CN101532975A - 一种恒温测量式微型湿度传感器和制作方法 - Google Patents

一种恒温测量式微型湿度传感器和制作方法 Download PDF

Info

Publication number
CN101532975A
CN101532975A CN 200810101785 CN200810101785A CN101532975A CN 101532975 A CN101532975 A CN 101532975A CN 200810101785 CN200810101785 CN 200810101785 CN 200810101785 A CN200810101785 A CN 200810101785A CN 101532975 A CN101532975 A CN 101532975A
Authority
CN
China
Prior art keywords
film
constant temperature
humidity
sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200810101785
Other languages
English (en)
Other versions
CN101532975B (zh
Inventor
赵湛
张建刚
方震
耿道渠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN 200810101785 priority Critical patent/CN101532975B/zh
Publication of CN101532975A publication Critical patent/CN101532975A/zh
Application granted granted Critical
Publication of CN101532975B publication Critical patent/CN101532975B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明一种恒温测量式微型湿度传感器和制作方法,涉及传感技术,该传感器,由湿敏薄膜电容和基底组成,其中:湿敏薄膜电容的下电极中至少有一个电极作为电容或阻抗测量电极,又作为恒温控制加热电极,并与下电极中的温度传感器在传感器的外部电路控制下使这种微型湿度传感器恒定在一定温度下进行湿度测量;该传感器中用于支撑湿敏薄膜电容的很薄的支撑膜片具有通透的孔或间隙结构,减小了热量损失,使传感器在较低功耗下实现恒温测量。本发明微型湿度传感器不受环境温度影响、温度系数小、低温性能好,实现了零下温度下的湿度测量,且体积小于2毫米×2毫米×2毫米。本发明应用于日常生活、工业生产、气象预报、环境监测、航空航天等方面。

Description

一种恒温测量式微型湿度传感器和制作方法
技术领域
本发明涉及传感器技术、微电子机械系统(MEMS)技术,特别涉及一种恒温测量式微型湿度传感器的结构和制作方法。
背景技术
本发明提出的微型湿度传感器主要应用在日常生活和气象预测中,因此测量的湿度参数为相对湿度。相对湿度常用于加热、通风以及空调应用中,是舒适度和室内空气质量的重要指标,其定义是:
相对湿度RH%
RH % = p w p s × 100
其中:pw是部分蒸汽压,ps是饱和蒸汽压。
相对湿度的测量不仅与日常生活密切相关,在工业生产、气象预报、气候分析、环境监测、航空航天等领域的应用也十分广泛。
目前,国内外的湿度传感器感湿特性主要取决于敏感材料的性质,按敏感元件吸湿而导致电导率和电容量发生变化可分为两大类,即电阻式和电容式湿度传感器。此外,湿度传感器按检测原理分类还有声表面波(SAW)、压阻、场效应管以及光学式湿度。
按传感器常用的敏感材料分类可分为陶瓷、高分子聚合物、多孔硅三大类湿度传感器。下面将分别对这三类湿度传感器的原理进行简要介绍。
陶瓷湿度传感器利用吸附或凝聚在粒子表面上的水分子作为导电通路,吸湿量变化时,质子传导性也相应发生改变。陶瓷材料尤其是金属氧化物通常具有良好的机械耐久度,但需要阶段性加热清洁再生以恢复湿度敏感特性。传感器在低湿范围内灵敏度较高,随着湿度增长电阻指数级别下降。相对湿度增加时的响应速度约为20s,但脱湿时间较长,约为100s。
高分子聚合物能随周围环境相对湿度(RH)的大小成比例地吸附和释放水分子。与陶瓷材料湿度传感器相比,基于聚合物的湿度传感器历史更长,最早可以追溯到上个世纪60年代。其中,聚酰亚胺与半导体加工工艺兼容,且具有良好的抵抗化学污染的耐久性,因此是常用的高分子电介质材料。聚酰亚胺湿度传感器工艺简单可行,精度较高,满足集成传感器的制作要求。除了直接测量电容外,还可以利用SAW声表面波和压阻效应检测湿度变化。
多孔硅具有多孔结构,有着很大的比表面积,这和多孔陶瓷、多孔金属氧化物等敏感材料的结构有相似之处,对多种气体及湿度敏感。实验结果发现这种传感器的电容值在相对湿度从0变化到100%RH的环境中变化了440%,说明多孔硅可以作为性能良好的感湿材料。
基于上述三种敏感材料的湿度传感器的性能可见下表:
Figure A200810101785D00071
当前国内外市场上越来越需要能够满足环境监测网络化要求,具有体积微小,成本低的微型湿度传感器。随着电子技术、微电子技术、MEMS技术的发展,目前国际上出现了基于各种感湿机理和感湿材料的微型湿度传感器。诸如,纳米材料式微型湿度传感器、微悬臂式微型湿度传感器、聚合物式微型湿度传感器、多孔硅式微型湿度传感器、声表面波(SAW)微型湿度传感器、压阻微型湿度传感器、场效应管微型湿度传感器。这些微型湿度传感器虽然具有低成本、低功耗、与传统IC工艺集成、精度高、线性较好、响应迅速等优点,但是大多存在性能易受环境温度影响、温度系数较大、低温性能差、无法实现零下温度下的湿度测量等缺点。这些缺点制约了微型湿度传感器在工业生产、气象预报、气候分析、环境监测、航空航天等领域上的实际应用。因此,在科研和市场上都迫切需要研制一种不易受环境温度影响、低温性能好的微型湿度传感器。
发明内容
目前的微型湿度传感器虽然具有低成本、低功耗、与传统IC工艺集成、精度高、线性较好、响应迅速等优点,但是大多存在传感器性能易受环境温度影响、温度系数较大、无法实现低温下的湿度准确测量等缺点。为了克服现有的微型湿度传感器所存在的缺点,本发明提供了一种性能不受环境温度影响、温度系数小、低温性能好、特别是可实现零下温度下的湿度测量的具有恒温测量功能的微型湿度传感器。
为了实现上述的目的,本发明的技术解决方案是:
一种恒温测量式微型湿度传感器,其由湿敏薄膜电容和基底两部分组成;湿敏薄膜电容的下电极中至少有一个电极作为电容或阻抗测量电极,又作为恒温控制的加热电极;湿敏薄膜电容置于基底上面,湿敏薄膜电容所在的基底区域为支撑膜片结构;
湿敏薄膜电容包括四层薄膜,依次为保护薄膜、上电极薄膜、湿度敏感薄膜、下电极薄膜;
在不直接支撑湿敏薄膜电容的支撑膜片上带有上下通透的孔或间隙结构。
所述的恒温测量式微型湿度传感器,其所述保护薄膜由高分子聚合物材料制成。
所述的恒温测量式微型湿度传感器,其所述上电极薄膜是带有上下通透的孔或间隙结构的金属平面。
所述的恒温测量式微型湿度传感器,其所述的湿度敏感薄膜由高分子聚合物材料制成。
所述的恒温测量式微型湿度传感器,其所述下电极薄膜包括平板电容电极、加热电极和温度传感器三部分,平板电容电极、加热电极和温度传感器位于湿度敏感薄膜和支撑膜片之间,且处于同一个平面。
所述的恒温测量式微型湿度传感器,其所述下电极薄膜中的平板电容电极、加热电极和温度传感器三个部分处于所属的同一个平面内的相对位置、几何形状是任意的。
所述的恒温测量式微型湿度传感器,其所述支撑膜片的厚度在5-200μm之间。
所述的恒温测量式微型湿度传感器,其所述支撑膜片的面积大于湿敏薄膜电容的面积,且在不直接支撑下电极薄膜并不被基底支撑的地方带有上下通透的孔或间隙结构。
所述的恒温测量式微型湿度传感器,其所述支撑膜片中与湿敏薄膜电容直接相连的薄膜部分由绝缘材料构成。
一种所述的恒温测量式微型湿度传感器的制作方法,其步骤如下:
步骤1:在硅片的两面淀积氮化硅薄膜,作为绝缘薄膜;
步骤2:在该片其中一面的氮化硅上利用微电子机械系统技术中的光刻、湿腐蚀技术,制作出支撑膜片所需的孔或间隙结构;
步骤3:在另一面的氮化硅上蒸发一层铝薄膜;
步骤4:利用微电子机械系统技术中的光刻、腐蚀技术制作出深刻蚀用的铝掩膜;
步骤5:在另一面的氮化硅薄膜上利用微电子机械系统系技术中的光刻和溅射技术制作出铂下电极;
步骤6:利用微电子机械系统技术中的光刻技术在下电极上制作出聚酰亚胺薄膜;
步骤7:利用微电子机械系统技术中的光刻和溅射技术在聚酰亚胺膜上制作出铂上电极;
步骤8:利用微电子机械系统技术中的深刻蚀技术在步骤4中制得的铝掩膜的保护下刻蚀掉一定深度的硅;
步骤9:划片后形成恒温测量式微型湿度传感器芯片。
本发明所提供的一种恒温测量式微型湿度传感器的优点在于:可将器件恒定在一定温度下进行测量,传感器性能不受环境温度影响、温度系数小、低温性能好,特别是可实现零下温度下的湿度测量;同时可利用微电子机械系统(MEMS)技术将器件制作得很小(体积可以小于2毫米×2毫米×2毫米);由于可采用MEMS技术,器件的制作批量也比较大;器件的功耗也较低。因此,它可以广泛应用在工业生产、气象预报、气候分析、环境监测、航空航天等领域。
附图说明
图1是本发明所提出的一种恒温测量式微型湿度传感器的一个实例的结构示意图;
图2是本发明所提出的一种恒温测量式微型湿度传感器的一个实例的俯视图;
图3是本发明所提出的一种恒温测量式微型湿度传感器的一个实例的正视图;
图4是本发明所提出的一种恒温测量式微型湿度传感器下电极的一个实例的结构示意图;
图5是本发明所提出的一种恒温测量式微型湿度传感器上电极的一个实例的结构示意图。
具体实施方式
本发明的技术方案:本发明所提供的一种恒温测量式微型湿度传感器中夹在上电极和下电极中间的湿度敏感材料可以是高分子聚合物。它能随周围环境的相对湿度的大小成比例地吸附和释放水分子,导致其介电常数发生变化。这类高分子电介质材料做成电容后,其介电常数的变化将导致其电容值发生变化,这种变化也反映了相对湿度的变化。本发明所提供的一种恒温测量式微型湿度传感器中的上电极作为电容的一个极板,并且上电极薄膜中带有上下通透的孔或间隙结构以有利于湿度敏感材料吸附和释放水分子。下电极中除了温度传感器的其余部分作为电容的另一个极板,测量该电容或阻抗的量值可以得到环境的相对湿度的信息。同时,本发明所提供的一种恒温测量式微型湿度传感器的下电极中至少有一个电极即作为电容或阻抗测量的一个电极,又作为恒温控制的加热电极。它与下电极中的温度传感器在传感器的外部电路控制下可使这种微型湿度传感器恒定在一定温度下进行湿度测量。另一方面,该传感器中用于支撑湿敏薄膜电容的很薄的支撑膜片具有通透的孔或间隙结构,减小了热量损失,从而使传感器在较低功耗下实现恒温测量。这些特点使得这种微型湿度传感器不受环境温度影响、温度系数小、低温性能好,特别是可实现零下温度下的湿度测量。
下面将结合附图对本发明加以详细说明,应指出的是,所描述的实施例仅旨在便于对本发明的理解,而其不对本发明做任何限定。
如图1是本发明所提出的一种恒温测量式微型湿度传感器的一个实例的结构示意图,其中,保护薄膜1;上电极薄膜2;湿度敏感薄膜3;下电极薄膜4;通孔或间隙结构5;绝缘薄膜6;支撑膜片7;基底8。
图2是本发明所提出的一种恒温测量式微型湿度传感器的一个实例的俯视图,其中:湿敏薄膜电容1-3;下电极薄膜4;支撑膜片7的通孔或间隙结构5;基底8。
图3是本发明所提出的一种恒温测量式微型湿度传感器的一个实例的正视图,其中:保护薄膜1;上电极薄膜2;湿度敏感薄膜3;下电极薄膜4;绝缘薄膜6;支撑膜片7;基底8。
图4是本发明所提出的一种恒温测量式微型湿度传感器下电极的一个实例的结构示意图,其中,温度传感器9;一个或两个同时用于加热及电容或阻抗测量电极10。
图5是本发明所提出的一种恒温测量式微型湿度传感器上电极的一个实施例的结构示意图,其中:上电极薄膜的通孔或间隙结构11;上电极薄膜2。
本发明提出这种恒温测量式微型湿度传感器,它的结构由湿敏薄膜电容和基底8两部分组成。其中,湿敏薄膜电容由保护薄膜1、上电极薄膜2、湿度敏感薄膜3、下电极薄膜4,共四层薄膜构成;湿敏薄膜电容置于基底8上面,且基底8与湿敏薄膜电容相连处具有支撑膜片7结构;保护薄膜1由高分子聚合物材料构成;下电极薄膜4由平板电容电极、加热电极10和温度传感器9三部分构成;下电极薄膜4中的平板电容电极、加热电极10和温度传感器9三部分结构都置于湿度敏感薄膜3的上面,且处于同一个平面;下电极薄膜4中的平板电容电极、加热电极10和温度传感器9三个部分处于所属的同一个平面内的相对位置是任意的;下电极薄膜4中的平板电容电极、加热电极10的几何形状和面积是任意的;下电极薄膜中的平板电容电极和加热电极10中至少有一个电极即作为恒温控制用的加热电极,又作为电容或阻抗测量的一个电极;湿度敏感薄膜3由高分子聚合物材料构成;上电极薄膜2是带有上下通透的孔或间隙结构5的金属平面,孔5或间隙的几何形状和面积是任意的;支撑膜片7的厚度在5-200μm之间;支撑膜片7的面积大于湿敏薄膜电容的面积,且在不直接支撑下电极薄膜4且不被基底8支撑的地方带有上下通透的孔或间隙结构5,且这种孔或间隙结构5的几何形状和面积是任意的;支撑膜片7中与湿敏薄膜电容直接相连的薄膜6由绝缘材料构成,支撑膜片7中的其它部分和基底8中的其它部分可由任意材料构成。
这种恒温测量式微型湿度传感器的一种制作工艺方法和制作步骤如下:
步骤1:在硅片的两面淀积氮化硅薄膜,作为绝缘薄膜。
步骤2:在该片其中一面的氮化硅上利用微电子机械系统(MEMS)技术中的光刻、湿腐蚀技术,制作出支撑膜片所需的孔或间隙结构。
步骤3:在另一面的氮化硅上蒸发一层铝薄膜。
步骤4:利用微电子机械系统(MEMS)技术中的光刻、腐蚀技术制作出深刻蚀用的铝掩膜。
步骤5:在另一面的氮化硅薄膜上利用微电子机械系统(MEMS)系技术中的光刻和溅射技术制作出铂下电极;
步骤6:利用微电子机械系统(MEMS)技术中的光刻技术在下电极上制作出聚酰亚胺薄膜;
步骤7:利用微电子机械系统(MEMS)技术中的光刻和溅射技术在聚酰亚胺膜上制作出铂上电极;
步骤8:利用微电子机械系统(MEMS)技术中的深刻蚀技术在铝掩膜的保护下刻蚀掉一定深度的硅。
步骤9:划片后形成恒温测量式微型湿度传感器芯片。
本发明所提出的这种恒温测量式微型湿度传感器的工作原理是:
本发明所提出的这种恒温测量式微型湿度传感器中夹在上电极和下电极中间的湿度敏感材料可以是高分子聚合物。它能随周围环境的相对湿度的大小成比例地吸附和释放水分子,导致其介电常数发生变化。这类高分子电介质材料做成电容后,其介电常数的变化将导致其电容值发生变化,这种变化也反映了相对湿度的变化。本发明所提供的一种恒温测量式微型湿度传感器中的上电极作为电容的一个极板,并且上电极薄膜中带有上下通透的孔或间隙结构以有利于湿度敏感材料吸附和释放水分子。下电极中除了温度传感器的其余部分作为电容的另一个极板,测量该电容或阻抗的量值可以得到环境的相对湿度的信息。同时,本发明所提供的一种恒温测量式微型湿度传感器的下电极中至少有一个电极即作为电容或阻抗测量的一个电极,又作为恒温控制的加热电极。它与下电极中的温度传感器在传感器的外部电路控制下可使这种微型湿度传感器恒定在一定温度下进行湿度测量。另一方面,该传感器中用于支撑湿敏薄膜电容的很薄的支撑膜片具有通透的孔或间隙结构,减小了热量损失,从而使传感器在较低功耗下实现恒温测量。这些特点使得这种微型湿度传感器不受环境温度影响、温度系数小、低温性能好,特别是实现了零下温度下的湿度测量。另外,利用微电子机械系统(MEMS)技术,这种恒温测量式微型湿度传感器可以制作得很小,体积可以小于2毫米×2毫米×2毫米。
实施例
这种恒温测量式微型湿度传感器的一个实例的一种制作工艺方法及制作步骤如下:
步骤1:在500μm厚、n型硅片的两个[100]面上淀积2000
Figure A200810101785D0015092239QIETU
厚氮化硅薄膜。
步骤2:在该片其中一面的氮化硅上利用微电子机械系统(MEMS)技术中的光刻、湿腐蚀技术,制作出支撑膜片7所需的深为60μm的孔或间隙结构5。
步骤3:在另一面的氮化硅上蒸发一层3000
Figure A200810101785D0015092239QIETU
厚铝薄膜。
步骤4:利用微电子机械系统(MEMS)技术中的光刻、腐蚀技术制作出深刻蚀用的铝掩膜。
步骤5:在另一面的氮化硅薄膜上利用微电子机械系统(MEMS)系技术中的光刻和溅射技术制作出2000
Figure A200810101785D0015092239QIETU
厚铂下电极;
步骤6:利用微电子机械系统(MEMS)技术中的光刻技术在下电极上制作出3μm厚、形状为边长1.0mm×1.0mm正方形的聚酰亚胺薄膜;
步骤7:利用微电子机械系统(MEMS)技术中的光刻和溅射技术在聚酰亚胺膜上制作出2000
Figure A200810101785D0015092239QIETU
厚铂上电极;
步骤8:利用微电子机械系统(MEMS)技术中的深刻蚀技术在铝掩膜的保护下,刻蚀掉450μm厚的硅以形成50μm厚、形状为边长1.3mm×1.3mm正方形的支撑膜片7。
步骤9:划片后形成形状为边长1.8mm×1.8mm正方形的芯片,从而制成500μm×1.8mm×1.8mm这种恒温测量式微型湿度传感器。
以上所述,仅为本发明的具体实施方式,任何熟悉该技术的人在本发明所揭露的技术范围内,所做的变换或替换,都应涵盖在本发明权利要求书的保护范围之内。

Claims (10)

1、一种恒温测量式微型湿度传感器,其特征在于,由湿敏薄膜电容和基底两部分组成;湿敏薄膜电容的下电极中至少有一个电极作为电容或阻抗测量电极,又作为恒温控制的加热电极;湿敏薄膜电容置于基底上面,湿敏薄膜电容所在的基底区域为支撑膜片结构;
湿敏薄膜电容包括四层薄膜,依次为保护薄膜、上电极薄膜、湿度敏感薄膜、下电极薄膜;
在不直接支撑湿敏薄膜电容的支撑膜片上带有上下通透的孔或间隙结构。
2、如权利要求1所述的恒温测量式微型湿度传感器,其特征在于,所述保护薄膜由高分子聚合物材料制成。
3、如权利要求1所述的恒温测量式微型湿度传感器,其特征在于,所述上电极薄膜是带有上下通透的孔或间隙结构的金属平面。
4、如权利要求1所述的恒温测量式微型湿度传感器,其特征在于,所述的湿度敏感薄膜由高分子聚合物材料制成。
5、如权利要求1所述的恒温测量式微型湿度传感器,其特征在于,所述下电极薄膜包括平板电容电极、加热电极和温度传感器三部分,平板电容电极、加热电极和温度传感器位于湿度敏感薄膜和支撑膜片上的结缘薄膜之间,且处于同一个平面。
6、如权利要求5所述的恒温测量式微型湿度传感器,其特征在于,所述下电极薄膜中的平板电容电极、加热电极和温度传感器三个部分处于所属的同一个平面内的相对位置、几何形状是任意的。
7、如权利要求1所述的恒温测量式微型湿度传感器,其特征在于,所述支撑膜片的厚度在5-200μm之间。
8、如权利要求1或7所述的恒温测量式微型湿度传感器,其特征在于,所述支撑膜片的面积大于湿敏薄膜电容的面积,且在不直接支撑下电极薄膜并不被基底支撑的地方带有上下通透的孔或间隙结构。
9、如权利要求1所述的恒温测量式微型湿度传感器,其特征在于,所述支撑膜片中与湿敏薄膜电容直接相连的薄膜部分由绝缘材料构成。
10、一种如权利要求1所述的恒温测量式微型湿度传感器的制作方法,其特征在于,制备步骤为:
步骤1:在硅片的两面淀积氮化硅薄膜,作为绝缘薄膜;
步骤2:在该片其中一面的氮化硅上利用微电子机械系统技术中的光刻、湿腐蚀技术,制作出支撑膜片所需的孔或间隙结构;
步骤3:在另一面的氮化硅上蒸发一层铝薄膜;
步骤4:利用微电子机械系统技术中的光刻、腐蚀技术制作出深刻蚀用的铝掩膜;
步骤5:在另一面的氮化硅薄膜上利用微电子机械系统系技术中的光刻和溅射技术制作出铂下电极;
步骤6:利用微电子机械系统技术中的光刻技术在下电极上制作出聚酰亚胺薄膜;
步骤7:利用微电子机械系统技术中的光刻和溅射技术在聚酰亚胺膜上制作出铂上电极;
步骤8:利用微电子机械系统技术中的深刻蚀技术在步骤4中制得的铝掩膜的保护下刻蚀掉一定深度的硅;
步骤9:划片后形成恒温测量式微型湿度传感器芯片。
CN 200810101785 2008-03-12 2008-03-12 一种恒温测量式微型湿度传感器和制作方法 Expired - Fee Related CN101532975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810101785 CN101532975B (zh) 2008-03-12 2008-03-12 一种恒温测量式微型湿度传感器和制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810101785 CN101532975B (zh) 2008-03-12 2008-03-12 一种恒温测量式微型湿度传感器和制作方法

Publications (2)

Publication Number Publication Date
CN101532975A true CN101532975A (zh) 2009-09-16
CN101532975B CN101532975B (zh) 2012-12-12

Family

ID=41103705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810101785 Expired - Fee Related CN101532975B (zh) 2008-03-12 2008-03-12 一种恒温测量式微型湿度传感器和制作方法

Country Status (1)

Country Link
CN (1) CN101532975B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096984A (zh) * 2011-03-01 2011-06-15 北京雪迪龙科技股份有限公司 湿度报警装置
CN102590291A (zh) * 2012-01-16 2012-07-18 中国科学院上海微系统与信息技术研究所 一种改进型湿度传感器的制作方法
CN102798403A (zh) * 2012-08-21 2012-11-28 江苏物联网研究发展中心 Mems薄膜电容式多参数传感器结构及其集成制造方法
CN103018288A (zh) * 2012-12-18 2013-04-03 哈尔滨理工大学 一种可控加热除霜电容式高空湿度传感器及其制备方法
CN103185611A (zh) * 2013-04-03 2013-07-03 无锡华润上华半导体有限公司 与cmos工艺兼容的mems温度湿度集成传感器及其制造方法
CN104062322A (zh) * 2014-07-10 2014-09-24 苏州能斯达电子科技有限公司 一种湿度传感器及其制备方法
CN105067759B (zh) * 2015-07-17 2016-06-08 香河国瑞智测试设备有限公司 湿度等温块
CN105758902A (zh) * 2016-05-20 2016-07-13 南京信息工程大学 基于pcb和电场边缘效应的水含量测量探头及制作方法
CN105842306A (zh) * 2016-05-20 2016-08-10 南京信息工程大学 一种水含量测量装置及测量方法
CN108519408A (zh) * 2018-05-11 2018-09-11 合肥微纳传感技术有限公司 一种气体传感器、传感器的制备方法及传感器阵列
JP2020522674A (ja) * 2018-05-11 2020-07-30 合肥微納伝感技術有限公司Hefei Micro Nano Sensing Technology Co.,Ltd. 片持ち梁型ガスセンサ、センサアレイ及びセンサの製造方法
CN111665282A (zh) * 2020-06-14 2020-09-15 沈阳航空航天大学 一种快速响应的油中水分湿敏电容
CN112097835A (zh) * 2020-09-22 2020-12-18 河海大学常州校区 一种谐振型saw温度-湿度传感器及其制备方法
CN112268939A (zh) * 2020-10-27 2021-01-26 东南大学 一种基于机械超材料结构的湿度传感器
CN113063530A (zh) * 2021-03-30 2021-07-02 成都凯天电子股份有限公司 一种mems硅压阻式压力传感器及其制备方法
CN113588727A (zh) * 2020-01-07 2021-11-02 南通大学 无存储模块的湿度传感器芯片

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202052A (ja) * 1983-04-30 1984-11-15 Sharp Corp 感湿素子
US5161085A (en) * 1991-02-21 1992-11-03 Yamatake-Honeywell Co., Ltd. Moisture sensitive element and method of manufacturing the same
CN101059466A (zh) * 2006-04-19 2007-10-24 北京亚都室内环保科技有限公司 高分子电阻型湿度传感器元件及其制造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096984A (zh) * 2011-03-01 2011-06-15 北京雪迪龙科技股份有限公司 湿度报警装置
CN102590291A (zh) * 2012-01-16 2012-07-18 中国科学院上海微系统与信息技术研究所 一种改进型湿度传感器的制作方法
CN102590291B (zh) * 2012-01-16 2014-03-12 中国科学院上海微系统与信息技术研究所 一种改进型湿度传感器的制作方法
CN102798403A (zh) * 2012-08-21 2012-11-28 江苏物联网研究发展中心 Mems薄膜电容式多参数传感器结构及其集成制造方法
CN102798403B (zh) * 2012-08-21 2014-10-22 江苏物联网研究发展中心 Mems薄膜电容式多参数传感器的集成制造方法
CN103018288A (zh) * 2012-12-18 2013-04-03 哈尔滨理工大学 一种可控加热除霜电容式高空湿度传感器及其制备方法
CN103018288B (zh) * 2012-12-18 2014-11-12 哈尔滨理工大学 一种可控加热除霜电容式高空湿度传感器的制备方法
CN103185611A (zh) * 2013-04-03 2013-07-03 无锡华润上华半导体有限公司 与cmos工艺兼容的mems温度湿度集成传感器及其制造方法
CN104062322A (zh) * 2014-07-10 2014-09-24 苏州能斯达电子科技有限公司 一种湿度传感器及其制备方法
CN105067759B (zh) * 2015-07-17 2016-06-08 香河国瑞智测试设备有限公司 湿度等温块
CN105758902A (zh) * 2016-05-20 2016-07-13 南京信息工程大学 基于pcb和电场边缘效应的水含量测量探头及制作方法
CN105842306A (zh) * 2016-05-20 2016-08-10 南京信息工程大学 一种水含量测量装置及测量方法
CN108519408A (zh) * 2018-05-11 2018-09-11 合肥微纳传感技术有限公司 一种气体传感器、传感器的制备方法及传感器阵列
JP2020522674A (ja) * 2018-05-11 2020-07-30 合肥微納伝感技術有限公司Hefei Micro Nano Sensing Technology Co.,Ltd. 片持ち梁型ガスセンサ、センサアレイ及びセンサの製造方法
CN108519408B (zh) * 2018-05-11 2024-04-02 微纳感知(合肥)技术有限公司 一种气体传感器、传感器的制备方法及传感器阵列
CN113588727A (zh) * 2020-01-07 2021-11-02 南通大学 无存储模块的湿度传感器芯片
CN113588727B (zh) * 2020-01-07 2022-04-05 南通大学 无存储模块的湿度传感器芯片
CN111665282A (zh) * 2020-06-14 2020-09-15 沈阳航空航天大学 一种快速响应的油中水分湿敏电容
CN112097835A (zh) * 2020-09-22 2020-12-18 河海大学常州校区 一种谐振型saw温度-湿度传感器及其制备方法
CN112268939A (zh) * 2020-10-27 2021-01-26 东南大学 一种基于机械超材料结构的湿度传感器
CN113063530A (zh) * 2021-03-30 2021-07-02 成都凯天电子股份有限公司 一种mems硅压阻式压力传感器及其制备方法

Also Published As

Publication number Publication date
CN101532975B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
CN101532975B (zh) 一种恒温测量式微型湿度传感器和制作方法
CN100420021C (zh) 基于聚合物材料的单片集成温度、湿度、压力传感器芯片
Rittersma Recent achievements in miniaturised humidity sensors—a review of transduction techniques
CN105928567B (zh) 集成温湿度传感器的硅基气体敏感芯片及其制作方法
Lee et al. Humidity sensors: a review
CN101620197B (zh) 一种快速响应的cmos相对湿度传感器
US7635091B2 (en) Humidity sensor formed on a ceramic substrate in association with heating components
CN1327215C (zh) Cmos工艺兼容的相对湿度传感器
CN103018289B (zh) 一种电容式湿度传感器
WO2014136329A1 (ja) 限界電流式ガスセンサ、限界電流式ガスセンサの製造方法、およびセンサネットワークシステム
Xie et al. A low power cantilever-based metal oxide semiconductor gas sensor
CN101059528A (zh) 十字架结构的二维风速风向传感器及其制备方法
GB2464016A (en) Gas sensor with tungsten heater
Hassan et al. MEMS based humidity sensor with integration of temperature sensor
CN1217157C (zh) 集成温湿度大气压力传感器芯片
CN100373652C (zh) 氢半导体传感器气敏元件及其制作方法
CN101625358A (zh) 准一维纳米材料场效应管电容电导同时检测生物传感器
CN201203591Y (zh) 有热净化功能的低功耗热隔离双模块集成湿度传感器芯片
CN103196955B (zh) 碳化硅纳米纸传感器及其制作方法和应用
Islam et al. A nanoporous thin-film miniature interdigitated capacitive impedance sensor for measuring humidity
CN111007107A (zh) 一种基于碳基柔性湿敏器件的露点测量方法
CN101614752A (zh) 一种微型电容式风速传感器
Pon et al. A low cost high sensitivity CMOS MEMS gas sensor
JP4665144B2 (ja) 高分子膜の体積膨張に伴うストレス変化を利用した湿度センサー
CN207867991U (zh) 热敏电阻、绝对湿度传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20180312

CF01 Termination of patent right due to non-payment of annual fee