CN101501934B - 使用人造磁性层的天线阵列和单元 - Google Patents

使用人造磁性层的天线阵列和单元 Download PDF

Info

Publication number
CN101501934B
CN101501934B CN2007800296795A CN200780029679A CN101501934B CN 101501934 B CN101501934 B CN 101501934B CN 2007800296795 A CN2007800296795 A CN 2007800296795A CN 200780029679 A CN200780029679 A CN 200780029679A CN 101501934 B CN101501934 B CN 101501934B
Authority
CN
China
Prior art keywords
ground plane
aml
dielectric layer
antenna
plane components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800296795A
Other languages
English (en)
Other versions
CN101501934A (zh
Inventor
J·赛利
M·考尼斯托
S·A·特雷特亚科夫
C·西莫夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Solutions and Networks Oy
Original Assignee
Nokia Siemens Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Siemens Networks Oy filed Critical Nokia Siemens Networks Oy
Publication of CN101501934A publication Critical patent/CN101501934A/zh
Application granted granted Critical
Publication of CN101501934B publication Critical patent/CN101501934B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Abstract

一种天线阵列,其包括多个天线单元、接地平面和至少一个人造磁性层(AML)单元。至少一个AML单元设置于至少两个相邻天线单元之间。该AML单元包括一对穿过环形介电层的环形开口谐振器,并且该谐振器通过电容介电层容性地联接到天线阵列的接地平面上。谐振器互相垂直且垂直于接地平面,并且每个AML单元中可限定一对以上的谐振器。来自天线单元的磁能感应出谐振器内的电场,并且由此引起的磁场强烈地结合AML单元,通过抑制表面波的传播来抑制辐射元件之间的互耦合。

