CN101501879B - 用于制造多层物体的方法 - Google Patents

用于制造多层物体的方法 Download PDF

Info

Publication number
CN101501879B
CN101501879B CN2007800209706A CN200780020970A CN101501879B CN 101501879 B CN101501879 B CN 101501879B CN 2007800209706 A CN2007800209706 A CN 2007800209706A CN 200780020970 A CN200780020970 A CN 200780020970A CN 101501879 B CN101501879 B CN 101501879B
Authority
CN
China
Prior art keywords
layer
ground floor
surface tension
tension force
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800209706A
Other languages
English (en)
Other versions
CN101501879A (zh
Inventor
U·申德勒
C·布拉贝克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leonhard Kurz Stiftung and Co KG
Konarka Technologies Inc
Original Assignee
Leonhard Kurz Stiftung and Co KG
Konarka Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leonhard Kurz Stiftung and Co KG, Konarka Technologies Inc filed Critical Leonhard Kurz Stiftung and Co KG
Publication of CN101501879A publication Critical patent/CN101501879A/zh
Application granted granted Critical
Publication of CN101501879B publication Critical patent/CN101501879B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

本发明涉及一种用于制造多层物体(10)的方法,所述多层物体包括具有不同表面张力和表面能量的层介质。其中将由具有第一表面张力的第一液态介质组成的第一层(16)施加到一由柔性薄膜形成的载体(12)上。其中在第一层干燥之后,将由具有第二表面张力的第二液态介质组成的第二层(18)施加在第一层(16)上。干燥的第一层(16)的表面能量小于用于第二层(18)的第二液态介质的第二表面张力。在施加第二层(18)之前,将一扩散层(20)施加到干燥的第一层(16)上。

