧氧化在上述气体中含有的一氧化碳、利用一氧化碳还原氮氧化物的有害物质减少步骤;根据上述燃烧器和上述吸热手段的浓度比特性、使用上述燃烧器的空气比调节手段,将上述氧化催化剂的一次侧的气体中的氧、氮氧化物和一氧化碳的浓度比K,调节为下述调节0~调节2的任一者的浓度比调节步骤。
调节0:将上述浓度比K调节为使上述氧化催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零的标准规定浓度比K0。
调节1:将上述浓度比K调节为使上述氧化催化剂的二次侧的氮氧化物浓度基本为零、同时使一氧化碳浓度为规定值以下的第一规定浓度比K1。
调节2:将上述浓度比K调节为使上述氧化催化剂的二次侧的一氧化碳浓度基本为零、同时使氮氧化物浓度为规定值以下的第二规定浓度比K2。
上述催化剂具有下述特性,即,当进行上述调节0时,分别使上述催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零,当进行上述调节1时,使上述氧化催化剂的二次侧的氮氧化物浓度基本为零、同时使一氧化碳浓度为规定值以下。另外,上述催化剂具有当进行上述调节2时,可使上述氧化催化剂的二次侧的一氧化碳浓度基本为零、同时使氮氧化物浓度为规定值以下。
在该实施方式2中,浓度比是指一氧化碳浓度、氮氧化物浓度和氧浓度的相互关系。上述调节0中的标准规定浓度比K0优选用下式(1)的判定式进行判定,优选满足下式(2),并使上述第一规定浓度比K1比上述标准规定浓度比小、使上述第二规定浓度比K2比上述标准规定浓度比大的方式来设定。
([NOx]+2[O2])/[CO]=K    (1)
1.0≤K=K0≤2.0          (2)
(在式(1)中,[CO]、[NOx]、和[O2]分别表示一氧化碳浓度、氮氧化物浓度和氧浓度,满足[O2]>0的条件。)
上述标准规定浓度比K0是使上述氧化催化剂的二次侧的氧浓度、氮氧化物浓度和一氧化碳浓度分别基本为零的上述氧化催化剂的一次侧的氧、氮氧化物和一氧化碳的浓度比。上式(1)是用于判定上述标准规定浓度比K0的判定式,式(2)表示使上述氧化催化剂的二次侧的氧浓度、氮氧化物浓度和一氧化碳浓度分别基本为零的条件。理论上,在K0=1.0的条件下可以使各浓度为零。但是,由试验结果能够确认,在上式(2)的范围下可使各浓度基本为零,对于上述K0的上限2.0,根据上述催化剂的特性,可以考虑取比2.0大的值。
当以低于上述标准规定浓度比K0的值、即、使式(1)的K为比K0小的上述第一规定浓度比K1的方式来调节上述氧化催化剂的一次侧的浓度比K(上述调节1)时,上述氧化催化剂的二次侧的氧浓度和氮氧化物浓度基本为零,同时一氧化碳浓度为规定值以下。该一氧化碳浓度的规定值优选设定在排放标准值(该值根据国家的不同而不同,因此在各国有变更的可能)以下。如果决定该规定值,则在实验上可以决定上述第一规定浓度比K1。使上述浓度比K的值为比K0小的上述第一规定浓度比K1的方式的浓度比K的调节,具体来说,可以通过使氧浓度相对于上述氧化催化剂的一次侧的一氧化碳浓度的比例,比氧浓度相对于满足上述标准规定浓度比K0的一氧化碳浓度的比例小的方式来实现。
另外,当使上述浓度比K为比K0大的上述第二规定浓度比K2的方式来调节上述氧化催化剂的一次侧的浓度比K(上述调节2)时,上述氧化催化剂的二次侧的一氧化碳浓度基本为零,同时氮氧化物浓度为规定值以下。该情况下,上述氧化催化剂的二次侧的氧浓度为规定浓度。该氮氧化物浓度的规定值与一氧化碳浓度的上述规定值是不同的,优选在各国规定的排放标准值以下。如果决定该规定值,则在实验上可以决定上述第二规定浓度比K2。用于形成上述第二规定浓度比K2的浓度比K的调节,具体来说,可以通过使氧浓度相对于上述氧化催化剂的一次侧的一氧化碳浓度的比例,比氧浓度相对于满足上述标准规定浓度比K0的一氧化碳浓度的比例大这样的方式来实现。
在该实施方式中,优选具有浓度比一定控制步骤,该步骤将上述浓度比K一定地保持在上述各规定浓度比K0、K1、K2。
对于该燃烧方法的实施方式2,首先,在上述燃烧步骤中,上述燃烧器进行燃烧,生成含有氧、氮氧化物和一氧化碳、而不含烃的气体。然后,通过上述浓度比调节步骤、利用上述调节0、上述调节1、上述调节2的任一者,将上述催化剂的一次侧的上述气体中的氧、氮氧化物和一氧化碳的浓度比K分别调节至上述标准规定浓度比K0、上述第一规定浓度比K1、上述第二规定浓度比K2。然后,在上述有害物质减少步骤中,上述气体与上述催化剂接触而利用上述气体中的氧氧化一氧化碳、利用一氧化碳还原氮氧化物。在进行上述调节0或者上述调节1时的有害物质减少步骤中,氧的作用是进行一氧化碳浓度的调节,即,消耗、减少对于还原氮氧化物而使其浓度基本为零是需要量以上的存在的一氧化碳量。通过该上述调节0、上述调节1后的有害物质减少步骤,上述气体中的氮氧化物的排放量减少至基本为零,一氧化碳的排放量减少至基本为零或者规定值以下。另外,通过上述调节2后的有害物质减少步骤,上述气体中的一氧化碳的排放量基本为零,氮氧化物浓度减少至规定值以下。进而,通过上述浓度比一定控制步骤,可以抑制上述各规定浓度比K0、K1、K2的值的变化,能够切实地实现氮氧化物排放量和一氧化碳排放量的减少效果。特别地,对于上述调节0,为了使氮氧化物排放量基本为零,上述浓度比一定控制步骤是重要的。
上述调节0的标准规定浓度比K0和上述调节1的第一规定浓度比K1包含在下式(3)中来表现。即,当满足式(3)时,可以使上述催化剂的二次侧的氮氧化物浓度基本为零,使一氧化碳浓度基本为零或者减少。为了使一氧化碳的减少在上述规定值以下,以使上述浓度比K的值为比K0小的值的方式来调节上述氧化催化剂的一次侧的上述浓度比K,形成上述第一规定浓度比K1。
([NOx]+2[O2])/[CO]=K≤2.0            (3)
(在式(1)中,[CO]、[NOx]、和[O2]分别表示一氧化碳浓度、氮氧化物浓度和氧浓度,满足[O2]>0的条件。)
对于上述有害物质减少步骤中的有害物质的减少作用进而进行说明。该减少作用被认为如以下那样进行。在上述氧化催化剂中,作为主反应,发生使一氧化碳氧化的第一反应和利用一氧化碳还原氮氧化物的第二反应。对于在上述氧化催化剂中的反应(催化反应),在氧存在下,上述第一反应比上述第二反应有优势,根据上述第一反应,一氧化碳在通过氧被消耗,并进行浓度调节后,通过上述第二反应还原氮氧化物。该说明为简略化的说明。实际上上述第一反应是与上述第二反应竞争的反应,但一氧化碳与氧的反应在氧存在下与上述第二反应相比,表观上较快地发生,因此在第一阶段进行一氧化碳的氧化(第一反应),在第二阶段氮氧化物被还原(第二反应)。
总之,在上述氧化催化剂中,在氧的存在下,通过CO+1/2O2→CO2所形成的上述第一反应,消耗了氧,使用剩余的CO通过2CO+2NO→N2+2CO2的上述第二反应而将氮氧化物还原,从而减少排放氮氧化物浓度。
这里,上式(2)中的[NOx]是一氧化氮浓度:[NO]与二氧化氮浓度:[NO2]的合计浓度。在上述反应式的说明中,不使用NOx而使用NO是由于对于在高温场合下的生成氮氧化物的组成,主成分是NO,NO2的量不过百分之几,从而可以近似地进行说明。即使存在NO2,其也与NO同样通过CO被还原。
当上述浓度比K为1.0时,在理论上可以使从上述催化剂中排放的氧浓度、氮氧化物浓度和一氧化碳浓度为零。但是,实验上可知稍微有一些一氧化碳被排放。([NOx]+2[O2])/[CO]=1是考虑实验结果、可由上述第一反应和第二反应理论导出的关系式。
这里,对如何导出([NOx]+2[O2])/[CO]=1进行说明。该式由于典型地满足上述标准规定浓度比K0,所以称作为标准规定浓度充分式。
已知在上述催化剂内,上述第一反应(I)作为主反应发生。
CO+1/2O2→CO2...(I)
另外,在使用了Pt等的贵金属催化剂的上述催化剂内,在不存在氧的氛围下通过上述第二反应(II)进行由CO导致的NO还原反应。
CO+NO→CO2+1/2N2...(II)
因此,该申请的发明人着眼于有助于上述第一反应(I)、上述第二反应(II)的反应的物质浓度,而导出上述标准浓度充分式。
即,当将CO浓度、NO浓度、O2浓度分别记作[CO]ppm、[NO]ppm、[O2]ppm时,利用上式(I)可通过CO除去的氧浓度用下式(III)表示。
2[O2]=[CO]a...(III)
另外,为了进行上式(II)的反应,CO需要与NO等量,有下式(IV)的关系。
[CO]b=[NO]...(IV)
当在上述催化剂内连续进行上式(I)、(II)的反应时,通过合并上式(III)和上式(IV)而得到的下式(V)的浓度关系是必要的。
[CO]a+[CO]b=2[O2]+[NO]...(V)
由于[CO]a+[CO]b是同一成分,所以上述催化剂的二次侧的气体中的CO浓度可以用[CO]表示。
由此,可以导出上述标准规定浓度比充分式、即、[CO]=2[O2]+[NO]的关系。
当上述浓度比K的值比1.0小时,一氧化碳以对于上述氮氧化物的还原为需要浓度以上的浓度存在,因此排放氧浓度为零,在通过上述催化剂后的气体中有一氧化碳残留。
另外,对于上述浓度比K的值为超过1.0的2.0的情况,该值是实验上得到的值,认为其原因如下,在上述催化剂中发生的反应不完全清晰,除了在上述第一反应和上述第二反应的主反应以外,还有副反应发生。作为该副反应之一,认为有通过蒸气与一氧化碳的反应产生氢、利用该氢将氮氧化物和氧还原的反应。
上述燃烧步骤通过在上述燃烧器中使含烃的燃料燃烧来进行,生成不含有烃、含有氮氧化物、一氧化碳和氧的气体。该燃烧是在锅炉等的普通燃烧装置中进行的燃烧,不伴有内燃机这样的急剧的冷却,因此在废气中不含有烃。优选使上述空气比为1.1以下。由此可以通过低空气比燃烧实现能源的节约。
上述燃烧器是连续供给燃料和燃烧空气而进行连续燃烧的燃烧装置,不含有内燃机。汽车用的马达等这样的内燃机进行燃料和燃烧空气的不连续供给和燃烧,因此作为未燃成分大量生成烃或一氧化碳并含有在废气中,因此不适于本发明的燃烧方法。
