CN101481220A - 离子束加工光学元件的拼接加工方法 - Google Patents

离子束加工光学元件的拼接加工方法 Download PDF

Info

Publication number
CN101481220A
CN101481220A CNA2009100424309A CN200910042430A CN101481220A CN 101481220 A CN101481220 A CN 101481220A CN A2009100424309 A CNA2009100424309 A CN A2009100424309A CN 200910042430 A CN200910042430 A CN 200910042430A CN 101481220 A CN101481220 A CN 101481220A
Authority
CN
China
Prior art keywords
matrix
processing
error
face shape
process zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100424309A
Other languages
English (en)
Other versions
CN101481220B (zh
Inventor
李圣怡
解旭辉
焦长君
戴一帆
周林
陈善勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN2009100424309A priority Critical patent/CN101481220B/zh
Publication of CN101481220A publication Critical patent/CN101481220A/zh
Application granted granted Critical
Publication of CN101481220B publication Critical patent/CN101481220B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

本发明公开了一种离子束加工光学元件的拼接加工方法,包括以下步骤:首先通过实验获取去除函数,然后利用波面干涉仪获取面形误差函数,对元件的加工区域进行区域划分与数据准备,再确定区域边界并修正面形误差,然后建立模型求解驻留时间,根据求解的驻留时间进行第一次修形加工,对第一次修形加工进行误差辨识,最后根据误差辨识结果视情况重复加工步骤直至满足面形精度要求。本发明的加工方法拓展了现有光学加工系统的加工能力,解决了现有较小光学加工系统加工大口径光学元件的技术难题,可大大节约光学加工系统的制造成本和加工成本。