Description

使用人造磁性层的天线阵列和单元
技术领域
本发明涉及天线阵列,例如设置于共同基底(substrate)/接地平面(ground plane)的单元天线,使得沿该基底/接地平面传播的能量在设计考量欠缺时可能导致天线在传送和/或接收模式下的互耦合。此天线阵列可设置于卫星或陆用网络元件中,以及与这些网络元件通信的手持式可携收发器中。
背景技术
用于在不同频率进行通信的复合天线辐射体元件特别地使用在卫星和陆用移动通信网络的基地收发器站中,但其也日渐使用在手持式可携收发器中。这些设备经常同时在完全不同的频带通信。为了节约空间和重量,复合天线有时应用如同天线辐射体元件的有组织的阵列形式中。
典型地,基地天线可再构造以适应不同的环境。可再构造的天线在较小存货需求时可为节约操作员和制造者大量的金钱。一般地,需要具有不同波束宽度及增益值的一大组天线。可再构造的天线可以在安装前手动设置,或者在天线杆上以电子方式设置。智能天线或适应性天线甚至有更多的要求,因为它们需要在某些方向产生具有最大值和最小值的复杂的辐射图。这些天线使用相控阵技术来合成所需的波束。
辐射元件同时在不同的频带上通信会引起天线元件之间互耦合的现象,该现象可能降低每一个天线元件的性能,其在使用相位阵技术的智能基地天线中可能导致严重的问题。不同天线放射元件之间的互相干涉会降低阵列的方向性,可能导致元件失调,并且形成盲点(即主波束无法指引到的方向)。如果互耦合低于某个级别,取决于具体应用可对阵列性能进行折衷。
已经熟知可以通过增加天线放射元件之间的物理间距来减小互耦合,其会导致阵列中天线尺寸的增大。参见C.A.Balanis著“ANTENNA THEORY:ANALYSIS AND DESIGN”(John Wiley andSons,Inc.,2nd ed.,1997)书中的实例。此类放射元件之间间距的增大也会导致辐射图中旁瓣电平的增大。接近半波长的正常间距会导致接近约-20dB的互耦合级别。下文中列举了一些用于减小互耦合的更先进的方法。
一种用于减小天线元件之间的互耦合的方法是通过选择基底材料来使表面波降低最小。例如,在F.Rostan,E.Heindrich,W.Wiesbeck完成的题为“High-Performance C-Band Microstrip Patch Subarray withDual Polarization Capabilities”(PIER’94,pp.1-4)的研究中,在5.3GHz频率比较了Duroid和Rohacell基底。低介电常数(εr=1.15)的Rohacell基底不支持表面波并且互耦合接近-30dB,其缺点是天线会变大。在具有高介电常数(εr=2.2)的Duroid基底中,互耦合级别约为-23dB。
另一种方法是使用干涉效应来消除互耦合。在H.Wong,K.L.Lau,K.M.Luk,“Design of Dual-Polarized L-Probe Patch Antenna Arrays withHigh Isolation”,IEEE Trans.Ant.Propag.,Vol.52,No.1,Jan.2004,pp.45-52以及L.D.Bamford,J.R.James,A.F.Frey,“Minimising MutualCoupling in Thick Substrate Microstrip Antenna Arrays”,ElectronicsLetters,Vol.33,No.8,10th April,1997,pp.648-650中指出一些情况下这种方法可能合适。干涉部件可以是基底中的表面波和天线之间空气中的空间波。这种技术本质上是窄频带,但可实现约-45dB级别的互耦合。
可以应用天线阵列的结构修正来减小互耦合。这些修正包括如H.Wong等的论文中所提到的天线元件的单个屏蔽、接地平面波纹、使用分条贴片(gridded patch)用于正交性、天线元件的空腔反射(cavitybacking)以及在基底或接地平面中使用切口。使用这些技术得到的预期互耦合级别在大约-25dB至大约-30dB之间。
在接地平面中使用光子带隙(PBG)材料也能用来减小互耦合。已有报告在较高频率上(如5.8GHz)工作的天线阵列的共同接地平面中使用PBG贴片,但是该发明人没有意识到有工作显示此技术也可有效地用于典型的移动电话/蜂窝通信频率(如2GHz或更低,特别是UMTS范围1.92-2.17GHz以及GSM范围0.824-0.960GHz和1.710-1.990GHz)。问题典型地在于,通常已知的PBG结构、如蘑菇形PBG和单平面UC-PBG,在低微波频率的尺寸过大。
发明内容
根据本发明教导中描述的实施例克服了上述问题,并且实现了其它优势。
根据本发明的一个示范性实施例,提供了一种天线阵列,其包括多个天线单元和至少一个人造磁性层(AML)单元。天线单元设置于阵列中且互相隔开。每个天线单元都包括辐射元件和接地平面元件。AML单元设置于一些相邻天线单元的至少两个之间。该AML单元包括至少一对环形开口谐振器(split-ring resonator)。该AML单元容性地耦合到相邻天线单元的接地平面元件上。
另外,根据本发明的另一个示范性实施例,提供了一种装置,其包括设置于共同基底的单元阵列。每个单元包括第一电介质材料层,其具有第一主表面及相对的第二主表面、邻近于第一主表面设置的第二介电层、设置于第一电介质材料层的相反的主表面上的一对交叉传导迹线以及穿过第一电介质材料层但不穿过第二电介质材料层的至少四个传导通道。每个传导通道互相间隔开且耦合传导迹线。