另外,上述燃烧器优选制成使气体燃料进行预混合燃烧的全一次空气式的预混合燃烧器。在上述催化剂中,为了有效地产生上述第一反应和上述第二反应,以与氧、氮氧化物和一氧化碳有关的上述(2)、(3)式表示的浓度比K的调节是重要的。通过使上述燃烧器为预混合燃烧器,可以在低空气比区域比较容易地得到上述标准规定浓度比K0。但是,在上述催化剂的一次侧的气体中的氧、氮氧化物和一氧化碳通过均匀混合、并进行使各自的浓度为上述规定浓度比的控制,可以使用预混合燃烧器以外的部分预混合燃烧器或先混合燃烧器。
上述吸热步骤是利用吸热手段从在该燃烧步骤所产生的气体中吸热的步骤。上述吸热手段优选是构成锅炉等罐体的水管组。作为该吸热手段的方式,含有在紧靠近上述燃烧器的地方几乎没有燃烧空间、在燃烧空间内配置水管组的第一方式(相当于上述专利文献1~4)、和在上述燃烧器与水管组之间具有燃烧空间的第二方式。在上述第一方式中,燃烧反应在水管间的空隙处进行。上述水管组是与来自上述燃烧器的气体进行热交换的多个水管,也可以如供热水器的水管那样通过将1根水管弯折来构成多个水管。
上述吸热手段从由上述燃烧器生成的气体中吸热并利用该热,同时将上述气体的温度控制在上述氧化催化剂的活化温度附近,且控制在可防止热劣化的温度以下,即,上述吸热手段具有下述功能,其将气体温度控制为可有效产生上述第一反应和上述第二反应、且抑制由温度导致的劣化、考虑了持久性的温度。上述吸热手段也可以作为用于抑制上述气体的温度上升至约900℃以上这样的情况、并抑制一氧化碳的氧化、使来自上述燃烧器的气体的浓度比不发生变化的手段发挥作用。
上述浓度比调节步骤是根据上述燃烧器和上述吸热手段的浓度比特性、使用上述燃烧器的空气比调节手段,而将上述催化剂的一次侧的氧、氮氧化物和一氧化碳的上述浓度比K控制为上述规定浓度比,由此将上述催化剂的二次侧的氮氧化物浓度调节成基本为零~规定值以下、将一氧化碳浓度调节成基本为零~规定值以下的步骤。该浓度比调节步骤是将上述氧化催化剂的一次侧的浓度比K调节至上述标准规定浓度比K0、上述第一规定浓度比K1、上述第二规定浓度比K2的步骤,但也可以使用以下的第一、第二浓度比调节手段来进行。在本发明中,任何一种调节手段都是通过调节向上述燃烧器供给的燃料量与燃烧空气量的比例的上述空气比调节手段(后面有详述)进行浓度比的调节。
上述第一浓度比调节手段,利用上述燃烧器的特性,同时利用配置在上述燃烧器和上述氧化催化剂之间、从上述气体中吸热的吸热手段的特性,即利用上述燃烧器和上述吸热手段的浓度比特性来进行上述浓度比K的调节。该浓度比特性是指通过变化空气比而使上述燃烧器燃烧所生成的、通过全部或者一部分上述吸热手段后的一氧化碳浓度和氮氧化物浓度进行变化的特性。另外,该浓度比特性基本上由上述燃烧器的浓度比特性决定,上述吸热手段典型地具有使依赖于上述燃烧器的浓度比特性产生一部分变化、或者保持该浓度比特性的功能。对于上述吸热手段为上述第一方式的情况,通过由上述吸热手段导致的燃烧反应中气体的冷却,而使一氧化碳浓度增加,同时抑制了氮氧化物浓度。对于上述吸热手段为上述第二方式的情况,典型地,依赖于上述燃烧器的浓度比特性几乎没有变化,被保持。
当使用该第一浓度比调节手段进行上述浓度比K的调节时,不需要除上述燃烧器和上述吸热手段以外的浓度比调节手段,因此可以将装置的构成简单化。
另外,可以利用上述吸热手段抑制上述气体的温度,能够起到提高上述氧化催化剂的持久性的效果。
上述第二浓度比调节手段可以利用上述燃烧器和配置在上述燃烧器和上述氧化催化剂之间的从上述气体中吸热的吸热手段的浓度比特性,同时使用配置在上述燃烧器和上述氧化催化剂之间的上述辅助调节手段,来进行上述浓度比K的调节。
上述辅助调节手段在上述燃烧器与上述氧化催化剂之间(包含上述吸热手段的中途),具有下述功能,即,通过注入一氧化碳或者吸附除去氧,而使一氧化碳浓度相对于氧浓度的比例增加,由此辅助性地进行上述调节。作为该辅助调节手段,可以形成CO产生器、或可对废气的氧或者CO的量进行调节的辅助燃烧器。
当使用该第二浓度比调节手段进行上述浓度比的调节时,可利用上述燃烧器和上述吸热手段的浓度比特性以及上述辅助调节手段进行上述浓度比调节,因此不限定于特定结构的燃烧器,可以扩大上述燃烧器和上述吸热手段的应用范围。
上述浓度比一定控制步骤优选利用使向上述燃烧器供给的燃烧空气量与燃料量的比例变化的空气比调节手段来进行。但是,可以形成通过使上述辅助调节手段具有浓度比一定控制的功能、或者上述空气比调节手段或上述辅助调节手段以外的浓度比一定控制手段进行的构成。当使用上述空气比调节手段时,可以进行将原本的燃烧空气量和燃料量的比例保持在设定值的空气比控制,并且能够将本发明的浓度比K一定地控制在上述各规定浓度比K0、K1、K2。其结果是不需要另行的浓度比一定控制手段,可以将装置的构成简易化。
上述催化剂是具有在上述气体中不含有烃的状态下高效还原上述氮氧化物的功能的催化剂。该催化剂设置在上述吸热手段的下流或者上述吸热手段的中途,形成在具有透气性的基材上担载催化剂活性物质而成的构成,结构不限定于特定的结构。上述基材可以使用不锈钢等的金属、陶瓷,并进行与废气的接触面积扩大这样的表面处理。催化剂活性物质一般可以使用铂,但根据实施情况,可以使用以铂为代表的贵金属(Ag、Au、Rh、Ru、Pt、Pd)或者金属氧化物。对于将上述催化剂设置在上述吸热手段的中途的情况,可以在多个水管等的吸热手段间的空隙处设置,或者将上述吸热手段作为基材,形成在其表面担载催化剂活性物质的构成。
在以上说明的实施方式中,可以设置进行上述催化剂的活性化的催化剂活性化步骤。该催化剂活性化步骤优选以提高上述气体中的一氧化碳浓度的方式来构成。
根据这种构成,即使例如对于与稳态运行时(例如高燃烧时)相比,由于燃烧装置非稳态运行时等(启动时或者低燃烧时等)的原因而不能得到上述催化剂需要的活性化条件的情况,通过提高在与上述催化剂接触前的气体中的一氧化碳浓度,也可以有效地使上述催化剂活性化。因而,可以实现由进行稳定的低空气比燃烧而带来的节约能源化,同时使上述催化剂活性化,由此可以得到即使对于燃烧状态等产生错误的情况,也可实现排放NOx低于5ppm的极超低NOx化和低CO化的燃烧方法。
另外,上述催化剂活性化步骤能够以提高上述催化剂的温度的方式来构成。根据这种构成,如上述那样,即使例如对于与稳态运行时相比,由于燃烧装置非稳态运行时等的原因而不能得到上述催化剂需要的活性化条件的情况,通过提高上述催化剂的温度,也可以有效地使上述催化剂活性化。因而,可以实现由进行稳定的低空气比燃烧而带来的节约能源化,同时使上述催化剂活性化,由此可以得到即使对于燃烧状态等产生错误的情况,也可实现排放NOx低于5ppm的极超低NOx化和低CO化的燃烧方法。
(燃烧装置的实施方式1)
本发明含有下述的燃烧装置的实施方式1。该燃烧装置的实施方式1具有浓度比调节手段和氧化催化剂,所述浓度比调节手段将在含有来自气体产生源的氮氧化物的气体中含有一氧化碳和氧,同时将上述气体中的氮氧化物、一氧化碳和氧的浓度比调节至标准规定浓度比,所述氧化催化剂通过与上述气体接触,由第一反应利用氧氧化一氧化碳、由第二反应利用一氧化碳还原氮氧化物。该氧化催化剂具有第一反应比上述第二反应有优势,在一次侧的上述浓度比为上述标准规定浓度比时使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性。该燃烧装置具有检测上述氧化催化剂的二次侧的氧浓度的传感器,上述浓度比调节手段以利用上述传感器测定的检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
(燃烧装置的实施方式2)
上述燃烧装置的实施方式1应用于下述的燃烧装置的实施方式2。在该实施方式2中与上述实施方式1同样,通过上述传感器检测上述催化剂的二次侧的氧浓度,进行上述标准规定浓度比的控制,省略该说明。该实施方式2具有使含有烃的燃料燃烧来生成不含有烃、而含有氧、氮氧化物和一氧化碳的气体的燃烧器;从由该燃烧器生成的气体中进行吸热的吸热手段;利用氧氧化在通过该吸热手段后的上述气体中含有的一氧化碳、利用一氧化碳还原氮氧化物的氧化催化剂;用于检测上述燃烧器的空气比的传感器和基于该传感器的检测信号而将上述燃烧器控制为设定空气比的空气比调节手段。上述燃烧器和上述吸热手段如下述那样来构成,当利用上述空气比调节手段将上述空气比调节为上述设定空气比时,可以得到使上述催化剂的二次侧的氮氧化物浓度基本为零的、在上述氧化催化剂的一次侧的氧、氮氧化物和一氧化碳的浓度比。在该实施方式和以下的实施方式中,上述空气比调节手段构成本发明的浓度比调节手段的一部分。
上述设定空气比优选控制为1.0的设定空气比,但也可以使作为在该催化剂中的反应结果、能够满足1.0的设定空气比的上述催化剂的一次侧的氧浓度为规定浓度的方式来控制空气比。
在本发明的实施方式2中,上述燃烧器利用上述空气比调节手段将上述空气比控制为上述设定空气比来进行燃烧。由燃烧生成的气体在通过上述吸热手段受到吸热作用后,利用上述催化剂使一氧化碳氧化、使氮氧化物还原。其结果是可以将上述气体中的氮氧化物的排放量减少至5ppm以下的接近于零的值。另外,可以减少一氧化碳的排放量。
根据本发明的实施方式2,通过利用上述空气比调节手段将上述空气比控制为上述设定空气比,可以得到使上述催化剂的二次侧的氮氧化物浓度基本为零这样的、在上述催化剂的一次侧的氧、氮氧化物和一氧化碳的浓度比。
对于低空气比控制,难以进行稳定的空气比控制,但通过在上述空气比调节手段中含有可稳定控制上述空气比的电控制手段和/或机械控制手段,可以进行稳定的空气比控制。
对于上述催化剂的一次侧的浓度比调节,优选如下述那样来控制在上述催化剂的一次侧的上述气体中的一氧化碳浓度,即,使该一氧化碳浓度与将通过一氧化碳的氧化(第一反应)在上述催化剂内减少的一氧化碳浓度与通过由一氧化碳导致的还原(第二反应)使氮氧化物在上述催化剂内减少的一氧化碳浓度相加而得的值几乎相等、或在其以上。
利用了上述燃烧器和上述吸热手段的上述浓度比调节通过基于实验数据求出空气比-NOx·CO特性(浓度比特性)来进行。通过该浓度比调节,使在上述催化剂的一次侧的上述气体中的一氧化碳浓度,与将通过一氧化碳的氧化而在上述催化剂内减少的一氧化碳浓度和由利用一氧化碳还原氮氧化物所导致的在上述催化剂内减少的一氧化碳浓度相加而得的值几乎相等、或在其以上。
对于该浓度比,如果将空气比控制为基本为1.0的设定空气比,则可以实现能源的节约,这是优选的。表示上述浓度比的范围的式子可以利用上式(3)表现。