Description

离子束加工光学元件的拼接加工方法
技术领域
本发明涉及一种离子束加工光学元件的方法,尤其涉及一种离子束加工光学元件的分区域拼接加工方法。
背景技术
随着现代光学系统性能要求的不断提高,光学零件的质量要求也在不断提高,现代光学零件正朝着非球面、轻质薄型、大相对口径等方向发展,同时需对镜面各个频段的误差都进行严格的控制。为了解决特大型镜面的制造和安装等问题,拼接光学系统的发展越来越受到重视,从而异型、轻质以及离轴非球面镜面的加工研究越来越受到重视。同时,现代光学系统零件数量巨大,精度很高,传统的光学加工方法如“小工具磨头”不能够满足要求,需要一种快速高效方法对其进行加工,特别在最后精密修形阶段,才能满足发展要求。
光学镜面离子束加工方法利用离子溅射效应从原子尺度去除材料,利用近高斯束流入射工件形成近高斯分布的去除函数,再基于光学镜面成型原理对镜面误差进行确定性修形,具有高精度、高确定性、非接触无磨损和无边缘效应等特征。但离子束加工材料去除原理决定了整个加工过程必须在真空环境中完成,从而加工系统随着镜面尺寸的增大而增大,构建和使用维护成本亦随之增大,如何通过加工方法的创新来挖掘现有小型设备的加工能力,在国内外尚属空白。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种能解决小光学加工系统加工大口径光学元件技术难题,并可大大节约加工成本的离子束加工光学元件的拼接加工方法。
为解决上述技术问题,本发明提出的技术方案为一种离子束加工光学元件的拼接加工方法,包括以下步骤:
(1)实验获取去除函数:应用修形工艺过程进行去除函数实验获取去除函数,记为R(x,y),以间隔S(一般大于零且小于去除函数宽度的1/6)对去除函数进行离散,用矩阵表示即为R;
(2)获取面形误差函数:通过波面干涉仪测量待加工元件全口径内的面形误差数据,并进行消除趋势、定心和边缘确定处理,测量结果记为E(x,y),以间隔S对面形误差函数进行离散,用矩阵表示即为E;
(3)区域划分与数据准备:将待加工元件的镜面划分成四个加工区域,各加工区域的标志矩阵为M1、M2、M3、M4,各标志矩阵大小与面形误差矩阵E相等,各标志矩阵中对应于其所在加工区域的矩阵元素数值为1,其余矩阵元素的数值为0;各加工区域的面形误差函数分别记为E1(x,y)、E2(x,y)、E3(x,y)、E4(x,y),则各加工区域的面形误差矩阵E1、E2、E3、E4分别为:
E1=M1*E
E2M 2*E                         (1)
E3=M3*E
E4=M4*E
式(1)中“*”表示矩阵对应元素相乘;
由步骤(1)中实验获取的去除函数矩阵R通过旋转变化可得到各加工区域的加工去除函数,其矩阵形式分别记为R1、R2、R3、R4;如果待加工元件镜面具有回转对称轴,且各加工区域沿回转对称轴呈中心对称分布,则:
R1=R
R2=rotz90R
                                             (2)
R3=rotz180(R)
R4=rotz270(R)
式(2)中的rotz表示绕回转对称轴旋转的角度;
(4)区域边界确定和面形误差修正:首先确定各个加工区域间歇运动的边界,分别用矩阵W1、W2、W3、W4表示,各边界矩阵的大小与E相等,各边界矩阵对应于其所在边界点的矩阵元素数值为1,其余矩阵元素的数值为0;根据各个加工区域的去除函数和离子修形加工系统的运动参数(机床间隙运动步长的时间),可得到修形加工中的修正面形误差函数E′(x,y),用矩阵表示即为E′:
E ′ ( x , y ) = E - δ t Σ i = 1 4 W i ⊗ R i - - - ( 3 )
式(3)中,
Figure A200910042430D00052
表示卷积运算,δt为机床间隙运动步长的时间(δt为离子源运动系统沿着y轴运动离散间隔S所需的时间,可以根据系统的加速度和加减速过程计算得到);
(5)模型的成型:拼接加工问题可以描述为有限域的非线性问题,在各个加工区域内为线性问题,而在各加工区域的拼接边缘将产生非线性问题,根据光学镜面成型(CCOS)原理以及材料去除叠加性可建立修正面形误差矩阵E′、去除函数矩阵R及驻留时间矩阵T三者之间的关系模型:
E ′ = Σ i = 1 4 R i ⊗ T i - - - ( 4 )
式(4)中,Ti表示各加工区域的驻留时间矩阵;