Description

用于制造多层物体的方法
技术领域
本发明涉及一种用于制造多层物体的制造方法,所述多层物体包括具有不同表面张力的层介质。
背景技术
由于多层物体的层介质的不同的表面张力和表面能量,可包括漆、溶液等等的层介质的应用可能会出现问题。如果多层物体的层介质彼此具有显著不同的表面张力和表面能量,上述问题涉及润湿问题。由均质层组成的多层物体具有理想的性能,但是迄今为止只能在巨大困难的情况下制造。上述性能可以是物理性能如电气或电子性能。
由DE103 06 357A1已知一种多层涂层、例如多层涂漆层的制造方法,其中将一随后的涂层材料施加到第一涂层上并且使其硬化。在此第一涂层以下述方式选择和/或改性和/或所述随后的涂层材料以下述方式选择,即:第二涂层的表面能量和第一涂层的表面能量的商小于或者等于1。
已知的方法特别是用于汽车的大批量油漆,其在很大程度上与制造条件、周围环境和空气湿度无关,并且在极端条件下也可以应用。第一涂层在那里可以通过例如借助底漆改性。
由DE103 92 830 T5已知多层构成的太阳能电池,所述太阳能电池在两个电极如基极和透明电极之间具有一活性层。所述活性层具有第一和第二电荷转移材料。第一电荷转移材料可以是导电的聚合物,第二电荷转移材料可以是有机材料,例如共轭聚合物。
发明内容
本发明的目的在于,提供一种开头所述类型的方法,其中它可以毫无问题地均匀地相互叠置地设置具有不同表面张力和表面能量的各层介质,以形成理想的多层物体。
该目的根据本发明通过以下措施实现,即:将由具有第一表面张力的第一液态介质组成的第一层施加到一由柔性薄膜形成的载体上,并且在第一层干燥之后,将由具有第二表面张力的第二液态介质组成的第二层施加在第一层上,所述第二表面张力大于第一表面张力,在施加第二层之前,将一扩散层施加到干燥的第一层上,其中扩散层是薄金属层或金属引晶,或扩散层具有毛细管作用。
多层物体的第一和第二层还可以是多于两层。
在以下的表1中说明了举例给出的溶液SC(=半导体)和PEDOT/PSS的表面张力,其中表面张力通过DATA PHYSICS公司的“动态接触角a.张力计DCAT21”测量得出。
表1:
  溶液   表面张力(mN/m)
  SC   31.682
  PEDOT/PSS   45.786
在以下的表2中说明了涂覆有SC和PEDOT/PSS的PET的表面能量,其中表面能量由DATA PHYSICS公司的“光学接触角测量装置OCA 20”确定。
表2:
Figure GSB00000520903700021
从表2中可以看出涂覆有SC的PET的表面能量在量值上为26mN/m,涂覆有PEDOT/PSS的PET的表面能量在量值上为48mN/m。相应的液态对于SC具有大约32mN/m的表面张力并且对于PEDOT/PSS具有大约46mN/m的表面张力。如果现在涂覆有PEDOT/PSS的PET薄膜被涂覆上SC,液态的SC介质的扩散将立即发生,也就是说SC在PEDOT/PSS上的润湿是良好的。但如果涂覆有SC的PET薄膜被涂覆上液态的PEDOT/PSS,由于液态PEDOT/PSS的表面张力大于干燥的SC的表面能量,从而PEDOT/PSS在SC上将不会扩散,也就是说PEDOT/PSS在干燥的SC上的润湿是不够的。但是为达到了良好的润湿,根据本发明在干燥的SC层上施加一扩散层。所述扩散层可以是薄的金属层。同样也可能是设置在干燥的第一层上的金属引晶,所述干燥的第一层的表面能量比施加到干燥的第一层上的第二液态介质的表面张力小。
扩散层还可以具有毛细管作用。
薄金属层可以由真空蒸发、通过阴极溅射等等制造。形成扩散层的引晶可以以本身公知的电镀方法制成。
在施加第一层之前,可以将至少一个前置层施加到由柔性薄膜形成的载体上。所述至少一个前置层可以是导电层,其例如形成电器元件如太阳能电池的电极。
第一和第二层可以包括有机半导体介质,如前面提到的SC和PEDOT/PSS。如果所述层包括有机半导体介质,那个根据本发明可以制造例如高分子太阳能电池。
附图说明
其他细节、特征和优点从以下的按本发明制造的多层物体的局部剖开的且不按比例示出的实施例的描述中得出。其中,
图1示出按本发明制造的多层物体的局部剖开的且不按比例示出的剖面图。
具体实施方式
附图1中示出了具有载体12的多层物体10,所述载体由柔性薄膜形成,在该载体上设置至少一个前置层14。在所述至少一个前置层14上施加由第一液态介质组成的第一层16,所述第一液态介质具有第一表面张力。在第一层16干燥之后,将由第二液态介质组成的第二层18施加于第一层16上,所述第二液态介质具有第二表面张力。
干燥的第一层16的表面能量比用于第二层18的第二液态介质的第二表面张力小,从而在施加第二层18之前在干燥的第一层16上设置一扩散层20。扩散层20可以是气相沉积或阴极溅射的薄金属层或者电镀的引晶(Bekeimung)等等。扩散层20可以具有规定的毛细管作用,以便使得通过用于第二层18的液态介质对干燥的第一层16进行可靠地润湿。然后在干燥的第二层18上可以设置薄的金属层22,其中该金属层22如同前置层14一样可以形成高分子太阳能电池的电极。

Claims (4)

1.一种用于制造多层物体(10)的方法,所述多层物体包括具有不同表面张力和表面能量的层介质,其特征在于:
将由具有第一表面张力的第一液态介质组成的第一层(16)施加到一由柔性薄膜形成的载体(12)上,并且在第一层干燥之后,将由具有第二表面张力的第二液态介质组成的第二层(18)施加在第一层(16)上,所述第二表面张力大于第一表面张力,在施加第二层(18)之前,将一扩散层(20)施加到干燥的第一层(16),其中扩散层(20)是薄金属层或金属引晶,或扩散层具有毛细管作用。
2.按照权利要求1所述的方法,其特征在于,在施加第一层(16)之前,将至少一个前置层(14)施加在载体(12)上。
3.按照权利要求1所述的方法,其特征在于,第一层(16)和第二层(18)包括有机半导体介质。
4.按照权利要求1-3之一所述的方法,所述多层物体(10)是高分子太阳能电池。
CN2007800209706A 2006-05-09 2007-05-08 用于制造多层物体的方法 Expired - Fee Related CN101501879B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006021410.2 2006-05-09
DE102006021410A DE102006021410B4 (de) 2006-05-09 2006-05-09 Verfahren zur Herstellung eines Mehrschichtgebildes und Verwendung des Verfahrens
PCT/EP2007/004072 WO2007128575A1 (de) 2006-05-09 2007-05-08 Verfahren zur herstellung eines mehrschichtgebildes

Publications (2)

Publication Number Publication Date
CN101501879A CN101501879A (zh) 2009-08-05
CN101501879B true CN101501879B (zh) 2012-02-01

Family

ID=38461819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800209706A Expired - Fee Related CN101501879B (zh) 2006-05-09 2007-05-08 用于制造多层物体的方法

Country Status (9)

Country Link
US (1) US20090220681A1 (zh)
EP (1) EP2018676B1 (zh)
JP (1) JP5650907B2 (zh)
CN (1) CN101501879B (zh)
AT (1) ATE467913T1 (zh)
DE (2) DE102006021410B4 (zh)
DK (1) DK2018676T3 (zh)
ES (1) ES2346095T3 (zh)
WO (1) WO2007128575A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012105860A1 (de) * 2012-07-02 2015-03-26 Heliatek Gmbh Photoaktives organisches Bauelement mit einer optisch transparenten Elektrode und Verfahren zum Herstellen
DE102015202149B3 (de) 2015-02-06 2016-08-11 Siemens Aktiengesellschaft Elektrischer Energiespeicher mit effizienter Wärmeabfuhr
JP7491863B2 (ja) 2021-03-31 2024-05-28 ニチコン株式会社 電解コンデンサの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044948A2 (en) * 2002-06-22 2004-05-27 Nanosolar, Inc. Photovoltaic devices fabricated by growth from porous template

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2012031A1 (de) * 1970-03-13 1971-09-23 Siemens Ag Verfahren zum Herstellen von aus Chrom oder Molybdän bestehenden Kontaktmetallschichten in Halbleiterbauelementen
DE2540943B2 (de) * 1975-09-13 1978-02-02 W.C. Heraeus Gmbh, 6450 Hanau Kontaktkoerper fuer einen elektrischen steckkontakt
JPS63290733A (ja) * 1987-05-22 1988-11-28 Nippei Toyama Corp 包装用金属化フィルムの加工法
JP2625874B2 (ja) * 1988-05-11 1997-07-02 大日本印刷株式会社 サッシ外装用メタリック化粧シート
JP3769842B2 (ja) * 1996-11-05 2006-04-26 東レ株式会社 金属蒸着フィルム、その製造方法、およびそれを用いたコンデンサ
JP2001305321A (ja) * 2000-04-20 2001-10-31 Toyobo Co Ltd 面光源用反射フィルム
JP2001305313A (ja) * 2000-04-20 2001-10-31 Toyobo Co Ltd 面光源用反射フィルム
JP4604143B2 (ja) * 2001-01-24 2010-12-22 トピー工業株式会社 表面が光輝化処理された金属または樹脂材料およびその光輝化処理方法
DE10306357B4 (de) * 2003-02-15 2006-01-12 Basf Coatings Ag Verfahren zur Herstellung einer Mehrschichtbeschichtung und dessen Verwendung
JP2005019056A (ja) * 2003-06-24 2005-01-20 Toray Ind Inc 複合透明導電性基材とそれを用いたディスプレイ
US7686978B2 (en) * 2003-09-24 2010-03-30 E. I. Du Pont De Nemours And Company Method for the application of active materials onto active surfaces and devices made with such methods
US20050067949A1 (en) * 2003-09-30 2005-03-31 Sriram Natarajan Solvent mixtures for an organic electronic device
WO2005064705A1 (en) * 2003-12-22 2005-07-14 Koninklijke Philips Electronics N.V. Increasing the wettability of polymer solutions to be deposited on hydrophobic ferroelecric polymerb layers
EP1805547A2 (en) * 2004-10-25 2007-07-11 The Regents of the University of California Stacked layer electrode for organic electronic devices
KR100658263B1 (ko) * 2005-09-29 2006-12-14 삼성전자주식회사 적층형 광전변환소자 및 그의 제조방법
US8389174B2 (en) * 2006-01-27 2013-03-05 GM Global Technology Operations LLC Super-hydrophilic nanoporous electrically conductive coatings for PEM fuel cells
FR2935763B1 (fr) * 2008-09-09 2010-10-08 Commissariat Energie Atomique Micropompe pour microfluidique continue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044948A2 (en) * 2002-06-22 2004-05-27 Nanosolar, Inc. Photovoltaic devices fabricated by growth from porous template

Also Published As

Publication number Publication date
US20090220681A1 (en) 2009-09-03
DE102006021410A1 (de) 2007-11-15
ES2346095T3 (es) 2010-10-08
DE502007003744D1 (de) 2010-06-24
DE102006021410B4 (de) 2009-07-16
ATE467913T1 (de) 2010-05-15
CN101501879A (zh) 2009-08-05
EP2018676A1 (de) 2009-01-28
JP5650907B2 (ja) 2015-01-07
WO2007128575A1 (de) 2007-11-15
EP2018676B1 (de) 2010-05-12
DK2018676T3 (da) 2010-09-13
JP2009536110A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
CN1771127B (zh) 挠性高温超阻挡物
CN101853800B (zh) 抗静电处理的工作台
WO2009069086A3 (en) Composite materials including an intrinsically conducting polymer, and methods and devices
CN101764090A (zh) 有机发光显示设备及其制造方法
WO2007130417A3 (en) Barrier coatings for films and structures
US10982064B2 (en) Multilayer barrier films
CN101501879B (zh) 用于制造多层物体的方法
CA2759703C (en) Ionic polymer metal composite capacitor
Chen et al. An extremely rapid dip-coating method for self-assembly of octadecylphosphonic acid and its thermal stability on an aluminum film
JP6787584B2 (ja) 透明導電層積層用フィルム、その製造方法、及び透明導電性フィルム
Say et al. Ultrathin paper microsupercapacitors for electronic skin applications
Araźna et al. Investigation of surface properties of treated ITO substrates for organic light-emitting devices
US20160260544A1 (en) Flexible dielectric structure and method of making same
CN103579503A (zh) 一种利用光交联聚合物对有机电子器件进行薄膜封装的方法
TW201324546A (zh) 附透明導電層之基體及其製造方法
CN101859872A (zh) 一种有机光电子器件的封装对位装置及其封装方法
Fichtner et al. Electron beam cured acrylates as potential planarization layers
US20190157564A1 (en) Method for oled device fabrication using patterned film mask
Kim et al. Design and fabrication of printed electrowetting-on-dielectric device
Jeon et al. Self-Assembled 4-Aminopyridine Monolayer as a Nucleation-Inducing Layer for Transparent Silver Electrodes
US9869780B2 (en) Organic-inorganic composite films and methods of manufacturing the same
KR20180050377A (ko) 가스 배리어 필름, 유기 전자 장치, 유기 전계 발광 장치용 기판, 및 유기 전계 발광 장치
US7537884B2 (en) Method for forming self-synthesizing conductive or conjugated polymer film and application
Youn et al. Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs
Kuo et al. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120201

Termination date: 20180508

CF01 Termination of patent right due to non-payment of annual fee