另外,当在满足上式(3)的条件下使上述催化剂的一次侧的氧浓度O2为0%<O2≤1.00%时,空气比几乎为1.0。其结果是可以实现排放浓度接近于零的低NOx和低CO、且节约能源,能够提供低公害、节约能源的燃烧装置。
上述空气比调节手段含有流量调节手段、驱动该流量调节手段的马达、控制该马达的控制手段。上述流量调节手段是用于通过变化上述燃烧器的燃烧空气量和燃料量的任一者或者这两者,来改变两者的比例、调节上述燃烧器的空气比的手段。对于调节上述燃烧空气量的情况,优选形成挡板(包含阀门的意思)。作为该挡板,可以使用通过以旋转轴为中心进行旋转的阀芯来改变流路开度的旋转类型的挡板、通过相对于流路的截面开口滑动来改变流路开度的滑动类型的挡板。
当用该流量调节手段改变燃烧空气量时,流量调节手段优选设置在鼓风机与燃料供给手段之间的空气流路中,也可以设置在上述鼓风机的吸口等上述鼓风机的吸口侧。
上述马达优选是驱动上述流量调节手段的手段,其是可以根据驱动量来控制上述流量调节手段的开度量,且能够调节每单位时间的驱动量的马达。该马达构成可稳定控制上述空气比的“机械控制手段”的一部分。所谓“根据驱动量可控制开度量”是指可由驱动量决定,将上述流量调节阀的开度停止在特定的位置的方式进行控制的意思。另外,“可调节每单位时间的驱动量”是指可以调节位置控制的应答性。
该马达优选是步进马达(可称作为步进电动机),也可以是齿轮减速机(可称作为齿轮转动马达)或伺服马达等。当为步进马达时,通过驱动脉冲来决定上述驱动量,可将上述流量调节手段的开度位置从标准开度位置仅以对应于驱动脉冲数的量进行开关移动,使其控制在任意目的的停止位置。另外,当为上述齿轮减速机或上述伺服马达时,上述驱动量为开关驱动时间,因此将上述流量调节手段的开度位置从标准开度位置仅以对应于开关驱动时间的量进行开关移动,使其控制在任意目的的停止位置。
上述传感器可以优选使用氧浓度计,所述氧浓度计在氧过剩区域表示过剩氧浓度,在燃料过剩区域作为负值表示对于在空气比m=1.0的条件下使一氧化碳等未燃烧气体进行燃烧所需要的不足氧浓度。另外,作为上述传感器,也可以将氧浓度传感器和一氧化碳浓度传感器组合来近似地求出空气比。
以上那样的传感器的安装位置优选在上述催化剂的二次侧,但不限定于此,当在上述催化剂的一次侧或上述催化剂的下流侧设置排热回收器时,可以安装在该下流侧。
上述空气比调节手段基于预先存储的空气比控制程序,根据输入的上述传感器的检测值,来反馈控制上述马达的驱动量,以使上述催化剂的一次侧的上述气体中的一氧化碳浓度与下述那样的值几乎相等或在其以上这样,或者满足上式(3)的方式来将上述空气比控制在1的设定空气比(浓度比K的一定控制),上述值是通过上述氧化而在上述催化剂内减少的一氧化碳浓度与通过上述还原而在上述催化剂内减少的一氧化碳浓度相加的值。
上述空气比控制程序优选如下述那样来构成,即,设置第一控制带和第二控制带来控制上述马达的驱动量,所述第一控制带根据上述检测空气比与上述设定空气比的差异来改变上述马达的每单位时间的驱动量(可以用每1驱动单位的时间来表示),所述第二控制带在该第一控制带的外侧使每单位时间的上述驱动量为固定的设定值。该控制构成以使上述检测空气比在以上述设定空气比作为中心的设定范围内的方式来进行控制的上述电控制手段。并且,该空气比控制程序不限定于该控制方式,可以是各种PID控制。上述第一控制带的控制量可以利用检测空气比和设定空气比之差与设定增益的积的式子来控制。通过这样的控制,能够达到下述的效果,即,可以迅速控制为设定空气比,同时进行过调和波动少的控制。
利用上述燃烧器和上述吸热手段进行的浓度比调节含有下述的方式,即,通过上述吸热手段以外的构成从上述燃烧器至上述催化剂的气体通路的要素和在该气体通路中含有的要素来进行。
另外,上述机械控制手段可以由主通路和与其并列的辅助通路来构成燃烧空气的供气通路。此时,用在上述主通路中设置的阀芯的工作来对空气流量进行粗调节,用在上述辅助通路中设置的阀芯的工作对空气流量进行微调节。另外,机械控制手段可以由主通路和与其并列的辅助通路来构成燃料供给通路。此时,用在上述主通路中设置的阀芯的工作来对空气流量进行粗调节,用在上述辅助通路中设置的阀芯的工作对空气流量进行微调节。
在上述空气比调节手段的流量调节手段中,可以采用通过变换器来控制鼓风机的马达。该变换器可以利用具有公知结构的变换器。即使对于使用该变换器的情况,也可以通过在挡板控制中使用的上述空气比控制程序来进行控制。
(燃烧装置的实施方式3)
本发明含有以下的燃烧装置的实施方式3。该燃烧装置具有使含有烃的燃料燃烧来生成不含有烃、而含有氧、氮氧化物和一氧化碳的气体的燃烧器;从由该燃烧器生成的气体中进行吸热的吸热手段;氧化在通过该吸热手段后的上述气体中含有的一氧化碳、利用一氧化碳还原氮氧化物的氧化催化剂;和调节上述燃烧器的空气比的空气比调节手段。上述燃烧器和上述吸热手段具有通过利用上述空气比调节手段将上述空气比调节为1.0的附近而得到的、与上述催化剂的一次侧的含有氧、氮氧化物和一氧化碳的上述气体有关的上述催化剂的一次侧的空气比-NOx·CO特性(一次特性)。上述催化剂以具有通过使具有该一次侧的空气比-NOx·CO特性的气体与上述催化剂接触而得的上述催化剂的二次侧的空气比-NOx·CO特性(二次特性)的方式来构成。另外,上述空气比调节手段以上述二次侧的空气比-NOx·CO特性的NOx·CO减少区域的设定空气比来控制上述燃烧器的空气比。上述一次特性是利用本发明的上述燃烧器和上述吸热手段而得的浓度比特性,包含空气比-NOx特性和空气比-CO特性。另外,上述二次特性是利用上述催化剂而得的特性(催化剂特性),包含空气比-NOx特性和空气比-CO特性。
(实施方式3的方案1)
对于上述设定空气比,作为一个方案,是将其设定为使上述二次特性中的氮氧化物浓度(排放NOx浓度)基本为零的值。使该氮氧化物浓度基本为零可以通过将上述燃烧器的空气比基本控制为1.0的方式来实现。该控制优选通过上述催化剂的二次侧的空气比来进行,但也可以使作为在该催化剂中的反应结果,能够满足基本为1.0的设定空气比的上述催化剂的一次侧的氧浓度(O2浓度)为规定浓度的方式通过一次侧的O2浓度来进行。
在该方案1中,由上述燃烧器的燃烧生成的气体通过上述吸热手段受到吸热作用,形成以规定浓度比含有氧、氮氧化物和一氧化碳的气体。当使上述燃烧器的空气比在低空气比的区域变化时,可以得到作为浓度比特性的上述一次特性和利用上述催化剂特性而得的上述二次特性,所述浓度比特性是利用上述燃烧器和上述吸热手段而得的特性。由于在上述二次特性的NOx浓度比上述一次特性的NOx浓度低、一氧化碳浓度(CO浓度)比上述一次特性的CO浓度低的区域、即NOx·CO减少区域,来设定上述设定空气比,所以通过上述催化剂的氧化、还原作用,可以减少氮氧化物的排放量,同时减少一氧化碳的排放量。通过在该NOx·CO减少区域设定上述空气比,可以实现上述调节0、上述调节1和上述调节2。
(实施方式3的方案2)
在该方案2中,将上述设定空气比以使上述二次特性中的NOx浓度为基本大于零、且比上述一次特性中的NOx浓度低的值的方式来进行设定。上述值可以通过将上述设定空气比设定为基本大于1.0的上述二次特性的NOx·CO减少区域的空气比来实现。该方案2可实现上述调节2。
在该方案2中,由于上述设定空气比大于空气比1.0,所以在上述催化剂的二次侧存在氧。该情况下,由于在上述催化剂内,氧化反应比还原反应占优势,所以排放NOx浓度减少至比上述一次特性的NOx浓度低的值,但不为零,在上述催化剂的二次侧也存在NOx。另外,通过上述催化剂的氧化作用,排放CO浓度基本减少至零。
上述一次特性根据燃烧装置的上述燃烧器和吸热手段的种类而有不同的曲线和浓度值,对于上述一次特性的典型的CO特性,随着空气比变小,有CO浓度增加的倾向。特别地,对于上述一次特性的CO特性,当空气比接近于1.0时CO浓度急剧增加。
(实施方式3的方案3)
上述方案1、2可以由以下的方案3来表现。该方案3是一种燃烧装置,其具有使含有烃的燃料燃烧来生成不含有烃、而含有氧、氮氧化物和一氧化碳的气体的燃烧器;从由该燃烧器生成的气体中进行吸热的吸热手段;与通过该吸热手段后的上述气体接触,利用氧氧化一氧化碳、利用一氧化碳还原氮氧化物的氧化催化剂;和对向上述燃烧器供给的燃烧空气量与燃料量的比例进行调节的空气比调节手段。上述氧化催化剂具有下述特性,即,当上述气体中的氧、氮氧化物和一氧化碳的浓度比在NOx非减少区域时,可减少一氧化碳、而不减少氮氧化物,当上述浓度比在NOx减少区域时,可减少一氧化碳和氮氧化物。上述空气比调节手段以使上述浓度比在上述NOx减少区域的方式来调节向上述燃烧器供给的燃烧空气量与燃料量的比例。
该方案3中的NOx减少区域相当于上述实施方式1、2的NOx·CO减少区域。在该方案3中,对于上述调节,优选使上述氧化催化剂的二次侧的氮氧化物浓度基本为零。进而,对于上述调节,优选使上述氧化催化剂的二次侧的氧浓度基本为零。上述氧化剂中的一氧化碳的减少利用氧化来进行,氮氧化物的减少利用由一氧化碳导致的还原来进行。
另外,在该方案3中,优选利用上述燃烧器和上述吸热手段进行的浓度比调节将生成的有害物质浓度抑制在设定浓度以下。这里,有害物质(也可以称为公害物质)是指氮氧化物或者氮氧化物和一氧化碳。当有害物质为氮氧化物时,该设定浓度例如可以设定为300ppm。即,通过利用上述浓度比调节将生成的有害物质浓度抑制在设定浓度以下,可以减少上述氧化催化剂中的处理量、即上述催化剂的量。
(燃烧装置的实施方式4)
进而,本发明含有以下的燃烧装置的实施方式4。该实施方式4是一种燃烧装置,其具有使含有烃的燃料燃烧来生成不含有烃、而含有氧、氮氧化物和一氧化碳的气体的燃烧器;从由该燃烧器生成的气体中进行吸热的吸热手段;与通过该吸热手段后的含有氧、氮氧化物和一氧化碳的气体接触、并作为主反应进行利用上述气体中的氧氧化一氧化碳的第一反应和利用上述气体中的一氧化碳还原氮氧化物的第二反应的催化剂;和调节上述燃烧器的燃烧空气与燃料的比例的空气比调节手段。对于上述催化剂,以使在其二次侧的氮氧化物浓度和一氧化碳浓度基本为零的上述催化剂一次侧的气体中氧、氮氧化物和一氧化碳的浓度比作为标准规定浓度比。当使上述浓度比为上述标准规定浓度比时,上述催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零。另外,表现出下述的特性,即,当与对应于上述标准规定浓度比的标准氧浓度相比,提高一次侧的氧浓度时,在上述催化剂的二次侧可以检测到对应于一次侧氧浓度与标准氧浓度之差的浓度的氧,同时使上述催化剂的二次侧的一氧化碳浓度基本为零,并减少氮氧化物浓度,当与上述标准氧浓度相比降低一次侧氧浓度时,在上述催化剂的二次侧可以检测到对应于一次侧的氧浓度与标准氧浓度之差的浓度的一氧化碳,同时使上述催化剂的二次侧的氮氧化物浓度基本为零,并减少一氧化碳浓度。上述空气比调节手段利用上述催化剂的特性、根据上述催化剂的二次侧的氧浓度来调节上述燃烧器的燃烧空气量与燃料量的比例,由此将上述催化剂的一次侧的氧浓度相对于上述标准氧浓度进行调节,减少上述催化剂的二次侧的氮氧化物浓度和一氧化碳浓度。