(6)驻留时间的解算:根据拼接成型模型的有限域非线性这一特性,对贝叶斯(Bayesian)原理迭代算法中牵涉到去除函数的两处进行修改,修改后求解驻留时间T以及各加工区域的驻留时间矩阵Ti,其迭代计算过程为:
T k + 1 = T k * ( Σ i = 1 4 R i ( - x , - y ) ∫ ∫ Rdxdy ⊗ E i ′ Σ i = 1 4 R i ⊗ T i k ) - - - ( 5 )
T i k = M i * T k
式(5)中,“*”表示矩阵对应元素相乘,k为计算过程中的迭代次数(k=0,1,2……),Ei′为各加工区域的修正面形误差矩阵,可套用式(1)计算;上述式(5)的迭代计算过程中,驻留时间的初始值T0一般取为初始面形误差值,即T0=E′,这样可以保证迭代序列都大于0,满足驻留时间正定性的要求;
(7)第一次修形加工:应用离子束修形工艺进行第一次修形加工,修形加工以前设定刀具的对刀信息为dx=0、dy=0,然后利用步骤(6)中确定的各加工区域的驻留时间分别对各加工区域依次进行加工,直至完成整个待加工元件的加工;
(8)误差辨识:利用波面干涉仪对第一次修形加工后的元件再次进行面形误差测量,测量的数据结果记为E″,通过以下优化方法确定对刀误差dx、dy:
min dx , dy | E ′ - E s - ηE ′ ′ | - - - ( 6 )
式(6)中,η为加工效率(即预测面形误差与加工后实测误差之比),对于离子束修形加工来说一般为70%左右;Es为仿真面形误差,可利用加工中的去除函数和驻留时间并引入对刀误差dx、dy计算,具体的计算式为:
E S = R 1 ⊗ ( T k + 1 ( x - dx , y - dy ) * M 1 ) + R 2 ⊗ ( T k + 1 ( x + dy , y - dx ) * M 2 )  (7)
+ R 3 ⊗ ( T k + 1 ( x + dx , y + dy ) * M 3 ) + R 4 ⊗ ( T k + 1 ( x - dy , y + dx ) * M 4 )
(9)辨识出刀具的对刀误差dx、dy后,重复以上步骤(3)~(8),直至镜面面形质量满足相关精度要求,结束加工。
由于离子束加工具有较高的稳定性和确定性,一般通过本发明加工方法对元件进行一两次迭代加工即可达到要求。
与现有技术相比,本发明的工艺从面形控制模型、加工拼接方法、加工定位参数辨识与补偿等方面入手,解决了光学元件拼接加工工艺的系列关键技术问题,并形成一整套的离子束拼接加工光学镜面的工艺流程。本发明的加工方法不仅拓展了现有光学加工系统的加工能力,而且解决了现有较小光学加工系统加工大口径光学元件的技术难题,可大大节约光学加工系统的制造成本和加工成本,充分挖掘现有光学加工设备的加工潜力,对现有光学加工技术的提升具有重要意义。
附图说明
图1为本发明实施例中的去除函数分布图;
图2为本发明实施例中的初始面形误差E的数据图;
图3为本发明实施例中的区域划分方法示意图,图中红线为修形加工时离子源相对于工件的运动轨迹;
图4为本发明实施例中各个加工区域的边界点分布示意图;
图5为本发明实施例中第一次修形加工后的面形误差E″的数据图;
图6为本发明实施例中考虑去除函数对刀误差后的加工残差仿真图;
图7为本发明实施例中第二次迭代加工后的面形误差数据图。
具体实施方式
实施例:
本实施例的离子束抛光修形工艺在一台离子束抛光设备(可选用KDIFS-500型)上进行,修形工艺参数设置为:工作气体为氩气,工作真空0.8×10-2Pa,离子能量1100eV,束电流25mA。
待抛光的光学元件为直径84mm的普通微晶玻璃。
通过下述方法步骤对上述的微晶玻璃进行离子束抛光:
1、确定去除函数:应用上述离子束修形工艺过程进行去除函数实验,获取的去除函数记为R(x,y),其分布如图1所示,该去除函数的直径d=36mm;以间隔S对去除函数进行离散,用矩阵表示即为R;
2、利用波面干涉仪测量待加工元件的初始面形误差,进行消除趋势、定心和边缘确定处理后,以间隔S对面形误差函数进行离散,记为E,其分布如图2所示;
3、区域划分与数据准备:如图3所示,对镜面加工区域进行划分,各加工区域的标志矩阵为M1、M2、M3和M4,各标志矩阵中对应于其所在加工区域的矩阵元素数值为1,其余矩阵元素的数值为0;各加工区域的面形误差矩阵分别记为E1、E2、E3和E4,各加工区域的加工去除函数矩阵分别记为R1、R2、R3和R4;其中:
E1=M1*E
E2=M2*E
E3=M3*E