根据另一实施例提供了一种制造天线阵列的方法。在该方法中,提供特别适合于把天线单元和下文中描述的瓦状物(tilt)部件保持成互相间隔的关系的基底。紧固多个天线单元到该基底上,以使得每个天线单元相互间隔开。每个天线单元包括与辐射元件间隔开的接地平面元件。在每对相邻天线单元之间瓦状物被紧固到基底上。该瓦状物包括人造磁性层AML单元阵列。每个AML单元都包括具有第一表面和第二表面的环形介电层、耦合第一表面的电容介电层、邻近于第二表面设置的传导迹线对以及穿过环形介电层但不穿过电容介电层的一组至少四个传导通道。每个传导通道互相间隔开并耦合一个传导迹线对。然后电容介电层容性地耦合AML单元到至少一个接地平面元件上,例如通过与其中一个天线单元进行传送或接收来产生其接地平面元件中的表面波。
根据本发明的另一实施例提供了一种阵列装置,其包括用于在一频率上无线传送RF能量的多个装置、用于抑制无线传送RF能量的多个装置之间的互耦合的多个装置以及传导器件。用于无线传送RF能量的器件以互相隔开的关系形成阵列。每个用于抑制互耦合的器件设置于邻近的用于无线传送RF能量的多个装置之间,并且每个用于抑制互耦合的器件都包括至少一个环形开口谐振器。传导器件用于将多个用于抑制互耦合的器件中的每一个互相进行电耦合。另外,在该阵列装置中,传导器件与每个用于抑制互耦合的器件设置于共同接地平面内。在一个实施例中,用于在某一频率上无线传送RF能量的装置包括天线单元的辐射元件,并且用于抑制互耦合的器件包括至少一个AML单元。
不同实施例和实现方式的更具体的细节将与下文中详细描述。
附图说明
结合附图阅读下文中的具体实施方式会使本发明的上述以及其它方面变得更加明显,其中:
图1是收发器耦合到天线阵列的功能块示意图。
图2是用于构造根据本发明的一个实施例的天线阵列的测试装置的示意图。
图3是根据本发明的一个实施例的人造磁性层单元的透视图,该人造磁性层单元设置于如图2所示的阵列中的天线单元之间。
图4是显示了根据本发明的一个实施例的AML单元的瓦状物的示意图,该AML单元沿接地平面设置于天线阵列中的天线单元之间。
图5是频率(水平向)相对信号水平(dB)的现有技术图表,显示了当PBG材料使用在天线单元之间的接地平面中时,天线单元之间的互耦合。
图6是与图5相似的图表,但显示了根据本发明的一个实施例的天线单元之间互耦合,该天线单元之间具有五组AML单元。
具体实施方式
本领域所需要的是这样一种装置——其用于安排天线元件或天线单元的阵列以控制在某些频率上的天线单元之间的互耦合,这些频率特别地包括蜂窝通信频率,例如1920至2170MHz的UMTS频带。优选地,这样的解决方法能够使小型设计成为可能——该设计不依靠天线单元之间的物理间距来控制互耦合。
图1显示了设备10的相应功能块的示意图,所描述的发明可以有利地设置于例如基地收发器站或移动站内。收发器12按访问存储器16的处理器14的控制而处理输入及输出信号。这些部件12,14,16共同编码和解码、扩码和解扩、加密/解密、复用/去复用以及调制/解调那些输入及输出信号。存储器或多个存储器16可以是适用于当地技术环境的任何类型,并且可以使用任何适合的数据存储技术来实现,例如基于半导体的存储设备、磁性存储设备及系统、光学存储设备及系统、固定存储器以及可移动存储器。数据处理器14可以是适用于当地技术环境的任何类型,并且可以包括一个或多个普通用途的电脑、特殊用途的电脑、微处理器、数字信号处理器(DSP)以及基于多核心处理器架构的处理器等无限制的实例。
放大器18施加增益于上行或下行的信号,并且可耦合到发送/接收开关或双向滤波器上以使同向双工信号传播成为可能。这些信号通过天线阵列20来传送和接收,该天线阵列20包括多个天线单元22(示出两个)和位于天线单元22之间的至少一个人造磁性层(AML)单元24(示出流个AML单元)。每个天线单元22都包括辐射元件26和用间隔物30相互间隔开的接地平面元件28,该间隔物可以是如图所示的垂直定位的支柱,或者是具有确定的并且经工程设计的厚度的绝缘材料层。每个辐射元件28耦合到收发器上以使能各个天线单元22的选择和波束成形,以用于不同频率上的传送或接收。AML单元24与接地平面元件26共面并与其电耦合,以在功能上形成整个天线阵列20中的单位接地平面32。正如下文中所描述的,AML单元24的运转将破坏邻近单元22之间的互耦合,由于接地平面中的TE-模式(横向电场)及TM-模式(横向磁场)表面波传播,在已知的设计中会出现这种互耦合。
于此描述的本发明的实施例提供了数个独特的优势。特别地,降低了不同单元22或辐射元件28之间的宽带的互耦合,例如在2GHz范围,当天线单元22/辐射元件28相对AML单元26针对该频率或任意所需频率范围进行优化配置时,使用AML单元24。图6显示了当使用(如图1所示)加入AML单元24的连续接地平面32时,两个辐射元件之间的互耦合的测量值。天线间距在2GHz条件下接近0.7λ0自由空间波长)。
虽然已知的用于在微波及毫米波频率降低互耦合的解决方案没有使用人造高阻抗表面来扩展天线辐射器间的间距,但于此公开的本发明的实施例采用相邻天线单元22之间的AML单元24来阻止沿接地平面32的电磁能量传播,该电磁能量传播会产生辐射元件28之间的互耦合。在操作中,磁场通过辐射元件28而引入AML单元24,其感应产生AML单元24和单个接地平面32的金属部件中的电流。AML单元24的几何形状选择成使得AML单元24中全部或基本上全部被感应的磁场部件与该AML单元24强烈地互相作用。在已知的光子带隙(PBG)表面解决方案中,仅切向场能够有效地激励那些PBG结构。