上述实施方式3基于相对于空气比的上述燃烧器和吸热手段的上述一次特性和上述二次特性来表现燃烧装置的功能,所述空气比由上述催化剂的二次侧的氧浓度和/或一氧化碳浓度等来求得。相对于此,本实施方式4基于相对于上述催化剂的一次侧的氧浓度的上述燃烧器和上述吸热手段的上述一次特性和上述催化剂的特性来表现燃烧装置的功能。
该催化剂特性是指下述那样的特性。即,如图7的模式图所示的那样,上述催化剂的一次侧的上述浓度比具有特性线L(二次侧[NOx]=0、[CO]=0线)。当上述催化剂的一次侧的上述浓度比K位于该线L上时,上述催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零。该线L在理论上与上式(3)的上述规定浓度比K为1.0(上式(2)中K0=1.0)相对应。但是,如上所述,实验上在上述浓度比K为大于1.0直至2.0的范围,可以使上述催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零,因此特性线L不限定于图7的线。
将在上述燃烧器和上述吸热手段的一次特性的线M与特性线L的交点处的氧、氮氧化物和一氧化碳的浓度比K暂且称作为特异标准规定浓度比K0X(以下,称作为特异标准浓度比)。当将上述催化剂的一次侧的浓度比K调节为特异标准浓度比K0X时(上述调节0),上述催化剂的二次侧的氮氧化物浓度和一氧化碳浓度基本为零。当使一次侧氧浓度比对应于特异标准浓度比K0X的标准氧浓度SK高、即利用上述空气比调节手段提高一次侧氧浓度时(上述调节2),在上述催化剂的二次侧可以检测到对应于一次侧氧浓度与标准氧浓度之差的浓度的氧,同时上述催化剂的二次侧的氮氧化物浓度与一次侧的氮氧化物浓度相比减少,且二次侧的一氧化碳浓度基本为零。另外,当使一次侧氧浓度比特异标准浓度比K0X低时(上述调节1),在上述催化剂的二次侧可以检测到对应于一次侧氧浓度与标准氧浓度之差的浓度的一氧化碳,同时上述催化剂的二次侧的氮氧化物浓度基本为零,且二次侧的一氧化碳浓度降低。
如果利用这样的上述催化剂的特性和上述燃烧器以及上述吸热手段的上述一次特性,则通过将上述催化剂的二次侧的氧浓度和/或一氧化碳浓度控制为零、即将空气比控制在1.0,可以简单地将排放NOx浓度和排放CO浓度控制在基本为零。即,通过上述催化剂的二次侧的氧浓度和/或一氧化碳浓度的控制,可以同时实现由在1.0的空气比下燃烧所带来的能源节约,和排放NOx浓度以及排放CO浓度基本为零的低公害化。
另外,对于上述催化剂的二次侧的氧浓度和/或一氧化碳浓度,通过将其量控制在零的附近,即使不能使排放NOx浓度基本为零,也可以将该浓度减少至接近于零的低值。
实施例1
以下,通过附图说明将本发明的燃烧装置应用于蒸汽锅炉的实施例。图1是本实施例1的蒸汽锅炉纵截面的说明图,图2是沿图1的II-II线的截面图,图3是表示从废气的流向观察图2的氧化催化剂而得到的主要部分构成的附图,图4是说明本实施例1的空气比-NOx·CO特性的附图,图5是本实施例1的挡板位置调节装置的使用状态的一部分截面的说明图,图6是挡板位置调节装置的使用状态的一部分截面的说明图,图7是说明本实施例1的燃烧器、吸热手段特性和催化剂的特性的模式图,图8是说明本实施例1的传感器的输出特性的附图,图9是说明本实施1的马达控制特性的附图,图10是说明本实施例1的NOx和CO减少特性的附图。
首先,对于本实施例1的蒸汽锅炉进行说明。该蒸汽锅炉作为主要部位具有燃烧器1;含有作为从由该燃烧器1生成的气体中进行吸热的吸热手段的传热管(水管)组2的罐体3;与分别以规定浓度比含有通过上述传热管组2后的氧、氮氧化物和一氧化碳而成的气体接触并使其通过,而使一氧化碳氧化、同时使氮氧化物还原的氧化催化剂(以下也可以简称为“催化剂”)4;向燃烧器1供给气体燃料的燃料供给手段5、向燃烧器1供给燃烧空气、同时将燃烧空气与燃料进行预混和的燃烧空气供给手段6;在催化剂4的下流检测氧浓度的传感器7;作为锅炉控制器的控制器8,所述锅炉控制器输入该传感器7等的信号来控制燃料供给手段5和燃烧空气供给手段6等。
燃烧器1是具有平面状的燃烧面(预混合气体的喷射面)的完全预混合式燃烧器。该燃烧器1与在专利文献1中记述的燃烧器具有同样的构成。
罐体3具有将上部管集合9和将下部管集合10,在该两个将管集合之间配置构成水管组2的多个内侧水管11,11,...。如图2所示的那样,在罐体3的长度方向的两侧部设置用连接部件13,13,...连接外侧水管12,12,...而构成的一对水管壁14,14,在该两水管壁14,14与将上部管集合9和将下部管集合10之间形成由燃烧器1产生的气体几乎以直线流过的第一气体通路15。在第一气体通路15的一端设置燃烧器1,在另一端的废气出口16连接流过废气的第二气体通路(烟道)17。在该实施例1中,燃烧器1和罐体3可以使用公知的。
第二气体通路17含有水平部18和垂直部19,在水平部18中装有催化剂4。在垂直部19中以位于催化剂4的下流侧的方式安装作为排热回收器的供水预热器20,并在催化剂4和供水预热器20之间配置传感器7。
含有燃烧器1、水管组2的从燃烧器1至催化剂4的构成要素(特别地,燃烧器1和水管组2是其主要部分),具有将催化剂4的一次侧的气体的上述浓度比K调节为上述规定浓度比K0、K1的功能。即,这些构成要素以下述那样来构成,即,在利用构成本发明的浓度比调节手段的下述空气比调节手段28调节成设定空气比时,可以得到图4所示的空气比-NOx·CO特性。该空气比-NOx·CO特性是在控制空气比调节手段28、使空气比变化并进行燃烧时所得到的催化剂4的一次侧的空气比-NOx·CO特性(以下,称作一次特性)。催化剂4具有通过将具有上述一次特性的上述气体与催化剂4接触而得到的催化剂4的二次侧的空气比-NOx·CO特性(以下,称作二次特性)。上述一次特性是利用从燃烧器1到催化剂4的构成要素而得的上述浓度比特性,上述二次特性是利用催化剂4而得的特性。上述一次特性在将上述设定空气比调节至1.0时,使催化剂4的二次侧的NOx浓度和一氧化碳浓度基本为零。此时,催化剂4的一次侧的气体的标准规定浓度比K0为特异标准浓度比K0X(参考图7)。
对于图4,纵轴、横轴的刻度的标法不同,该图是将图18的低空气比区域Z2进行扩大的模式图。在该图4中,第一线(特性线)E表示催化剂4的一次侧的CO浓度,第二线F表示相同一次侧的NOx浓度。另外,第三线J表示催化剂4的二次侧的CO浓度,在空气比为1.0以上的条件下CO浓度基本为零,随着空气比变得小于1.0,具有浓度急剧增加的特性。另外,第四线U表示催化剂4的二次侧的NOx浓度,在空气比为1.0以下的规定区域中,NOx浓度基本为零,随着空气比超过1.0,具有浓度从基本为零开始增加,最终与催化剂4的一次侧的浓度相等的特性。将使该催化剂4的二次侧NOx浓度与一次侧的浓度相等的空气比以下的区域称作为NOx·CO减少区域。该NOx·CO减少区域的下限可以设定为使催化剂4的二次侧的CO浓度为300ppm(日本的CO排放标准)的空气比。该低空气比区域的空气比-NOx·CO特性是至今没有被研究过的新型的特性。
催化剂4具有将在通过水管组2后的不含有烃的上述气体中含有的一氧化碳氧化(第一反应)、同时将氮氧化物还原(第二反应)的功能,在本实施例1中使用铂作为催化剂活性物质的催化剂。如在“具体实施方式”一项中说明的那样,如果基于实验结果在理论上进行考察,通过将满足上式(3)的浓度比式子的上述气体与催化剂4的催化剂活性物质接触,主要可以产生使一氧化碳氧化的第一反应和利用一氧化碳使氮氧化物还原的第二反应。对于上述第一反应,由氧浓度决定该反应是否进行,在该催化剂4中,上述第一反应相对于上述第二反应具有优势。
更具体地对催化剂4进行说明,该催化剂具有如图3所示的结构,例如,如下述那样来形成。在作为上述基材的都是不锈钢制的平板21和波纹板22的各自表面上都形成多个微小凸凹,在其表面上担载催化剂活性材料(图示省略)。接着,将规定宽度平板21和波纹板22叠合后,卷曲成螺旋状而形成辊状。利用侧板23包围该辊状物进行固定,形成催化剂4。使用铂作为上述催化剂活性材料。并且,在图3中,仅显示了平板21和波纹板22的一部分。
该催化剂4在低温区域下具有氧化活性。另外,催化剂4配置在第二气体通路17的中途的水平部18中、废气温度约为150℃~350℃左右的位置。该催化剂4为了在性能劣化时可进行交换,使其相对于第二气体通路17以能够自由装卸的方式进行安装。
燃料供给手段5以含有气体燃料供给管24和在该气体燃料供给管24上设置的调节燃料流量的流量调节阀25的方式来构成。流量调节阀25具有将燃料供给量控制为高燃烧用流量和低燃烧用流量的功能。
燃烧空气供给手段6含有下述的构成,即,含有鼓风机26、从该鼓风机26向燃烧器1供给燃烧空气的供气通路27、和通过调节在该供气通路27中流动的燃烧空气量来调节燃烧器1的空气比的空气比调节手段28。气体燃料供给管24以向供气通路27内喷射燃料气体的方式来连接。
空气比调节手段28含有下述的构成:作为流量调节手段的挡板29,所述流量调节手段调节供气通路27的开度(流路截面积);用于调节该挡板29的开度位置的挡板位置调节装置30;和控制该挡板位置调节装置30的工作的控制器8。
挡板位置调节装置30如图5所示的那样,具有可自由装卸地连接在挡板29的旋转轴31上的驱动轴32,该驱动轴32可以通过减速器33并利用马达34进行旋转。该马达34可以使用能够任意调节旋转停止位置的马达。在本实施例中可以使用步进马达(脉冲马达)。