E4=M4*E
R1=R
R2=rotz90(R)
R3=rotz180(R)
R4=rotz270(R)
4、区域边界确定和面形误差修正:如图3所示,各个加工区域总是旋转到第一象限进行加工的,加工各个区域时总是沿着其在第一象限中的x向进行连续扫描,沿y向进行间歇运动,各区域带箭头的直线表示离子束加工扫描路径;如图4所示,确定各个加工区域间歇运动的边界,分别用矩阵W1、W2、W3和W4表示,边界矩阵的大小与E相等,各边界矩阵对应于其所在边界点的矩阵元素数值为1,其余的矩阵元素数值为0;根据各个加工区域的去除函数矩阵和机床间隙运动步长的时间δt,可得到修形加工中的修正面形误差矩阵E′:
E ′ = E - δ t Σ i = 1 4 W i ⊗ R i
其中,
Figure A200910042430D0008131219QIETU
表示卷积运算,机床间隙运动步长的时间δt等于0.06s;
5、模型的成型和驻留时间解算:根据CCOS原理以及材料去除叠加性建立E′、R及驻留时间矩阵T三者之间的关系模型:
E ′ = Σ i = 1 4 R i ⊗ T i
其中,Ti是表示各加工区域的驻留时间矩阵;
以E′为驻留时间迭代计算的初始值T0,代入下述驻留时间的迭代计算公式中求解驻留时间矩阵T以及各加工区域的驻留时间矩阵T1、T2、T3和T4,其迭代计算公式为:
T k + 1 = T k * ( Σ i = 1 4 R i ( - x , - y ) ∫ ∫ Rdxdy ⊗ E i ′ Σ i = 1 4 R i ⊗ T i k )
T i k = M i * T k
其中,“*”表示矩阵对应元素相乘,k为计算过程中的迭代次数,本实施例为6次(即k=0,1,2……,6),Ei′为各加工区域的修正面形误差矩阵;
6、第一次修形加工:向上述离子束抛光设备中输入刀具的对刀信息dx=0、dy=0;如图3所示,首先将区域一置于加工区域,利用步骤5中确定的驻留时间T1控制离子源相对于待加工元件的运动,区域一加工完毕后将待加工元件绕其回转对称轴旋转90°后至加工区域二,以此类推加工完整个元件;
7、误差辨识:对第一次加工后的元件再次进行面形误差测量,测量的数据结果记为E″,其分布如图5所示;由于经过第一次拼接加工后在镜面的分界区域出现明显的“十”字谷,此一特征形貌的出现是由于对刀信息dx、dy不准确所致;利用上述加工中的去除函数和驻留时间,在仿真中引入对刀误差dx、dy,计算出仿真面形误差Es,通过优化确定对刀误差dx、dy:
min dx , dy | E ′ - γE s - 0.7 E ′ ′ |
其中的Es通过下式计算:
E S = R 1 ⊗ ( T k + 1 ( x - dx , y - dy ) * M 1 ) + R 2 ⊗ ( T k + 1 ( x + dy , y - dx ) * M 2 )
+ R 3 ⊗ ( T k + 1 ( x + dx , y + dy ) * M 3 ) + R 4 ⊗ ( T k + 1 ( x - dy , y + dx ) * M 4 )
辨识出刀具的对刀误差为dx=—0.5、dy=—0.5;以辨识出的刀具定位误差对第一次加工结果进行仿真,结果如图6所示,与图5的第一次实际修形加工结果相类似;
8、驻留时间的第二次解算:以初始面形误差E″计算个加工区域的面形误差矩阵E1、E2、E3、E4,以E″为驻留时间迭代计算的初始值T0,再次计算出各加工区域的驻留时间T1′、T2′、T3′和T4′,此处的迭代次数k同样为6次;
9、第二次修形加工:输入刀具对刀信息dx=—0.5,dy=—0.5;如图1所示,首先将区域一置于加工区域,利用步骤8中确定的驻留时间T1′控制离子源相对于待加工元件的运动,区域一加工完毕后将待加工元件绕其回转对称轴旋转90°后加工区域二,以此类推加工完整个元件;
10、第二次误差辨识:对第二次迭代加工后的元件进行第三次面形误差测量,测量的数据结果分布如图7所示;由于没有出现明显的“十”字特征形貌,表明对刀误差已经得到纠正,第二次修形加工后面形误差的均方根精度为0.007波长(一个波长为632.8nm),满足本实施例0.01波长的均方根精度要求,结束加工。
以上拼接加工工艺表明:误差补偿后的加工收敛效率与全口径加工收敛效率相一致,本发明所给定的拼接加工工艺与全口径加工工艺一样,能够实现对镜面的精确修形,拼接加工方法拓展了系统的加工能力,解决了小系统加工大工件的问题,并可大大节约加工系统制造和加工成本。