图2是测试装置的示意图,根据本发明其可用于优化天线阵列,作为一不受限的实例,其用于在UMTS频率范围使用。根据本发明实施例的天线阵列20配置成类似于图2中的测试装置。如上文描述的,多个天线单元22(示出九个)以间隔关系配置于连续接地平面32上,其中每个天线单元22包括辐射元件26和接地平面元件28。接地平面元件28可以形成连续接地平面的一部分,或者与分离的连续接地平面电接触配置。在测试装置中,各个天线单元22在它们的接地平面28处安装在刚性基底34上,并且多个瓦状物36相对于接地平面32相似地配置在天线元件22之间。每个瓦状物36由横向排列的多个AML单元24制成,以形成平放在相邻天线单元22之间的AML单元阵列。瓦状物安装成大致与接地平面元件28共面,以使得瓦状物36和各个天线单元22的接地平面元件28共同形成接地平面32。在如图2所示的测试装置中,瓦状物36通过与基底的磁耦合被保持在适当位置。磁耦合也可用于运转中的天线阵列20,用来帮助从瓦状物36和天线单元22的零件中就地制造出适合特殊频带的阵列。虽然在测试装置中使用导电带将接地平面28耦合到瓦状物36上,特制导电桥也可采用在运转的天线阵列20中用来形成电接地耦合。本发明实施例的应用并不禁止天线单元22的紧密横向间隔,其间隔甚至在一半波长之内,以使小型物理空间之内的宽频天线阵列成为可能。
图3显示了AML单元24的构造,其形成瓦状物36。注意瓦状物36可以由AML单元的行与列整个地形成,或者作为替换也可以具有限定用于在传导边界内接受AML单元的间隔,该传导边界可以是例如耦合个体天线单元22的接地平面元件28的框架(如通过上文所述的桥接)。AML单元24是多层装置,其起人造磁性材料的作用,并且包括第一介电层,称为环形介电层38;第二介电层,称为电容介电层40,其配置成与环形介电层38的一个主表面相对;以及位于两者之间的潜在的粘接层42。介电层38,40的两者之一或全部可由任何不同金属氧化物、特氟纶或其他本领域已知的电介质材料制成。对于层38,40的电介质材料的选择将确定粘接层42是否必需或有益,以及确定粘接层42的材料类型。当配置于天线阵列中时,电容介电层40的下主表面与天线阵列20的接地平面电接触,因此当能量沿接地平面传播时,电容介电层40上形成电容。
环形介电层38构造形成成对的环形开口谐振器(图3示出两个环形开口谐振器),其中一对中的每个谐振器与该对的另外一个谐振器垂直。如图3所示,四个导电通道46穿过环形介电层38并通过设置于环形介电层38的主表面上的传导带44或者绳互相耦合,环形介电层38相对电容介电层40放置。每对通道46与其传导带形成环形开口谐振器。由于通道46垂直于整个阵列的接地平面,环形谐振器回路也垂直于接地平面放置。磁场结合沿接地平面传播的能量在每对环形开口谐振器中感应出电流,由于环形谐振器是裂开的(在邻近粘接层42的区域),防止了该电流的流动。环的裂开极大地增大其谐振频率,虽然图中显示了直线的传导带44,但也可以使用其它图案来形成裂环,如耶路撒冷十字形或希腊十字形。虽然衬垫(pads)仅在图3中沿传导带44处显示,但传导衬垫也可设置在传导带的相对端,当通道46被涂上而不是被充满传导材料时特别有益。
虽然图3显示了两个环形开口谐振器,该示例通过增加更多的层与通道可以延伸至四对、六对或者任意对环形开口谐振器。例如四个额外的传导通道46可以设置在图3所示的结构的角落处,并且通过平放在设置于示出的带46之上的绝缘层(未示出)上的传导带44耦合,以使得示出的环对与额外的环对相互间无电耦合。此技术可延伸至多个环对,并且绝缘层可以或可以不具有最小厚度。
在实行中,通过强加随时间变化的外部磁场,使图3中的结构24的环形开口谐振器中产生感应电流,从而使得结构24变得有磁性,因此结构24作为人造磁性层工作。环的传导通道46中感应产生的电场位于垂直方向,所以磁场位于水平方向,其致使感应磁场的大致全部部件与AML单元结构24的环形介电层38强烈地互相作用。
设计这些环的尺寸以及选择用于AML单元中的层38,40的电介质材料能够使人们设计出对于施加磁场的期望的磁响应,并且这种“人造”磁响应能简单地制成比与自然磁体、例如在低微波频率上(如UMTS频带)的铁类金属相关的磁场大得多,。自然磁性材料中发现的磁响应是人造磁性材料理论上可能达到的一小部分子集。例如,人造电响应在带比波长小得多的间隔的金属线网格中可被感应。人造磁性材料,也被称为超材料,可以设计成用于磁场,其比那些在自然磁性材料中发现的要好得多。
在天线领域,自然磁性材料在微波状态下会失去它们显著的磁性特征或者变得损耗很大。在本发明的实施例中通过从非磁性成分中设计出AML单元24而实现期望的磁性特征。通过设计AML单元24从期望的射频RF场(如UMTS频带,约1920-2170MHz)中产生足够的磁场,一个辐射元件26的近场可被重新分配,以防止与来自附近的辐射元件26的波瓣的互耦合。在几乎所有的场合,由于与非邻近辐射元件26间距的增大很大程度地减轻了耦合,因此仅邻近的辐射元件26涉及到互耦合。因为AML单元24中的针对辐射元件26处指定波长的感应磁场被设计成远强于在典型自然磁性材料中发现的,并由于AML单元24降低了表面波沿接地平面的传播,且通过装置而非简单的依波长而定的间隔造成的衰减来抑制相邻天线单元22之间的互耦合,所以天线单元22的辐射效率被提高。
本发明的一个重要方面在于AML单元24和接地平面28元件形成一致的、单个的接地平面32。更宽阔的接地平面32,且并不仅是单独天线单元22的接地平面元件28,与运转的辐射元件26一起工作以发射RF能量。假如仅单个单元22的接地平面元件28与辐射元件26一起工作来传送RF波,那么由于相邻天线单元22之间的表面波,将不会产生互耦合,因为更宽阔的接地平面32不会传播能量。然而,具有共同接地平面32的天线阵列20会变得更有效,不管单个天线单元22是否包括它们自身的成为共同接地平面32中一部分的接地平面元件28。当多个AML单元24设置于相邻天线单元22之间时,每个AML单元24作为来自一个辐射元件26的RF能量的扩散器,否则其会传播和结合其它辐射元件26。
在测试如图2所示的装置中,发明人发现如图3所示位于天线单元22之间的一组至少五个AML单元会导致相邻天线单元22之间的从-30dB到-37dB的互耦合。在测试阵列中,天线单元设置于三个圆柱内,每个圆柱包含三个天线单元22,并且五个AML单元设置于邻近圆柱的相邻天线单元22之间。通过在瓦状物36上设置AML单元24阵列,在不需要针对特殊频率设计特别的AML单元24的情况下,不同的天线阵列20可以从不用定制的部件或者瓦状物36及天线单元22制成以用于特殊频带,因为多余的AML单元24(超出降低耦合的递减回报的一些点)只是剩余物,并且其运转用于进一步降低阵列的辐射元件26之间的互耦合。
图4显示了由不用定制的部件制成的此天线阵列可能的设置。可采用不同于图2中所示的基底(未示出)来利用磁性把部件紧固就位。备选地,也可采用螺丝、粘合剂或其它更持久的粘接方案来将部件互相定位。此基底用作其上建造有天线阵列的结构,并且不需要在功能上与互相就位的保持部件分离。多个天线单元22配置于该基底的表面上。在每对邻近的天线单元之间22放置AML单元24的瓦状物36,其中瓦状物36上的每个黑圈表示一个AML单元24。优选地,瓦状物36在每一行包括至少五个AML单元,且在每一列包括至少五个AML单元,以使得设置一个瓦状物36能在UMTS频带有效地降低互耦合至-30dB以下的级别。假如全部天线单元之间22的整个空间没有被瓦状物36填满,额外的接地平面填充板48可以设置用来填满缺口。天线单元22的每个瓦状物36、接地平面填充板48以及接地元件28位于大致同一平面内并且互相成电耦合以形成连续的且小型的接地平面32,天线单元22的任何单个辐射元件26都可与该接地平面32共同用来传送和接收RF能量。如上所述,这些接地平面元件之间的电耦合可以通过导电带,或者优选地通过横跨邻近瓦状物/板/接地元件之间的横向缺口的、为此目的而制造的传导桥。
图3中的多个单元可由单个工艺制程具有恒定厚度用于介电层38,然后切割成为单个的AML单元24用于和其它AML单元24一起安装到瓦状物36上。在一个实施例中,AML单元24的厚度h约为2mm。针对2GHz范围,介电层40约为0.5mm,环形介电层38约为1.6mm,且粘接层42约为0.04mm,总厚度约为2.14mm。(包括用于传导带44的一些最小限度的额外厚度以及任何额外的在其之上的保护层)。从此基准线开始,厚度h的刻度比例与频率几乎呈线性关系,另外需要说明的事实是粘接层42和传导带44的厚度不需要按比例计算。例如,针对1GHz来按比例计算上述的尺寸,会得到约为1.0mm的电容介电层40和约为3.2mm的环形介电层38,总厚度为4.24mm。通过相似的外推法能得到针对4GHz范围的总厚度约为1.09mm。AML单元24的横向尺寸也能针对不同频带进行调整(如改变环形开口谐振器的间距)。对于中心频率为2GHz,AML单元24测量值约为9mm平方(具体地,测试结果为8.8mm)。
能够看出本发明的示范性实施例在用于采用智能适应天线的扫描天线阵列时具有优势。智能适应天线用反馈机制来波束成形以适应当地的RF环境。AML单元24的瓦状物36能嵌入天线单元22之间以形成例如图1和图4中显示的天线阵列20。用于UMTS频带(1920-2170MHz)的有利的天线阵列20包括设置成8×4栅格的32个天线单元,且天线单元之间全部的横向间隔都填充AML单元的瓦状物36,每个瓦状物承载至少5x五个AML单元,其中至少一个瓦状物36位于每个邻近单元对22之间。天线单元22之间的间距不需要被限制在依据预期波长的最小距离,因此整个天线阵列20可能小于现有技术中在至少半波长的物理间距下所制成的天线阵列。天线单元22可包括双重极化的UMTS天线元件,并且在带有双重斜极化天线时特别有益。天线极化发散性对于波束成形变得更加重要。双重斜极化天线减少了在波束成形阵列中所需天线的数量,并且典型地显示出对称的水平及垂直的宽度为65-75度的波束。
图5是显示了经测量的天线单元22之间的输入匹配和互耦合的图表,使用了类似于图2和图4中的配置,但具有传统的所有天线单元共有的接地平面,该图表显示沿水平轴的频率和沿垂直方向的单位为dB的互耦合。接近2.0GHz区域与无线电话通信相关。两个测试天线端口的输入匹配显示为S11和S77曲线,其非常相似。在约2.0GHz处,S71的互耦合大约为-24dB。测试中的天线间隔为0.7λ0(其中λ0是自由空间波长)。测量出的互耦合的结果反映了大多数现代基地中的天线阵列的真实性能水平。
图6是与图5类似的图表,但显示了当一组五个AML单元24沿接地平面设置于邻近的天线单元22之间时的输入匹配和互耦合。注意图5和图6中垂直比例的不同;图6中的数据显示了在UMTS频带1920-2170MHz下,S71的互耦合为-30dB至-37dB。比较图5与图6能显示出,与使用典型的连续接地平面相比,通过设置AML单元24于天线单元22之间,互耦合有了相当剧烈的降低。
如果AML瓦状物36设置于阵列的列和/或行之间,任何天线阵列20(如基地天线)可以被制造得更小。即使元件26物理上互相靠近,降低了的互耦合也帮助保持天线的匹配。当AML单元24优选地选择成/设计成具有大于一(more than unity)的渗透率时,每个AML单元24可变得比现有技术的光子带隙单元更小,因此能够实现比现有技术更小,但在互耦合方面具有同样性能的天线阵列20。
虽然上文以特别的实施例来描述,但对于本领域的技术人员来说,可能出现对本发明教学的许多更改和不同变化。因而,虽然本发明特别地关于一个或多个实施例来说明,本领域的技术人员应该了解在不脱离本发明于上文所述的范围,或者不脱离权利要求的情况下,可以对本发明进行某些更改或变化。

Claims (8)

1.一种天线阵列,其包括:
设置在阵列中且互相间隔开的多个天线单元;每个所述天线单元都包括辐射元件和接地平面元件;以及
设置于所述天线单元的至少两个相邻的天线单元之间的至少一个人造磁性层AML单元,所述AML单元包括耦合到环形介电层的电容介电层和容性地耦合到所述相邻天线单元的所述接地平面元件上的至少一对环形开口谐振器,使得当能量沿接地平面元件传播时,从接地平面元件在所述电容介电层上形成电容,
其中所述至少一对环形开口谐振器都包括四个穿过所述环形介电层并通过一对传导带互相耦合的传导通道,所述一对传导带沿所述环形介电层的的表面设置,所述表面与面向所述电容介电层的表面相对,
其特征在于,一对中的每个所述环形开口谐振器都互相垂直且与所述接地平面元件垂直。
2.根据权利要求1所述的天线阵列,其特征在于,所述AML单元的阵列设置于至少两个相邻天线单元之间。
3.根据权利要求2所述的天线阵列,其特征在于,所述AML单元的阵列设置于瓦状物中,所述瓦状物可移除地耦合到所述天线阵列,并且所述AML单元的阵列包括至少五个AML单元。
4.根据权利要求3所述的天线阵列,其特征在于,AML单元的阵列设置于多个所述天线单元的每个相邻对之间。
5.根据权利要求1所述的天线阵列,其特征在于,所述AML单元与所述相邻天线单元的所述接地平面元件基本上共面。
6.一种制造天线阵列的方法,包括:
提供基底;
紧固多个天线单元到所述基底上,每个所述天线单元都互相间隔开,且每个所述天线单元都包括与辐射元件间隔开的接地平面元件;
在每对相邻天线单元之间把瓦状物紧固到所述基底上,其中所述瓦状物包括人造磁性层AML单元的阵列,每个所述AML单元都包括具有第一表面和第二表面的环形介电层、耦合所述第一表面的电容介电层、由在所述第二表面上设置的传导迹线对形成的至少一对环形开口谐振器,以及穿过所述环形介电层但不穿过所述电容介电层的一组至少四个传导通道,每个所述传导通道互相间隔开并耦合所述传导迹线对;以及
把所述AML单元容性地耦合到至少一个接地平面元件上,使得当能量沿接地平面元件传播时,从接地平面元件在所述电容介电层上形成电容,
其特征在于,所述方法进一步包括将一对中的每个所述环形开口谐振器布置为互相垂直且与所述接地平面元件垂直。
7.根据权利要求6所述的方法,其特征在于,每个所述瓦状物都包括沿直线设置于相邻天线单元之间的至少五个AML单元。
8.根据权利要求7所述的方法,其特征在于,所述瓦状物与所述接地平面元件大致位于同一平面内。
CN2007800296795A 2006-06-13 2007-06-11 使用人造磁性层的天线阵列和单元 Expired - Fee Related CN101501934B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/452,752 2006-06-13
US11/452,752 US7471247B2 (en) 2006-06-13 2006-06-13 Antenna array and unit cell using an artificial magnetic layer
PCT/IB2007/001559 WO2007144738A1 (en) 2006-06-13 2007-06-11 Antenna array and unit cell using an artificial magnetic layer

Publications (2)

Publication Number Publication Date
CN101501934A CN101501934A (zh) 2009-08-05
CN101501934B true CN101501934B (zh) 2012-12-12

Family

ID=38821363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800296795A Expired - Fee Related CN101501934B (zh) 2006-06-13 2007-06-11 使用人造磁性层的天线阵列和单元

Country Status (4)

Country Link
US (1) US7471247B2 (zh)
EP (1) EP2036165B1 (zh)
CN (1) CN101501934B (zh)
WO (1) WO2007144738A1 (zh)

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741933B2 (en) * 2006-06-30 2010-06-22 The Charles Stark Draper Laboratory, Inc. Electromagnetic composite metamaterial
CN101573833B (zh) * 2006-12-22 2013-07-10 诺基亚公司 包括天线元件和金属部分的装置
US8009115B2 (en) * 2007-02-16 2011-08-30 The Ohio State University Research Foundation Reconfigurable antenna using addressable conductive particles
JP4821722B2 (ja) * 2007-07-09 2011-11-24 ソニー株式会社 アンテナ装置
US7929147B1 (en) * 2008-05-31 2011-04-19 Hrl Laboratories, Llc Method and system for determining an optimized artificial impedance surface
US7911407B1 (en) * 2008-06-12 2011-03-22 Hrl Laboratories, Llc Method for designing artificial surface impedance structures characterized by an impedance tensor with complex components
US7773033B2 (en) * 2008-09-30 2010-08-10 Raytheon Company Multilayer metamaterial isolator
WO2010093475A1 (en) * 2009-02-13 2010-08-19 Carr William N Multiple-cavity antenna
US8384599B2 (en) * 2009-02-13 2013-02-26 William N. Carr Multiple-cavity antenna
US8284104B2 (en) * 2009-02-13 2012-10-09 Carr William N Multiple-resonator antenna
GB2469075A (en) * 2009-03-31 2010-10-06 Univ Manchester Wide band array antenna
GB0921400D0 (en) * 2009-12-07 2010-01-20 Isis Innovation Flux guiding structure
JP5162677B2 (ja) * 2010-02-26 2013-03-13 株式会社エヌ・ティ・ティ・ドコモ マッシュルーム構造を有する装置
US9203158B2 (en) * 2010-04-11 2015-12-01 Broadcom Corporation Programmable antenna having metal inclusions and bidirectional coupling circuits
US20120268346A1 (en) * 2011-04-25 2012-10-25 Lockheed Martin Corporation Biologically inspired beam forming small antenna arrays
JP5931851B2 (ja) * 2011-04-28 2016-06-08 レノボ・イノベーションズ・リミテッド(香港) ノイズ抑制構造を有する回路基板
CN103620870B (zh) * 2011-06-23 2017-02-15 加利福尼亚大学董事会 小型电气垂直式裂环谐振器天线
JP5410559B2 (ja) * 2012-02-29 2014-02-05 株式会社Nttドコモ リフレクトアレー及び設計方法
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9030360B2 (en) 2012-07-26 2015-05-12 Raytheon Company Electromagnetic band gap structure for enhanced scanning performance in phased array apertures
US8942264B2 (en) * 2012-10-26 2015-01-27 Deere & Company Receiver and method for receiving a composite signal
US10312596B2 (en) 2013-01-17 2019-06-04 Hrl Laboratories, Llc Dual-polarization, circularly-polarized, surface-wave-waveguide, artificial-impedance-surface antenna
KR102018049B1 (ko) * 2013-05-07 2019-09-04 한국전자통신연구원 무선 통신용 반사배열 안테나 및 그 구조물
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10983194B1 (en) 2014-06-12 2021-04-20 Hrl Laboratories, Llc Metasurfaces for improving co-site isolation for electronic warfare applications
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
KR102252382B1 (ko) * 2014-07-22 2021-05-14 엘지이노텍 주식회사 레이더 장치
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9385770B2 (en) * 2014-09-25 2016-07-05 Lothar Benedikt Moeller Arrayed antenna for coherent detection of millimeterwave and terahertz radiation
KR102175750B1 (ko) * 2014-10-29 2020-11-06 삼성전자주식회사 안테나 장치 및 이를 구비하는 전자 장치
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9899744B1 (en) * 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10141771B1 (en) 2015-12-24 2018-11-27 Energous Corporation Near field transmitters with contact points for wireless power charging
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10027159B2 (en) * 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
EP3491696B8 (en) * 2016-07-29 2022-11-16 John Mezzalingua Associates LLC Low profile telecommunications antenna
CN106410421B (zh) * 2016-10-26 2022-05-17 东南大学 一种极化受控的空间波转表面波功能器件
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
CN110235337A (zh) 2016-12-12 2019-09-13 艾诺格思公司 选择性地激活近场充电垫的天线区域以最大化所传递无线功率的方法
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10396428B2 (en) * 2017-05-03 2019-08-27 Palo Alto Research Center Incorporated Beam shaping antenna for laminated glass
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
EP3631894B1 (en) 2017-06-20 2022-03-02 Viasat, Inc. Antenna array radiation shielding
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10978780B2 (en) * 2018-01-24 2021-04-13 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus and antenna module
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
JP7181024B2 (ja) * 2018-08-16 2022-11-30 株式会社デンソーテン アンテナ装置
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
KR20210117283A (ko) 2019-01-28 2021-09-28 에너저스 코포레이션 무선 전력 전송을 위한 소형 안테나에 대한 시스템들 및 방법들
CN113661660B (zh) 2019-02-06 2023-01-24 艾诺格思公司 估计最佳相位的方法、无线电力发射设备及存储介质
US11581954B1 (en) * 2019-07-09 2023-02-14 Hrl Laboratories, Llc Array of VLF scatterers for control of electromagnetic wave propagation on the ocean surface
CN111092281B (zh) * 2019-09-10 2021-02-02 南京邮电大学 一种基于人工磁导体的四阶耦合谐振器滤波器
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021055900A1 (en) 2019-09-20 2021-03-25 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation SYSTEMS AND METHODS FOR PROTECTING WIRELESS POWER RECEIVERS USING MULTIPLE RECTIFIER AND ESTABLISHING IN-BAND COMMUNICATIONS USING MULTIPLE RECTIFIER
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN112563761B (zh) * 2019-09-25 2022-07-22 上海华为技术有限公司 一种天线装置及信号处理方法
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corp CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
USD937777S1 (en) 2020-06-01 2021-12-07 Sergey Sheleg Double-negative metamaterial unit cell
CN113690590B (zh) * 2021-08-23 2023-07-18 安徽大学 一种多入多出稀疏化天线
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670932B1 (en) * 2000-11-01 2003-12-30 E-Tenna Corporation Multi-resonant, high-impedance surfaces containing loaded-loop frequency selective surfaces

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512494B1 (en) * 2000-10-04 2003-01-28 E-Tenna Corporation Multi-resonant, high-impedance electromagnetic surfaces
US20030142036A1 (en) 2001-02-08 2003-07-31 Wilhelm Michael John Multiband or broadband frequency selective surface
US7071889B2 (en) * 2001-08-06 2006-07-04 Actiontec Electronics, Inc. Low frequency enhanced frequency selective surface technology and applications
US6806843B2 (en) * 2002-07-11 2004-10-19 Harris Corporation Antenna system with active spatial filtering surface
US6954177B2 (en) * 2002-11-07 2005-10-11 M/A-Com, Inc. Microstrip antenna array with periodic filters for enhanced performance
WO2005031911A2 (en) * 2003-08-01 2005-04-07 The Penn State Research Foundation High-selectivity electromagnetic bandgap device and antenna system
JP2005094440A (ja) * 2003-09-18 2005-04-07 Tdk Corp アンテナ装置およびレーダ装置
EP1771756B1 (en) * 2004-07-23 2015-05-06 The Regents of The University of California Metamaterials
JP4557169B2 (ja) * 2005-10-03 2010-10-06 株式会社デンソー アンテナ
US7679577B2 (en) * 2006-06-09 2010-03-16 Sony Ericsson Mobile Communications Ab Use of AMC materials in relation to antennas of a portable communication device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670932B1 (en) * 2000-11-01 2003-12-30 E-Tenna Corporation Multi-resonant, high-impedance surfaces containing loaded-loop frequency selective surfaces

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Ermutlu,M.等.Numerical Simulations of Patch Antennas with Stacked Split-Ring Resonators as Artificial Magnetic Substrates.《Antenna Technology:Amall Antennas and Novel Metamaterials》.2005,正文395-396页. *
Ermutlu,M.等.Numerical Simulations of Patch Antennas with Stacked Split-Ring Resonators as Artificial Magnetic Substrates.《Antenna Technology:Small Antennas and Novel Metamaterials》.2005,正文395-396页.
Fleckenstein,Andreas等.Left-Handed Metamaterials based on Split Ring Resonators for Microstrip Applications.《Microwave conference》.2007,正文1119页以及附图1和2.
Karkkainen,M.
Karkkainen,M.;Ermutlu,M.等.Numerical Simulations of Patch Antennas with Stacked Split-Ring Resonators as Artificial Magnetic Substrates.《Antenna Technology:Small Antennas and Novel Metamaterials》.2005,正文395-396页. *
SchuBler,Martin
SchuBler,Martin;Fleckenstein,Andreas等.Left-Handed Metamaterials based on Split Ring Resonators for Microstrip Applications.《Microwave conference》.2007,正文1119页以及附图1和2. *

Also Published As

Publication number Publication date
EP2036165A1 (en) 2009-03-18
EP2036165B1 (en) 2012-12-05
WO2007144738A1 (en) 2007-12-21
CN101501934A (zh) 2009-08-05
EP2036165A4 (en) 2011-04-13
US7471247B2 (en) 2008-12-30
US20070285316A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
CN101501934B (zh) 使用人造磁性层的天线阵列和单元
KR102063222B1 (ko) 안테나 어레이에서의 상호 결합을 감소시키기 위한 장치 및 방법
Rahayu et al. Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications
WO2018076491A1 (zh) 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
US7636063B2 (en) Compact broadband patch antenna
CN109390699A (zh) 一种基于可重构寄生单元的小型波束可控贴片天线
CN102414914A (zh) 平衡超材料天线装置
EP1406346B1 (en) Stripline parallel-series-fed proximity-coupled cavity backed patch antenna array
KR101727488B1 (ko) 대용량 다중화 통신을 위한 mimo 배열 안테나
Yang et al. Self-decoupled dual-band dual-polarized aperture-shared antenna array
CN109494460A (zh) 一种具有高隔离度的双极化/圆极化宽带高密度阵列天线
CN114824779B (zh) 一种单层低剖面宽带双极化贴片天线
CN110176668B (zh) 天线单元和电子设备
CN114256614B (zh) 一种应用于毫米波通信系统的超宽带平面天线阵列
Abdulhameed et al. Controlling the radiation pattern of patch antenna using switchable EBG
Huang et al. A wide-band dual-polarized frequency-reconfigurable slot-ring antenna element using a diagonal feeding method for array design
WO2019238106A1 (en) Reconfigurable radial waveguides with switchable artificial magnetic conductors
CN108767449B (zh) 基于amc结构的多制式融合天线
CN113937465B (zh) 一种双极化电磁透明天线及其实现双频散射抑制的方法
CN210668686U (zh) 新型单过孔探针馈电isgw圆极化天线
CN116868442A (zh) 包括耦合谐振结构层的低剖面设备
CN110380199A (zh) 基于微带栅格和贴片的共口径双频带阵列天线
CN114846695A (zh) 双极化连接天线阵列
Yang et al. Wideband Dual-Polarized Metasurface Antenna for 5G Millimeter-Wave Applications Using Characteristic Mode Analysis
KR20140103762A (ko) 집적도 증가와 간섭 저감을 위한, 메타재질 0차 공진형 전기장 분포를 갖는 소형 mimo 안테나와 그의 다중 배치 구조

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Espoo, Finland

Patentee after: Nokia Siemens Networks OY

Address before: Espoo, Finland

Patentee before: Nokia Siemens Networks OY

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20180611