驱动轴32通过联轴器35与挡板29的旋转轴31连接,由此可以与旋转轴31在大致同一轴线上一体化地旋转。联轴器35制成阶梯圆柱形状,在其中央部沿轴方向贯穿而形成小径孔36和大径孔37。在该小径孔36中插入驱动轴32,该驱动轴32通过安装螺钉38与联轴器35形成一个整体。另一方面,在大径孔37中可插入挡板29的旋转轴31,该旋转轴31可通过键39与联轴器35形成一个整体。因此,在旋转轴31和联轴器35的大径孔37中,可以分别形成键沟40,41。
这样的联轴器35保持在下述那样的状态,即,在其一端部插入驱动轴32的状态下,另一端部通过轴承42可在挡板位置调节装置30的外盒43中保持旋转。该外盒43是下述那样的结构,即,在其一端部保持减速器33和马达34,在另一端部暴露出联轴器35的带有键沟41的大径孔37,在此状态下,将联轴器35或旋转异常检测手段44密闭在内部。
旋转异常检测手段44具有被检测板45和检测器46。被检测板45以在联轴器35的轴方向中央部的阶梯部向半径方向外侧伸出的方式来固定。该被检测板45以与联轴器35或驱动轴32同轴的方式来设置。在被检测板45的外周的一部分设置以圆周方向等间隔地形成了多个狭缝47,47,...的狭缝形成区域48。在本实施例中,仅在四分之一(90度)的圆弧组分上设置狭缝形成区域48。在该狭缝形成区域48上形成的各狭缝47为同一形状和大小。在本实施例中,通过将沿被检测板45半径方向的细长矩形状的沟沿着圆周方向等间隔地进行穿孔,可以形成狭缝47。
用于检测狭缝47的检测器46固定在外盒43上。该检测器46包含透射型光阻断器(photo interrupter),以使被检测板45的外周部分介于发光元件49与受光元件50之间这样的状态来进行安装。通过使被检测板45介于检测器46的发光元件49与受光元件50之间,并根据被检测板45的狭缝47是否配置在与检测器46对应的位置(与从发光元件49至受光元件50的光路对应的位置)上,来转换在受光元件50上有无来自发光元件49的受光。由此,可以进行挡板29的开度位置的检测。
挡板位置调节装置30在图6中,以在将该狭缝形成区域48的顺时针旋转方向的端部狭缝51配置在对应于检测器46的位置的状态下,挡板29使供气通路27处于完全封闭的状态的方式来决定位置,并安装在挡板29的旋转轴31上。
狭缝形成区域48仅在被检测板45的90度的组分上来形成。因此,在将该狭缝形成区域48的顺时针旋转方向的端部狭缝51配置在对应于检测器46的位置的状态下,上述那样的挡板29将供气通路27完全封闭,另一方面,在将该狭缝形成区域48的反时针旋转方向的端部狭缝52配置在对应于检测器46的位置的状态下,挡板29将供气通路27完全开放。
挡板位置调节装置30可以如下述那样来构成,即,马达34和检测器46与控制器8连接,来监视挡板29的旋转异常,同时可以控制马达34的旋转。即,为了控制马达34,该挡板位置调节装置30具有含有输向马达34的驱动脉冲的控制信号的制作电路,并可将该制作的控制信号向马达34输出。由此,对于马达34,可以任意地控制其正转或者反转,和驱动量,即,对应于驱动脉冲数而任意地控制其旋转角。另外,马达34以通过改变驱动脉冲的间隔(进给速度),可以控制其旋转速度的方式来构成。
在实际对挡板29进行开关控制时,控制器8首先为了将挡板29的全关闭位置作为原点,而进行原点检测工作。首先在图5中,使被检测板45向反时针旋转方向旋转。此时,如果在该被检测板45的狭缝形成区域48内配置检测器46,则伴随着被检测板45的旋转,检测器46定时地检测狭缝47,因此其检测脉冲作为检测信号输向控制器8。当将检测器46配置在狭缝形成区域48外的方式来旋转被检测板45时,不能检测到脉冲。当规定时间脉冲检测不到时,控制器8认为检测器46在狭缝形成区域48外,而将旋转方向转向反方向。即,在本实施例中,使被检测板45向顺时针方向反转,将最初检测到脉冲(顺时针方向的端部狭缝51)的位置作为原点。该利用向顺时针方向的旋转进行的原点确认,在与旋转方向转换前反时针方向的旋转相比是低速的条件下完成。
这样检测到的原点与挡板29完全闭合的位置对应,因此以该状态作为基准,控制器8可以向马达34输出驱动信号,对挡板29进行开关控制。控制器8为了挡板29的开关而驱动马达34,与此相伴将来自检测器46的狭缝47的检测信号作为脉冲来获得。因此,控制器8将来自检测器46的检测信号与输向马达34的控制信号进行比较,从而可以监视挡板29的旋转异常。具体来说,将控制信号与检测信号进行比较,来监视有无旋转异常,所述控制信号包含输向马达34的驱动脉冲,所述检测信号包含利用检测器46得到的狭缝47的检测脉冲。
例如,对于虽然向马达34输送驱动脉冲,但由检测器46没有检测到检测脉冲的情况,控制器8判断为旋转异常。此时,来自检测器46的检测脉冲通常与向马达34输送的驱动脉冲的频率数不同,因此控制器8考虑到该差异而进行控制。例如,对于即便经过驱动信号的规定脉冲部分的时间,且检测信号的脉冲一个也没检测到的情况,控制器8首先判断为旋转异常的方式来控制。当判断为旋转异常时,控制器8进行异常的报警或使燃烧停止等的处置。另外相反,对于没有向马达34输送驱动脉冲,但由检测器46检测到检测脉冲的情况,可知产生旋转异常。
控制器8通过预先存储的空气比控制程序,基于传感器7的检测信号,以使燃烧器1的空气比为设定空气比(第一控制条件),且在该设定空气比中,使催化剂4的一次侧的气体浓度比K满足下式(3)(第二控制条件),并控制马达34的方式来构成。
([NOx]+2[O2])/[CO]≤2.0         (3)
(在式(3)中,[CO]、[NOx]和[O2]分别表示一氧化碳浓度、氮氧化物浓度和氧浓度,且满足[O2]>0的条件。)
在该实施例1中,以下述那样来构成,即,直接控制是上述第一控制条件,通过满足该第一控制条件而自动地满足上述第二控制条件。以下,基于图4和图7说明该点。
图4的空气比-NOx·CO特性是基于含有燃烧器1以及水管组2的构成要素的上述一次特性和催化剂4的上述二次特性而表现的特性。另外,图7基于相对于催化剂4的一次侧的氧浓度的上述构成要素的上述一次特性和催化剂4的特性来表现该特性。
催化剂4的特性,如图7所示的那样,通过与催化剂4的一次侧的标准规定浓度比K0有关的第五线L(二次侧[NOx]=0,[CO]=0线)表现其特征。对于该第五线L,当催化剂4的一次侧的浓度比K位于该线上(承载)时,可以使催化剂4的二次侧的氮氧化物浓度和一氧化碳浓度基本为零,即,满足标准规定浓度比K0。该第五线L对应于上式(3)的上述规定浓度比为1的情况。即,该第五线L是表示下式(3A)的线条。
[NOx]+2[O2]=[CO]             (3A)
这里,[NOx]如图10所示的那样是[CO]的1/30~1/50左右,因此在图7中,可以省略相对于氧浓度的NOx浓度特性,同时可以忽略式(3A)中的[NOx]。对于该第五线L,当使一次侧的氧浓度为X1时,一次侧的一氧化碳浓度Y1是Y1=2X1+[NOx]。并且,浓度比K的值在大于1.0直至2.0的范围,可以形成使催化剂4的二次侧的氮氧化物浓度和一氧化碳浓度基本为零的标准规定浓度比K0,因此第五线L不限定于图示的线L,可以是满足上式(2)的线条。
在表示燃烧器1和水管组2的上述一次特性曲线的第六线M与第五线L的交点处的氧、氮氧化物和一氧化碳的标准规定浓度比K0为特异标准浓度K0X。催化剂4具有下述的特性,即,当其一次侧的浓度比K为特异标准浓度比K0X时,可以使催化剂4的二次侧的氮氧化物浓度和一氧化碳浓度基本为零。形成该标准浓度比K0X的调节相当于本发明的调节0。
催化剂4具有下述的特性,即,当与对应于特异标准浓度比K0X的标准氧浓度SK相比,提高一次侧的氧浓度时,可以在催化剂4的二次侧检测到对应于一次侧的氧浓度与标准氧浓度的差的浓度的氧,同时使催化剂4的二次侧的一氧化碳浓度基本为零,并通过还原反应使催化剂4的二次侧的氮氧化物浓度比一次侧的氮氧化物浓度减少。将具有在该催化剂4的二次侧可以检测到氧、同时与一次侧的氮氧化物浓度相比减少的特性的区域称作为二次侧NOx泄漏区域R1。该二次侧NOx泄漏区域R1是实现本发明的调节2的区域,燃烧器1的空气比大于1.0。
另外,催化剂4具有下述的特性,即,当使一次侧氧浓度比标准氧浓度SK低时,可以在催化剂4的二次侧检测到对应于一次侧氧浓度与标准氧浓度SK的差的浓度的一氧化碳,同时在规定的范围使催化剂4的二次侧的氮氧化物浓度基本为零。将具有在该催化剂4的二次侧可以检测到一氧化碳、同时使氮氧化物浓度基本为零的特性的区域称作为二次侧CO泄漏区域R2。该二次侧CO泄漏区域R2是实现本发明的调节1的区域,燃烧器1的空气比小于1.0。燃烧器1的空气比即使设定为小于1.0时,也是在催化剂4的一次侧、在不含烃、含有氧的范围下进行设定。将使二次侧NOx泄漏区域R1与二次侧CO泄漏区域R2合并的区域称作为NOx·CO减少区域R3。
这样的如图7所示的催化剂4的特性符合图4所示的空气比-NOx·CO特性。从该图7可知,当以检测催化剂4的二次侧的氧浓度和/或一氧化碳浓度、并使该氧浓度和/或一氧化碳浓度为零的方式来控制空气比调节手段28时,可以将催化剂4的一次侧的浓度比K控制在特异标准浓度比K0X,将催化剂4的二次侧的氮氧化物浓度和一氧化碳浓度控制成基本为零。这样,当满足上述第一控制条件时,可以满足上述第二控制条件。
上述第一控制条件如果不能被满足,则生成烃等的未燃烧成分。这样,形成能量的损失,同时催化剂4中的NOx减少不能有效地进行。
为了使排放氮氧化物浓度几乎为零,上述第二控制条件是必要条件。通过实验和理论上的考察,发现为了使催化剂4的二次侧的氮氧化物浓度和一氧化碳浓度为零,只要由上述第一反应和上述第二反应,使([NOx]+2[O2])/[CO]所成的浓度比K几乎为1.0即可。但是,可以确认即使浓度比K为1以上的1.0~2.0,也可以使排放氮氧化物浓度几乎为零。
作为传感器7,可以使用排放氧浓度的分辨率为50ppm、应答时间为2sec以下的应答性良好的氧化锆式空气燃料比传感器。对于该传感器7的输出特性,如图8所示的那样,输出E在正侧是与氧浓度有关的输出,在负侧是与一氧化碳浓度等有关的输出。即,由测定的氧浓度(氧过剩区域)和一氧化碳浓度等(燃料过剩区域)算出空气比m,得到与该空气比m对应的电流或电压的输出。在图8中,Q1表示氧浓度检出带,Q2表示一氧化碳浓度检出带。