Claims (2)

1、一种离子束加工光学元件的拼接加工方法,包括以下步骤:
(1)实验获取去除函数:应用离子束修形工艺过程进行去除函数实验获取去除函数,记为R(x,y),以间隔S对去除函数进行离散,用矩阵表示即为R;
(2)获取面形误差函数:通过波面干涉仪测量待加工元件全口径内的面形误差数据,并进行消除趋势、定心和边缘确定处理,处理后的结果记为E(x,y),以间隔S对面形误差函数进行离散,用矩阵表示即为E;
(3)区域划分与数据准备:将待加工元件的镜面划分成四个加工区域,各加工区域的标志矩阵为M1、M2、M3、M4,各标志矩阵大小与面形误差矩阵E相等,各标志矩阵中对应于其所在加工区域的矩阵元素数值为1,其余矩阵元素的数值为0,则各加工区域的面形误差矩阵E1、E2、E3、E4分别为:
E1=M1*E
E2=M2*E   (1)
E3=M3*E
E4=M4*E
式(1)中“*”表示矩阵对应元素相乘;
由步骤(1)中获取的R通过绕待加工元件回转对称轴旋转变化得到各加工区域的加工去除函数,其矩阵形式分别记为R1、R2、R3、R4,则:
R1=R
R2=rotz90(R)   (2)
R3=rotz180(R)
R4=rotz270(R)
式(2)中的rotz表示绕回转对称轴旋转的角度;
(4)区域边界确定和面形误差修正:首先确定各个加工区域间歇运动的边界,分别用矩阵W1、W2、W3、W4表示,各边界矩阵的大小与E相等,各边界矩阵对应于其所在边界点的矩阵元素数值为1,其余的矩阵元素数值为0,则修正面形误差矩阵E′为:
E ′ = E - δ t Σ i = 1 4 W i ⊗ R i - - - ( 3 )
式(3)中,
Figure A200910042430C00022
表示卷积运算,δt为离子束修形加工系统中机床间隙运动步长的时间;
(5)模型的成型和驻留时间的解算:根据光学镜面成型原理以及材料去除叠加性建立修正面形误差矩阵E′、去除函数矩阵R及驻留时间矩阵T三者之间的关系模型:
E ′ = Σ i = 1 4 R i ⊗ T i - - - ( 4 )
式(4)中,Ti表示各加工区域的驻留时间矩阵;
根据上述关系模型和贝叶斯原理求解驻留时间矩阵T以及各加工区域的驻留时间矩阵Ti,其迭代计算式为:
T k + 1 = T k * ( Σ i = 1 4 R i ( - x , - y ) ∫ ∫ Rdxdy ⊗ E i ′ Σ i = 1 4 R i ⊗ T i k ) - - - ( 5 )
T i k = M i * T k
式(5)中,“*”表示矩阵对应元素相乘,k为计算过程中的迭代次数,为各加工区域的修正面形误差矩阵,驻留时间迭代计算的初始值T0=E′;
(6)第一次修形加工:应用离子束修形工艺进行第一次修形加工,修形加工以前设定刀具的对刀信息为dx=0、dy=0,然后利用步骤(5)中确定的各加工区域的驻留时间分别对各加工区域依次进行加工,直至完成整个待加工元件的加工;
(7)误差辨识:利用波面干涉仪对第一次修形加工后的元件再次进行面形误差测量,测量结果记为E″,通过以下优化方法确定对刀误差dx、dy:
min dx , dy | E ′ - E s - ηE ′ ′ | - - - ( 6 )
式(6)中,η为加工效率;Es为仿真面形误差,其计算式为:
E S = R 1 ⊗ ( T k + 1 ( x - dx , y - dy ) * M 1 ) + R 2 ⊗ ( T k + 1 ( x + dy , y - dx ) * M 2 )
                                                      (7)
+ R 3 ⊗ ( T k + 1 ( x + dx , y + dy ) * M 3 ) + R 4 ⊗ ( T k + 1 ( x - dy , y + dx ) * M 4 )
(8)辨识出刀具的对刀误差dx、dy后,重复以上步骤(3)~(7),直至镜面面形质量满足相关精度要求,结束加工。
2、根据权利要求1所述的拼接加工方法,其特征在于所述间隔S大于零且小于去除函数宽度的1/6。
CN2009100424309A 2009-01-06 2009-01-06 离子束加工光学元件的拼接加工方法 Expired - Fee Related CN101481220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100424309A CN101481220B (zh) 2009-01-06 2009-01-06 离子束加工光学元件的拼接加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100424309A CN101481220B (zh) 2009-01-06 2009-01-06 离子束加工光学元件的拼接加工方法

Publications (2)

Publication Number Publication Date
CN101481220A true CN101481220A (zh) 2009-07-15
CN101481220B CN101481220B (zh) 2011-02-16

Family

ID=40878537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100424309A Expired - Fee Related CN101481220B (zh) 2009-01-06 2009-01-06 离子束加工光学元件的拼接加工方法

Country Status (1)