上述空气比控制程序根据传感器7的输出信号,以使燃烧器的空气比m为标准设定空气比m0的方式来进行控制,具体来说,以下述那样来构成。即,如图9所示那样的,含有设置第一控制带C1和第二控制带C2A、C2B来控制马达34的驱动量的控制顺序,所述第一控制带C1根据来自传感器7的输出值E与对应于标准设定空气比m0的设定值的差异来改变马达34的进给速度V(每单位时间的驱动量),所述第二控制带C2A、C2B在该第一控制带C1的外侧使进给速度V分别为第一设定值V1、第二设定值V2。在图9中,P1表示挡板打开区域,P2表示挡板关闭区域。
第一控制带C1的设定范围以氧浓度N1(例如100ppm)和一氧化碳浓度N2(例如50ppm)来设定,为形成使空气比基本为1的设定空气比m0(对应于标准氧浓度SK)来进行控制。
第一控制带C1中的进给速度V用下式(4)来计算。进给速度V是每单位时间的驱动量。由本实施例1的马达34的1步导致的旋转角度为0.075度,换算成O2时相当于约30ppm的变化。
V=K×ΔX             (4)
(其中,K为增益,ΔX为(传感器7的上述输出值)-(上述设定值)的差值。)
接着,对具有以上构成的上述蒸汽锅炉的行为工作说明。首先,对于蒸汽锅炉大概的行为进行说明。由鼓风机26供给的燃烧空气(外气)与由气体燃料供给管24供给的燃料气体在供气通路27内进行预混合。该预混合气体从燃烧器1向罐体3内的第一气体通路15喷出。预混合气体通过点火手段(没有图示)点火、燃烧。该燃烧利用1.0附近的低空气比进行。
伴随该燃烧产生的气体与上流侧的水管组2交叉而进行冷却后,与下流侧的水管组2热交换而进行吸热,形成温度约为150℃~350℃的气体。该气体不含有烃,含有氧、氮氧化物和一氧化碳,经过催化剂4处理使氮氧化物浓度和一氧化碳浓度几乎为零后,作为废气从第二气体通路17排除到大气中。
接着,对于利用了空气比调节手段28的空气比控制进行说明。本实施例的锅炉将高燃烧与低燃烧进行切换来运转。因此,对于挡板29,可以选择高燃烧风量位置和低燃烧风量位置的任一者来决定其位置。
该挡板29的位置调节通过来自控制器8的指令利用挡板位置调节装置30来进行。即,控制器8输入高燃烧或低燃烧的选择信号和对应于传感器7的检测空气比的输出值,并输出马达34的驱动信号,来调节挡板29的开度位置。控制器8用来自原点的脉冲数将与高燃烧时和低燃烧时的各标准设定空气比m0相应的设定值的挡板29的设定开度位置分别作为初始值来存储。
首先,对于高燃烧时的控制进行说明。控制器8判断目前的挡板29的开度位置相对于上述开度位置是在开放侧(必须向关闭方向控制的侧)还是在闭合侧(必须向打开方向控制的侧),同时运算马达34的驱动脉冲数。同时,上述输出值在图9中,可以来判断是否属于第一控制带C1和第二控制带C2A,C2B的任一者。
属于第二控制带C2A时,控制器8以第一设定进给速度V2且以运算的驱动脉冲来驱动马达34,快速关闭挡板29。属于第二控制带C2B时,控制器8以第二设定进给速度V1且以运算的驱动脉冲来驱动马达34,快速打开挡板29。这样,当较背离对应于标准设定空气比m0的设定值时,控制器8快速进行使对应于检测空气比的输出值接近对应于标准设定空气比m0的设定值的控制,因此可以进行应答性良好的空气比控制。
另外,当属于第一控制带C1时,控制器8在判定旋转方向后,根据上式(4)来运算马达34的进给速度,以运算的进给速度和运算的驱动脉冲来驱动马达34。对于在该第一控制带C1中的控制,随着远离对应于标准设定空气比m0的设定值,进给速度加快。通过这样的控制,可以迅速接近与作为目标的标准设定空气比m0相应的设定值。另外,通过能够可靠地进行旋转位置控制的步进马达进行控制,并进行随着对应于检测空气比的输出值接近于对应于标准设定空气比m0的设定值而放慢进给速度的控制,由此可以控制在对应于标准设定空气比m0的设定值附近的空气比的过调和波动。
通过这样的空气比控制,可以使燃烧器1的空气比为接近于1.0的低空气比,且可以使催化剂4的一次侧的气体的浓度比变化范围变少的方式来控制,能够稳定地满足上式(2)。其结果是可以使催化剂4的二次侧的氮氧化物浓度几乎为零,同时将一氧化碳浓度降低至几乎为零。当使设定空气比m0小于1.0时,可以使二次侧的氮氧化物浓度几乎为零,同时将一氧化碳浓度降低至实用范围的规定值以下。
(实验例1)
在单位时间蒸发量为800kg的罐体3(申请人制备的型号:称作为SQ-800的罐体)中,在燃烧量为45.2m3N/h的预混合燃烧器1中进行燃烧,并形成以2.0g/L的比例担载作为催化剂活性物质的Pt的体积为10L、内径为360mm的催化剂,对于该情况下的实验结果进行说明。当使上述标准设定空气比m0为1时,催化剂4的一次侧(通过催化剂4前)的一氧化碳浓度、氮氧化物浓度、氧浓度以10分钟的平均值表示分别调节成2295ppm、94ppm、1655ppm,催化剂4的二次侧(通过催化剂1后)的各自浓度以10分钟的平均值表示分别变为13ppm、0.3ppm、小于100ppm。这里,催化剂4的二次侧的氧浓度100ppm是氧浓度的测定极限。另外,催化剂4前后的气体温度分别为约302℃、327℃。在本实验例1和以下的实验例2、3中,将催化剂4配置在供水预热20的略微上流处,在其前后配置测定装置,通过催化剂4后的各浓度和气体温度使用株式会社堀场制作所制PG-250来测定,通过前的各浓度使用株式会社堀场制作所制COPA-2000来测定。当然,认为即使将催化剂4配置在图1所示的位置,测定浓度值也几乎不变化。
(实验例2)
与实验例1同样使用燃烧器1和罐体3,使燃烧量与实验例1相同,并形成以2.0g/L的比例担载作为催化剂活性物质的Pd的体积为10L、内径为360mm的催化剂,将上述情况下的一氧化碳浓度、氮氧化物浓度、氧浓度的各浓度比K的值示于图10。这里,使用与实验例1同样的氧浓度传感器来测定通过催化剂后的氧浓度,因此即使实际为100ppm以下的值,也用100ppm表示。催化剂4前后的气体的温度分别为约323~325℃、约344℃~346℃。
根据上述实施例1,通过利用调节燃烧空气和燃料的比例的挡板位置调节手段(空气比调节手段)30来将空气比控制在1.0,可以将催化剂4的一次侧的氧、氮氧化物和一氧化碳的浓度比控制为特异标准浓度比K0X(上述调节0),能够将排放NOx浓度和排放CO浓度减少至基本为零。因此,与利用水/蒸气添加而得的低NOx化技术、或利用脱硝剂的加入而得的低NOx化技术相比,通过使用空气比调节手段和催化剂的简单构成就可以实现低NOx和低CO。
另外,由于使空气比基本为1.0,所以可以节约能源地进行运转。顺便指出,与普通锅炉中氧浓度为4%(空气比约为1.235)的运转、和氧浓度为0%(空气比约为1.0)的运转相比,锅炉效率可以实现大约1~2%的提高。在呼吁地球温室化对策的今天,实现该锅炉效率的提高对于工业的价值是巨大的。
进而,在催化剂4的二次侧设置传感器7来控制空气比,因此与在催化剂4的一次侧设置传感器来进行控制相比,可以使控制稳定化。另外,由于以氧浓度为100ppm以下的分辨率来控制空气比,所以可以在CO量多、且空气比-CO特性中CO增加率高的区域应答性好、稳定地进行空气比控制。
实施例2
根据图11和图12来说明本发明其他的实施例2。本实施例2不在催化剂4的二次侧设置检测氧浓度的传感器7,而在其一次侧设置该传感器7。该传感器7是仅检测氧浓度的传感器。将基于该传感器7的马达34的控制特性示于图12。以下,仅对与上述实施例1不同的地方进行说明,对于共同点省略说明。
在本实施例2中,以使标准设定空气比m0为1.0(催化剂4的二次侧的氧浓度为零)这样,利用传感器7检测催化剂4的一次侧的氧浓度来间接地控制空气比。根据各种试验结果,可知当将催化剂4的一次侧的氧浓度O2控制为0%<O2≤1.00%的值时,可以满足上式(2),能够使催化剂4的二次侧的氧浓度几乎为零、即、使空气比几乎为1。
因此,在本实施例2的空气比控制程序中,如图12所示那样,含有设置第一控制带C1和第二控制带C2A、C2B,来控制马达34的驱动量的控制顺序,所述第一控制带C1基于来自传感器7的检测值E(氧浓度信号)、并根据该检测值与设定氧浓度值的差来改变马达34的进给速度V(每单位时间的驱动量),所述第二控制带C2A、C2B在该第一控制带C1的外侧使进给速度V分别为第一设定值、第二设定值。
第一控制带C1的设定范围以在用氧浓度N1和氧浓度N2设定的范围的方式来控制。第一控制带C1中的进给速度V与上述实施例1同样,用上式(4)来计算。
实施例3
本实施例3是下述那样的例子,即,其将上述设定空气比如图13所示那样设定为使上述二次特性中的NOx浓度基本大于零、且比上述一次特性中的NOx浓度低的值。该值是上述设定空气比是基本大于1.0的上述二次特性的二次侧NOx泄漏区域R1的空气比。本实施例3中的浓度比K的调节为上述调节2。
对于本实施例3中的第一控制带C1,其控制范围的中心(目标空气比)为空气比1.005(O2浓度:大约1000ppm),左端基本是比空气比1.0低的区域的值,图13中的右端为空气比1.01(O2浓度:大约2000ppm)。如果通过图7对此进行说明,则是在催化剂4的一次侧的氧浓度比标准氧浓度SK高的上述二次侧NOx泄漏区域(实现上述调节2的区域)R1进行空气比控制。
(实验例3)
在本实施例3中,当在与上述实验例1同样的条件(除设定空气比以外)下进行试验时,将催化剂4的一次侧(通过催化剂4前)的CO浓度、NOx浓度、O2浓度以10分钟的平均值表示分别调节成1878ppm、78ppm、3192ppm,催化剂4的二次侧(通过催化剂4后)的各自浓度以10分钟的平均值表示分别变为0ppm、42ppm、1413ppm。
由本实验例3可知,根据实施例3的空气比控制,利用催化剂4的还原作用,可以将排放NOx浓度降低至比上述一次特性的NOx浓度低的值,同时将排放CO浓度减少至零。
在本实施例3中,可以在二次侧NOx泄露区域R1的范围自由设定上述第一控制带。第一控制带C1越接近1的空气比,NOx的减少效果和节约能源的效果就变得越大。但是,由于处理的CO浓度高(也有斜率到大的情况),所以CO易于泄露,难以控制,且需要增加催化剂量。因此,当将第一控制带以偏离1的空气比的方式设定在图13的右侧时,控制变得容易,同时可以减少催化剂4的量。