Country Link
CN (1) CN101481220B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898325A (zh) * 2010-07-28 2010-12-01 中国人民解放军国防科学技术大学 光学元件表面的修形加工方法及用于该方法的数控机床
CN103213068A (zh) * 2013-03-21 2013-07-24 哈尔滨工业大学 超精密气囊抛光技术中工件边缘去除函数的测量方法
CN103342476A (zh) * 2013-07-03 2013-10-09 中国科学院光电技术研究所 用于抑制光学表面中高频误差的离子束牺牲层加工方法
CN104493665A (zh) * 2014-12-30 2015-04-08 中国科学院长春光学精密机械与物理研究所 一种用于抛光的多路径融合方法
CN112171387A (zh) * 2020-09-28 2021-01-05 中国人民解放军国防科技大学 一种离子束和化学机械抛光组合的铝合金反射镜加工方法
CN112171386A (zh) * 2020-09-24 2021-01-05 恒迈光学精密机械(杭州)有限公司 基于机器人抛光系统抛光力调整修形方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898325A (zh) * 2010-07-28 2010-12-01 中国人民解放军国防科学技术大学 光学元件表面的修形加工方法及用于该方法的数控机床
CN101898325B (zh) * 2010-07-28 2012-05-30 中国人民解放军国防科学技术大学 光学元件表面的修形加工方法及用于该方法的数控机床
CN103213068A (zh) * 2013-03-21 2013-07-24 哈尔滨工业大学 超精密气囊抛光技术中工件边缘去除函数的测量方法
CN103213068B (zh) * 2013-03-21 2015-02-11 哈尔滨工业大学 超精密气囊抛光技术中工件边缘去除函数的测量方法
CN103342476A (zh) * 2013-07-03 2013-10-09 中国科学院光电技术研究所 用于抑制光学表面中高频误差的离子束牺牲层加工方法
CN103342476B (zh) * 2013-07-03 2015-08-26 中国科学院光电技术研究所 用于抑制光学表面中高频误差的离子束牺牲层加工方法
CN104493665A (zh) * 2014-12-30 2015-04-08 中国科学院长春光学精密机械与物理研究所 一种用于抛光的多路径融合方法
CN112171386A (zh) * 2020-09-24 2021-01-05 恒迈光学精密机械(杭州)有限公司 基于机器人抛光系统抛光力调整修形方法
CN112171386B (zh) * 2020-09-24 2022-04-05 恒迈光学精密机械(杭州)有限公司 基于机器人抛光系统抛光力调整修形方法
CN112171387A (zh) * 2020-09-28 2021-01-05 中国人民解放军国防科技大学 一种离子束和化学机械抛光组合的铝合金反射镜加工方法
CN112171387B (zh) * 2020-09-28 2022-02-22 湖南天创精工科技有限公司 一种离子束和化学机械抛光组合的铝合金反射镜加工方法

Also Published As

Publication number Publication date
CN101481220B (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
CN101481220B (zh) 离子束加工光学元件的拼接加工方法
CN102092929B (zh) 用于非球面加工的离子束修形加工方法
CN101456680B (zh) 修正低陡度光学镜面误差的加工方法
Chkhalo et al. High-performance facility and techniques for high-precision machining of optical components by ion beams
Walker et al. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface
CN105739440A (zh) 一种宽弦空心风扇叶片的自适应加工方法
CN102785166B (zh) 一种基于运动学变换的数控砂轮磨削加工方法
Kong et al. Design, fabrication and measurement of ultra-precision micro-structured freeform surfaces
CN107586044A (zh) 一种防眩光3d玻璃的制作方法
CN111347294A (zh) 一种高陡度光学镜面误差抛光修正加工方法
CN103065207B (zh) 基于加工元的发动机缸体工艺路线规划方法
Sato et al. Tool path generation and optimization for freeform surface diamond turning based on an independently controlled fast tool servo
CN112658811B (zh) 一种控制ccos修形边缘误差效应的方法
CN106897501A (zh) 面向自适应加工中基于叶片类零件变形的定位优化方法
CN104659071A (zh) 一种amoled显示面板制作方法及制作装置
Zhang et al. Precision measurement and evaluation of flatness error for the aero-engine rotor connection surface based on convex hull theory and an improved PSO algorithm
CN106292531B (zh) 一种计算加工zn1蜗杆盘状成形刀具廓形边界的算法
CN101456681B (zh) 能修除光学元件局部误差的离子束极轴加工方法
CN110394512B (zh) 一种自由曲面上多级微结构的加工方法
CN110658695B (zh) 一种基于无掩模直写光刻的光学窗口透射波前修正方法
CN112560220B (zh) 基于去除函数空间变换补偿的内腔元件离子束加工方法
CN114676520A (zh) 一种线性渐变滤光片修正挡板的设计方法
CN112255717B (zh) 一种光栅毛坯的面型误差引起的刻线误差的校正方法
Faehnle et al. Optical Fabrication Process Modeling
CN114211313B (zh) 大尺寸边缘厚度、平凹非球面镜外圆及平台的加工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110216

Termination date: 20160106

CF01 Termination of patent right due to non-payment of annual fee