具体来说,可以使上述实施例3中的第一控制带C1的左端为空气比1.0,而不是1.0以下的空气比(图13)。另外,也可以将图13中的上述第一控制带C1的左端设定为超过空气比1.0的值。
实施例4
本实施例4参考图15,含有驱动鼓风机26的鼓风机用马达52、控制该马达52的旋转数的变换器53来构成空气比控制手段28。在该实施例4中,以使用变化器53、而不是使用挡板29进行空气比控制和上述浓度比一定控制的方式来构成。利用了控制器8的鼓风机用马达52的控制可以形成抑制上述实施例1的如图9所示的过调和波动的控制。对于挡板29,在点火时开度低,当进入点火后的稳定燃烧的状态时,开度增大,进行高燃烧和低燃烧的风量控制。该风量控制可以使用变换器53进行,但不限定于此,能够以使用挡板29和变换器53的任一者进行点火时等的风量控制的方式来构成。在本实施例4中,其他的构成与上述实施例1同样,因此省略其说明。
实施例5
下面,基于图15~图17来说明实施例5,所述实施例5在上述实施例1的上述浓度比调节步骤中,进行了控制上述气体中一氧化碳浓度的一氧化碳控制步骤。本实施例5基本上与上述实施例1相同,不同的是在燃烧器1的上流侧根据需要设置了喷出气体燃料的辅助燃料供给部60。该辅助燃料供给部60作为辅助性调节上述浓度比K的辅助调节手段发挥功能,通过喷出气体燃料来由燃烧器1形成部分扩散燃烧的方式来构成。以下,共同部分标记相同的符号而省略说明,以不同的部分为中心进行说明。
参考图15和图16,当需要调节气体中的一氧化碳浓度时,辅助燃料供给部60喷出适当气体燃料来由燃烧器1产生部分扩散燃烧的方式发挥功能。
在图17中,用“虚线”表示的线L1是对应于图7中线L的线条,是CO和O2的最佳调节起始线(以下,简称为“最佳调节起始线”。)。线L1使上式(3)的右边的值为2.0,线L使上式(3)的右边的值为1.0。在下述那样线条的附近接近一氧化碳(CO)与氧(O2)的平衡,由此可以更有效地实现极超低NOx化和低CO化,所述线条是在图17中最佳调节起始线L1的左侧区域形成的线条。并且,该图17所示的最佳调节起始线L1是由“CO=(NOx/2)+2O2”形成的线条。在该图17中,最佳调节起始线L1表现为以原点作为起点的直线,由上式(3A)可知,Y轴上的截距值以[NOx]表示,但在图17中省略图示。
此时,构成本实施例5的燃烧装置的燃烧器1为具有例如由图17的“点划线”所示的线MA(“改良前”的线条)的方式燃烧特性的燃烧器。对于具有由该“改良前”线MA所示的燃烧特性的情况,当在最佳调节起始线L1附近使燃烧器1燃烧时,仅空气比(O2)稍有降低,而一氧化碳(CO)的值大大增加,因此极超低NOx化和低CO化变得不容易。
因此,在本实施例5中,当具有上述那样的燃烧特性(“改良前”线MA)时,从作为一氧化碳控制手段的辅助燃料供给部60喷出气体燃料,由燃烧器1产生部分扩散燃烧。即,由燃烧器10(预混合燃烧器)产生一部分扩散的燃烧,提高一氧化碳浓度,改良CO特性。由图17的“实线”所示的线MB(“改良后”线条)相对于具有“改良前”线MA的燃烧特性的燃烧器1,表现为使辅助燃料供给部60发挥功能时的燃烧特性。
这样,在本实施例5中,通过使辅助燃料供给部60发挥功能,可以控制其燃烧特性。如图17所示的那样,如果将燃料特性从“改良前”线MA调节至“改良后”线MB,则即使在最佳调节起始线L1附近(或者最佳调节起始线的左侧区域)使燃烧器燃烧,也可以继续进行稳定的低空气比燃烧。即,只要具有“改良后”线MB的燃烧特性,即使在最佳调节起始线L1附近(或者最佳调节起始线的左侧区域)运转时空气比(O2)产生变化(例如,略有降低),一氧化碳(CO)的值也没有大的变动。因此,根据本实施例5,可以控制低O2区域的一氧化碳浓度,进行稳定的低空气比燃烧,能够容易地实现节约能源化,以及使排放NOx值低于5ppm这样的极超低NOx化和低CO化。
另外,在本实施例5中,根据需要(例如根据燃烧器的个体差异等(燃烧特性)),由辅助燃料供给部60供给气体(由燃烧器1形成部分扩散燃烧),将气体中的一氧化碳浓度调节至适当的浓度。
在本实施例5中,对于为了提高一氧化碳的浓度,而在燃烧器1的上流侧设置辅助燃料供给部60来作为一氧化碳控制手段的情况进行说明,但本发明不限定于该构成,只要可以提高适当气体中的一氧化碳浓度,可以使用任意的构成。因此,例如也可以形成对燃烧器1表面与水管的距离进行操作,来控制一氧化碳的浓度这样的构成。另外,例如也可以形成在罐体内部设置辅助燃料供给部或空气供给部,来控制一氧化碳的浓度这样的构成。
实施例6
以下,对于进行催化剂活化步骤的实施例6进行说明,所述催化剂活化步骤是在上述实施例1中进行催化剂4的活化的步骤。本实施例6的装置构成与上述实施例5同样,根据图15和图16来说明本实施例6。在本实施例6中,设置与上述实施例5相同的辅助燃料供给部60,该辅助燃料供给部作为催化剂活化手段发挥功能。
在本实施例6中,辅助燃料供给部60以下述那样来构成,即,对于在锅炉1启动时或者低燃烧时等、与催化剂4接触前的气体(废气)温度低的情况,可喷出适当气体燃料的方式来构成。
一般地,锅炉等的燃烧装置进行含有低燃烧和高燃烧的三位置控制等。即,根据需要,在一个罐体内(燃烧区域内)进行多个燃烧量的运转。这样,当在一个罐体内进行不同燃烧量的运转时,通常为了实现高燃烧时的低NOx化,而进行催化剂4等的设计。但是,根据这样的构成,在高燃烧时以外(例如低燃烧时、启动时等),难以实现与高燃烧时同样的NOx减少。这是因为在低燃烧时或启动时等,与高燃烧时相比气体(废气)温度低的缘故。即,由于气体温度低,导致催化剂4不能适当地发挥功能,不能实现与高燃烧时同样的NOx减少。
因此,在本实施例6中,为了在启动时或低燃烧时提高气体温度,在燃烧器1的一次侧(上流侧)设置了辅助燃料供给部60。当基于催化剂4的温度等而判断需要对气体温度进行升温时,该辅助燃料供给部60供给气体(形成部分扩散燃烧),提高气体中的一氧化碳浓度,使反应后的气体温度升高。
另外,对于即使在启动时或者低燃烧时催化剂4也可维持适当的温度的情况,可以不进行由辅助燃料供给部60供给气体的方式来构成。
对于本实施例6涉及的锅炉(燃烧装置),即使在本来气体(废气)温度降低、催化剂4的活性不充分的启动时或低燃烧时,也可以通过设置辅助燃料供给部60(催化剂活化手段),提高气体中的一氧化碳浓度,由此使气体温度升高。因此,根据本实施例6,通过由进行稳定的低空气比燃烧而导致的节约能源化,同时使催化剂4活化,即使对于燃烧状态等发生不同的情况,也能够得到可实现使排放NOx值低于5ppm这样的极超低NOx化和低CO化的燃烧方法。
但是,当使用由铂构成的催化剂4时,用于氧化(净化)CO所需的温度(催化剂4中CO的活化温度)为大约100℃,用于还原(净化)NOx所需的温度(催化剂4中NOx的活化温度)为大约150℃。因此,当废气温度大于150℃时,或者当即使废气温度低(小于150℃),但大量存在CO时(利用CO(的反应热)使催化剂4升温至150℃以上时),CO的氧化和NOx的还原可以通过催化剂4顺利地进行。但是,当废气温度低(小于150℃),CO少时(即使利用CO(的反应热)也不能使催化剂4升温至150℃以上),不能使NOx全部得到净化。假设如果小于100℃,则对于CO也不能完全净化。因此,本实施例6以下述那样的目的来构成,即,对于废气温度低(小于150℃),CO少(即使利用CO(的反应热)也不能使催化剂4升温至150℃以上时)的情况,通过使辅助燃料供给部60工作而引入CO,利用该CO的反应热使催化剂4升温至150℃以上。
在本实施例6中,对于为了提高一氧化碳的浓度而在燃烧器1的上流侧设置辅助燃料供给部60作为催化剂活化手段的情况进行说明,但本发明不限定于该构成,只要是能够提高与催化剂部位接触前的气体中的一氧化碳浓度,可以使用任意的构成。因此,例如可以形成在罐体内部设置辅助燃料供给部或空气供给部(省略图示)这样的构成。
另外,为了使催化剂4活化,也可以在催化剂4附近设置提高催化剂温度的催化剂加热手段。
进而,所谓催化剂4的活化,换句话说,即是催化剂4的性能提高。因此,在本发明中,从该观点(催化剂的性能提高)考虑,作为催化剂活化手段,也可以形成以多段的方式设置多个催化剂这样的构成。
本发明不限定于上述实施例1~5。例如,对于图4和图13所示的空气比-NOx·CO特性,根据燃烧装置的燃烧器1和罐体3的结构,曲线和浓度值有所不同,因此可以使用不同的特性。另外,在上述实施例1、2中,设定空气比为1.0以上,但在不损害燃烧性、不含有烃的范围下,也可以是比空气比1.0低的值。
另外,在上述实施例2中,使传感器7为O2浓度传感器,但也可以使其为CO浓度传感器。另外,挡板位置调节装置30的结构可以进行各种变形。另外,马达34除了可以是步进马达以外,还可以例如是齿轮减速机(省略图示)。进而,可以通过单一的控制器(锅炉控制用的控制器)8控制挡板位置调节装置30,但也可以形成下述那样的构成,即,除了该控制器8以外,另外设置挡板位置调节装置30用的其他控制器(省略图示),将上述传感器7、控制器8与该控制器连接,来进行空气比控制。
产业实用性
根据本发明,在小型直流锅炉等的水管锅炉、供热水器、吸收式冷冻机的再生器等的燃烧装置中,通过简单的方法,就可以将氮氧化物和一氧化碳的排放量降低至无限接近于零,或者降低至容许范围内。另外,通过氧浓度的检测,可以得到稳定的有害物质减少效果。

Claims (4)

1.燃烧方法,其包含将在含有来自气体产生源的氮氧化物、一氧化碳和氧的上述气体中的氮氧化物、一氧化碳和氧的浓度比调节为标准规定浓度比的浓度比调节步骤,和
利用具有下述特性的氧化催化剂降低氮氧化物的有害物质减少步骤,所述特性是通过与上述气体接触,利用氧氧化一氧化碳、利用一氧化碳还原氮氧化物,同时在一次侧的上述浓度比为上述标准规定浓度比时,使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性,
上述浓度比调节步骤以检测上述氧化催化剂的二次侧的氧浓度、并使检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
2.如权利要求1所述的燃烧方法,其中,上述浓度比调节步骤以检测上述氧化催化剂的二次侧的氧浓度和一氧化碳浓度、并使检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
3.燃烧装置,其具有浓度比调节手段和氧化催化剂,所述浓度比调节手段将在含有来自气体产生源的氮氧化物、一氧化碳和氧的上述气体中的氮氧化物、一氧化碳和氧的浓度比调节至标准规定浓度比,所述氧化催化剂具有以下的特性,即,通过与上述气体接触,利用氧氧化一氧化碳、利用一氧化碳还原氮氧化物,同时在一次侧的上述浓度比为上述标准规定浓度比时,使二次侧的氮氧化物浓度和一氧化碳浓度基本为零的特性,
该装置具有检测上述氧化催化剂的二次侧的氧浓度的传感器,
上述浓度比调节手段以利用上述传感器测定的检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
4.如权利要求3所述的燃烧装置,使上述传感器为检测上述氧化催化剂的二次侧的氧浓度和一氧化碳浓度的传感器,
上述浓度比调节手段以利用上述传感器测定的检测氧浓度基本为零附近的设定氧浓度的方式来控制上述浓度比。
CN2008800001365A 2007-04-16 2008-02-18 燃烧方法和燃烧装置 Active CN101542201B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP107298/2007 2007-04-16
JP2007107298A JP4296603B2 (ja) 2006-07-04 2007-04-16 燃焼方法および燃焼装置
PCT/JP2008/052659 WO2008129893A1 (ja) 2007-04-16 2008-02-18 燃焼方法および燃焼装置

Publications (2)

Publication Number Publication Date
CN101542201A true CN101542201A (zh) 2009-09-23
CN101542201B CN101542201B (zh) 2012-08-29

Family

ID=39875422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800001365A Active CN101542201B (zh) 2007-04-16 2008-02-18 燃烧方法和燃烧装置

Country Status (5)

Country Link
US (1) US8083518B2 (zh)
EP (1) EP2138764A1 (zh)
KR (1) KR101381623B1 (zh)
CN (1) CN101542201B (zh)
WO (1) WO2008129893A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152479A (zh) * 2016-08-26 2016-11-23 芜湖美的厨卫电器制造有限公司 燃气热水器
WO2020119373A1 (en) * 2018-12-10 2020-06-18 Midea Group Co., Ltd. Electronically controlled vent damper
CN113050709A (zh) * 2019-12-27 2021-06-29 苏州五蕴明泰科技有限公司 用于处理有色金属企业的一氧化碳的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386061B2 (en) * 2016-11-10 2019-08-20 Preferred Utilities Manufacturing Corporation Method and apparatus for firetube boiler and ultra low NOx burner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291026A (ja) 1985-06-17 1986-12-20 Hitachi Ltd 窒素酸化物と一酸化炭素とを同時に除去する方法
JP3284313B2 (ja) 1991-08-07 2002-05-20 大阪瓦斯株式会社 ガスエンジンの排ガス浄化方法
JP3221582B2 (ja) 1992-09-09 2001-10-22 株式会社三浦研究所 低NOx、及び低CO燃焼装置
JPH0665708U (ja) 1993-02-18 1994-09-16 石川島播磨重工業株式会社 ボイラ装置
JPH07133905A (ja) * 1993-11-10 1995-05-23 Tokyo Gas Co Ltd 窒素酸化物低発生交番燃焼方法
SE518816C2 (sv) 1997-10-20 2002-11-26 Kanthal Ab Förfarande för avgasrening jämte gasbrännare
JP2001241619A (ja) 2000-03-01 2001-09-07 Osaka Gas Co Ltd ラジアントチューブバーナー燃焼排ガス浄化方法
JP2003275543A (ja) 2002-03-22 2003-09-30 Japan Steel Works Ltd:The 廃棄物焼却炉の排気ガス処理方法
JP2004125378A (ja) * 2002-07-15 2004-04-22 Miura Co Ltd 低NOx燃焼方法とその装置
JP2004069139A (ja) 2002-08-05 2004-03-04 Miura Co Ltd 低NOx燃焼装置
JP2004077085A (ja) * 2002-08-22 2004-03-11 Miura Co Ltd 水管ボイラ
GB0223350D0 (en) * 2002-10-08 2002-11-13 City Tech Flue gas sensors
US6979430B2 (en) * 2002-12-18 2005-12-27 Foster Wheeler Energy Corporation System and method for controlling NOx emissions from boilers combusting carbonaceous fuels without using external reagent
US8113822B2 (en) * 2006-07-04 2012-02-14 Miura Co., Ltd. Combustion method and combustion apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152479A (zh) * 2016-08-26 2016-11-23 芜湖美的厨卫电器制造有限公司 燃气热水器
WO2020119373A1 (en) * 2018-12-10 2020-06-18 Midea Group Co., Ltd. Electronically controlled vent damper
US11796187B2 (en) 2018-12-10 2023-10-24 Midea Group Co., Ltd. Electronically controlled vent damper
CN113050709A (zh) * 2019-12-27 2021-06-29 苏州五蕴明泰科技有限公司 用于处理有色金属企业的一氧化碳的方法

Also Published As

Publication number Publication date
CN101542201B (zh) 2012-08-29
US20100227283A1 (en) 2010-09-09
KR20100014230A (ko) 2010-02-10
US8083518B2 (en) 2011-12-27
KR101381623B1 (ko) 2014-04-04
WO2008129893A1 (ja) 2008-10-30
EP2138764A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
CN101512224B (zh) 燃烧方法和燃烧装置
KR101381622B1 (ko) 연소 방법 및 연소 장치
KR101373590B1 (ko) 보일러
CN101542201B (zh) 燃烧方法和燃烧装置
EP2135665A1 (en) CATALYST DETERIORATION PREVENTING APPARATUS AND LOW NOx COMBUSTION APPARATUS
CN101970823B (zh) 排气气体净化装置
KR101063977B1 (ko) 재연소 연료 분사장치 및 이를 구비한 연소 시스템
EP2131107A1 (en) Low nox combustion apparatus
KR101362829B1 (ko) 질소 산화물 함유 가스의 처리 방법
CN101542205A (zh) 低NOx燃烧装置
JP5088674B2 (ja) 燃焼装置
CN101415995A (zh) 燃烧装置
CN101541403A (zh) 催化剂劣化防止装置和低NOx燃烧装置
JP4296603B2 (ja) 燃焼方法および燃焼装置
JP4123298B2 (ja) 燃焼方法および燃焼装置
KR20090037893A (ko) 연소 장치
JP4254880B2 (ja) ボイラ
JP4899697B2 (ja) 燃焼方法および燃焼装置
JPH0120512Y2 (zh)
JP2008057954A (ja) 窒素酸化物含有ガスの処理方法
JP2013231538A (ja) 燃焼装置および燃焼ガスの浄化方法
JP2008032366A (ja) 燃焼方法および燃焼装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant