CN101460427A - 烧结硬质材料及使用该材料的高精度光学元件成型用的模具 - Google Patents

烧结硬质材料及使用该材料的高精度光学元件成型用的模具 Download PDF

Info

Publication number
CN101460427A
CN101460427A CNA2007800205921A CN200780020592A CN101460427A CN 101460427 A CN101460427 A CN 101460427A CN A2007800205921 A CNA2007800205921 A CN A2007800205921A CN 200780020592 A CN200780020592 A CN 200780020592A CN 101460427 A CN101460427 A CN 101460427A
Authority
CN
China
Prior art keywords
hard material
sintered hard
phase
compound
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800205921A
Other languages
English (en)
Other versions
CN101460427B (zh
Inventor
田中宏季
奥井彻
毛利茂树
中野修
德本启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Publication of CN101460427A publication Critical patent/CN101460427A/zh
Application granted granted Critical
Publication of CN101460427B publication Critical patent/CN101460427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明提供一种烧结硬质材料,主要包含碳化钨相,具有没有气孔(孔隙)及异常相等组织缺陷、且高硬度、杨氏模量大、热膨胀系数小、良好的加工面精度及表面粗糙度等特性,而且,赋予良好的断裂韧性。在碳化钨相中,除作为第1相的WC相以外,使作为第2相的(W、M1)2CX(0.8≤X<1.0)结晶,由此实现碳化钨相的断裂韧性的改善。在此,(W、M1)2CX(0.8≤X<1.0)是W2CX(0.8≤X<1.0)固溶了作为元素周期表第4a、5a、6a族的W以外的过渡金属元素的1种或者2种以上的M1的相。

Description

烧结硬质材料及使用该材料的高精度光学元件成型用的模具
技术领域
本发明涉及适用于光学设备中使用的透镜、棱镜、光栅等高精度光学元件成型用的模具材料或者金属、塑胶、复合材料等注射成型用的模具材料的烧结硬质材料。
背景技术
在制造CD、DVD、数码相机和手机等中使用的拾光透镜(ピックアップレンズ)或电脑的硬盘用基板中使用的玻璃制、塑胶制等的光学元件时,作为获得最终产品形状的方法,为了实现高可靠性和低价格,近年来,采用了不需要复杂且精密的机械加工的、高温中的加压成型。
对该高温加压成型中使用的模具材料,要求良好的镜面加工性,同时要求高温硬度、高热传导性、低热膨胀系数等特性,一直以来,硬质合金或者陶瓷这样的烧结硬质材料作为符合该要求的材料被使用。
例如,在专利文献1中公开了一种含有3~10质量%的钴的WC基硬质合金,该合金为热等静压压制用的硬质合金,其适用于加工后的表面形成Rmax 0.05μm以下的镜面的光学元件成型用模具。
但是,随着光学透镜的高精度化的发展,要求光学元件成型用的成型部表面也更加高精度化。在现状,加工后的透镜成型部表面必须获得Rmax 0.01μm以下的镜面。
另一方面,作为结合相、含有1质量%以上的Fe、Co、Ni等铁族金属的WC基硬质合金,由于WC相和铁族金属相的硬度差大,因此难以通过机械加工得到期望的表面精度。因此,即使在以往,作为精密成型用模具的材料,不含有和碳化物相的硬度差大的铁族金属相、仅由碳化物相构成的硬质材料即所谓无粘结剂硬质材料还在专利文献2、3中进行了公开。
在该专利文献2、3中所示的烧结硬质材料中,能够较容易地将加工后的透镜成型部表面最后加工成Rmax 0.01μm以下的镜面,但作为第2相,含有较多的与WC相比较具有高硬度且脆的NaCl型结晶结构的复合碳化物,因此,产生超微粒级或者纳米级这样的局部的加工性能的差异,因此,成为在进一步追求成型部表面的高精度化时的障碍。
另外,专利文献2、3所示的烧结硬质材料的第2相可具有非化学计量组成,由此,通过控制材料中的碳量,能够较容易地防止铁族金属和W的复合碳化物中的η相(下面称为异常相)的结晶,因此,也是必要不可缺少的相。
另一方面,在专利文献4所示的烧结硬质材料中,通过将作为异常相构成元素的Fe、Co、Ni等不可避免的杂质成分控制在极微量的0.02~0.10重量%内,认为能够防止异常相的结晶,因此没有在材料中含有所述的第2相的必要性。而且,在该专利文献4中所示的烧结硬质材料中,通过将碳化钨中的WC和W2CX的比例即W2CX/(WC+W2CX)设定在0.01~0.15的范围内,实现硬度的提高。
的确,根据专利文献4中所示的烧结硬质材料,其硬度提高。但是,和专利文献2、3中所示的烧结硬质材料相比较,专利文献4中所示的烧结硬质材料的断裂韧性变低。因此,在机械加工及其处理上,比专利文献2、3中所示的烧结硬质材料发生尖端或边缘部崩刃(カケ)等的可能性也高。
和专利文献2、3中所示的烧结硬质材料相比较,专利文献4中所示的烧结硬质材料的断裂韧性低的原因,认为是因为减少了杂质成分即铁族金属。即,专利文献4中所示的烧结硬质材料的WC/WC界面、WC/W2CX界面或者W2CX/W2CX界面上的铁族金属量由于比专利文献2、3中所示的烧结硬质材料的WC/WC界面、WC/W2CX界面或者W2CX/W2CX界面上的铁族金属量还少很多或者专利文献4中所示的烧结硬质材料的WC/WC界面、WC/W2Cx界面或者W2Cx/W2Cx界面上没有铁族金属,因此减弱这些界面间的结合力。
专利文献1日本特公昭62-51211号公报
专利文献2日本特开平2-120244号公报
专利文献3日本特开平10-7425号公报
专利文献4日本特开平9-25535号公报
发明内容
本发明中要解决的课题在于,在主要包含碳化钨相的烧结硬质材料中,不仅具有没有气孔(孔隙)或异常相等组织缺陷、高硬度、杨氏模量大、热膨胀系数小、良好的加工面精度及表面粗糙度等特性,而且赋予良好的断裂韧性。
本发明的烧结硬质材料,在碳化钨相中,除作为第1相的WC相以外,使作为第2相的(W、M1)2CX(0.8≤X<1.0)结晶,由此,实现碳化钨相的断裂韧性的改善。在此,(W、M1)2CX(0.8≤X<1.0)是W2CX(0.8≤X<1.0)固溶了元素周期表第4a、5a、6a族的W以外的过渡金属元素及Fe、Co、Ni中的1种或者2种以上即M1而成的。
在该烧结硬质材料中,WC相在硬度、强度、加工面粗糙度等方面出色,通过将其平均粒径设定在0.5μm以下组织变得更细微,据此可以更进一步改善硬度及镜面加工性。另一方面,由于平均粒径的增大,硬度及镜面加工性有降低的趋势,特别是平均粒径超过0.5μm时,其硬度及镜面加工性会急剧降低。因此,在本发明中,优选将碳化钨相的平均粒径设定在0.5μm以下。
但是,通常随着组织的细微化,断裂韧性有降低的趋势,因此,特别是在平均粒径在1μm以下的情况下,在加工或处理中发生崩刃或碎裂(チッピング)的危险性变大。
与之相对,X的范围为0.8≤X<1.0的(W、M1)2CX与WC等同样地保持六方晶型结晶构造,因此,和NaCl型结晶构造的其他大多数碳化物相比较的话,具有较大的塑性变形能。因此,通过在碳化钨中结晶该(W、M1)2CX,能够改善断裂韧性。另外,通过使该(W、M1)2CX粒子在WC相中弥散,同时也起到作为弥散强化的作用。
关于该(W、M1)2CX的结晶量,(W、M1)2CX的(-1-11)面的X射线衍射的积分峰值强度表示为∫I((W、M1)2)dθ,WC的(101)面的X射线衍射的积分峰值强度表示为∫I(WC)dθ的情况下,两者的积分峰值强度比∫I((W、M1)2CX)dθ/∫I(WC)dθ不足0.5%时,(W、M1)2CX相的量少,对断裂韧性改善的贡献较小。另外,超过10.0%时,关于对断裂韧性改善的贡献还没有明确,但烧结性降低不能获得致密的材料,因而不能适用于本发明的技术领域。根据以上,碳化钨中的X的范围为0.8≤X<1.0的(W、M1)2CX的存在比例,确定为所述积分峰值强度比中0.5%~10.0%的范围。
另外,关于X射线衍射的积分峰值强度,WC的主衍射峰为(101)面及(100)面,但其中WC的(100)面的衍射峰和(W、M1)2CX的(110)面的衍射峰的衍射角度接近,且双方的衍射峰重叠,因此,作为WC的主衍射峰选择了WC(101)面的衍射峰。另外,虽然作为(W、M1)2CX的衍射峰表示为主衍射峰的(-1-11)面,但(W、M1)2CX(0.8≤X<1.0)中,例如对于W5.08C12,其主衍射峰为(111)面,但该(111)面和(-1-11)面为同一{111}的结晶系且等价。
再有,至此所陈述的(W、M1)2CX(0.8≤X<1.0)的衍射峰,基本上表示W2CX(0.8≤X<1.0)的衍射峰,但其在衍射峰上具有微小宽度、并且比W2CX(0.8≤X<1.0)的衍射峰位置还稍微向高角度一侧位移。这是因为X的值具有非化学计量值、及在其晶格中固溶有1种或者2种以上的元素周期表第4a、5a、6a族的W以外的过渡金属元素。但是,该位移量非常小,大概0.1度(2θ/度)左右或者更小。
另外,在本发明的烧结硬质材料中,对于(W、M1)2CX(0.8≤X<1.0)中X的值,(W、M1)2CX的(-1-11)面、和WC的(101)面的X射线衍射的积分峰值强度比∫I((W、M1)2CX)dθ/∫I(WC)dθ在0.5%~10.0%的范围内,随着该强度比的增加,靠近具有X=0.84的值的(W、M1)2CX的衍射峰、且由衍射峰的理论值的位移量也变小。这认为可能是因为在X=0.84的值,(W、M1)2CX稳定存在,且随着材料中含碳量的降低,具有X=0.84的值的(W、M1)2CX的相量会增加。
另一方面,如专利文献4的烧结硬质材料所示,X的范围为1.0≤X<2.0的W2CX,最初在结晶W2CX的合金碳素范围中的高碳区域内确认了它的存在,但是,即使在烧结硬质材料中存在该X的范围为1.0≤X<2.0的W2CX,它的存在量也非常少,因此,不能确认断裂韧性的改善效果,即使能够确认效果也非常小。
在此,在W2CX(0.8≤X<1.0)中固溶元素周期表第4a、5a、6a族W以外的过渡金属,即,(W、M1)2CX(0.8≤X<1.0)中M1原子的存在对各元素的扩散造成影响,抑制(W、M1)2CX粒子的粗大化。另外,与作为W2CX存在相比,将作为(W、M1)2CX存在的一类设定为(W、M1)2CX(0.8≤X<1.0)相时,晶格畸变变得更少,因此能够在碳化钨中更稳定地存在。因此,认为与作为W2CX相比,作为(W、M1)2CX存在的一类更能稳定地发挥断裂韧性改善的效果,另外,也更能发挥作为弥散强化的作为弥散粒子的效果。
另外,作为第1相的WC相和第2相的(W、M1)2CX(0.8≤X<1.0)以外的相,本发明的烧结硬质材料可含有元素周期表第4a、5a、6a族的过渡金属元素即M2的化合物的相,即M2的碳化物、氮化物及碳氮化物的1种或2种以上或者它们的复合碳化物或复合碳氮化物的相。该M2的化合物的相对WC相的晶粒生长的抑制有效,但在将该M2的化合物的X射线衍射的最大峰值的积分峰值强度表示为∫I(M2的化合物)dθ、将WC的(101)面的X射线衍射的积分峰值强度表示为∫I(WC)dθ的场合,两者的积分峰值强度比∫I(M2的化合物)dθ/∫I(WC)dθ一旦超过1.0%,WC相的烧结性就降低,不能获得致密的材料。因此,含有M2的化合物的相的情况下,所述积分峰值强度比设定在1.0%以下。
另外,对于M2的化合物,没有特别指定其衍射面,这是因为M2的化合物自身有各种各样的形态,因此,虽然产生在各种各样的峰值位置的衍射,但由于作为添加量为极微量,故只要进行各自的最大峰值和WC的最大峰值即(101)面的比较就足够,因此,将其衍射面表示为M2的化合物的最大峰值。
另外,M2的化合物的一部分在烧结时作为(W、M2)2CX(0.8≤X<1.0)在W2CX(0.8≤X<1.0)中固溶,该固溶的M2原子能发挥抑制W2CX(0.8≤X<1.0)相的晶粒生长的效果。作为M2原子的在W2CX(0.8≤X<1.0)相中的固溶量目前还不清楚,但作为烧结硬质材料中的M2原子及所述M1原子的原子数,相对于该烧结硬质材料中的W的原子数,小于0.5%的话,作为该晶粒生长抑制的添加效果小,但超过5.0%时,作为M2的化合物的残留量就会过多,因此WC相的烧结性会恶化。
另一方面,由于杂质成分的Fe、Co、Ni等铁族金属的存在,从而烧结性被改善,另外,虽然WC/WC、WC/W2CX、或者W2CX/W2CX间的界面的结合力增强,但是在本发明这样的主要由碳化钨相构成的烧结硬质材料中,因为这些铁族金属的存在,由于称为η相的W和铁族金属的复合碳化物的结晶机械强度会恶化。但是,烧结硬质材料中的含量如果是不足0.05质量%的极微量,则例如下面的参考文献所示,通过材料中含碳量的控制,能够容易地使铁族金属和W的复合碳化物作为κ相这样的六方晶型晶体结构结晶,据此能够防止机械特性的恶化。因此,优选杂质成分的Fe、Co、Ni中1种或者2种以上的含量控制在不足0.05质量%。
(参考文献)P.Schwarzkopf and R.Kieffer,CEMENTED CARBIDES,The Macmillan Company,New York,U.S.A.,p.p.74-101,(1960)。
根据本发明的烧结硬质材料,不仅能获得气孔(孔隙)或异常相等组织缺陷非常少、高硬度、杨氏模量大、热膨胀系数小、能得到表面精度良好的镜面的特性,而且能获得良好的断裂韧性。因此,能够进行和以往材料相同的机械加工,同时,在机械加工及其处理中,发生尖端或边缘部崩刃等的可能性降低,且能够延长其寿命。
附图说明
图1表示本发明的烧结硬质材料的破坏韧性值(Kc)。
具体实施方式
下面,根据实施例说明用于实施本发明的最佳方式。
实施例1
作为本发明的烧结硬质材料的原料粉末,使用平均粒径为0.5μm的WC粉末,进一步配合平均粒径分别为1.4μm的Cr2C3、1.7μm的VC及1.1μm的NbC。用甲醇溶剂的硬质球磨机或者树脂球磨机将配合有这些成分的原料粉末混合,且以10MPa准压制成型后,在真空气氛中进行1700℃~2100℃、0.5~2小时的热压烧结(HP),之后,在Ar气氛中以1500℃、进行1~2小时的HIP处理,通过研磨加工加工至最终形状。在此,对于(W、M1)2CX相量的调整,通过材料中含碳量的调整来进行。即,通过石墨碳或者钨粉末的添加来进行调整。而且,求出得到的烧结硬质材料加工后的表面粗糙度(Rmax)、断裂韧性值(Kc)、及上述的(W、M1)2CX和WC的积分峰值强度比(∫I((W、M1)2CX)dθ/∫I(WC)dθ),表1中表示了其结果(在制法栏记载为HP+HIP)。在此,表1中的试样No.中标有*符号的试样为本发明的实施例,其他为比较例。另外,对于本发明的实施例,将断裂韧性值(Kc)和所述积分峰值强度比的关系示于图1。
再者,对于表面粗糙度(Rmax),使用泰勒霍普森有限公司(テ—ラ—ホブソン社)制造的接触式TALYSTEP(タリステップ)进行测定。对于断裂韧性值(Kc),通过维氏硬度计以载荷30kg将金刚石压头施加5秒,根据得到的压痕对角线长度及龟裂长度,使用下面的Evans式算出。另外,根据使用扫描式电子显微镜(SEM)的断面的组织观察,至少对于实施例确认了碳化钨的平均粒径为0.5μm以下。对于铁族杂质量,通过ICP发光分析求出该量,确认了Fe、Co、Ni总量不足0.05质量%。再有,对于上述的M2的化合物和WC的积分峰值强度比(∫I(M2的化合物)dθ/∫I(WC)dθ),也确认了其为1.0%以下。
(Kcφ/Ha)=0.15k(c/a)-3/2(Evans公式)
其中,Ha:维氏硬度、E:杨氏模量、a:压痕半径、c:龟裂半径、φ=3、k=3。
如表1所示,对于(W、M1)2CX和WC的积分峰值强度比(∫I((W、M1)2CX)dθ/∫I(WC)dθ)偏离本发明的范围的0.5%以下的比较例,即试样No.1、2、13、25、26,断裂韧性值低为4.0以下。另一方面,可知对于上述积分峰值强度比在本发明的范围内的实施例,虽然含有若干的测定误差,但是断裂韧性值的测定值几乎都被改善为4.0以上。另外,对于加工后的表面粗糙度,也确认了本发明的实施例中所有的Rmax都在7nm以下。再有,关于试样No.24,是将平均粒径1.0μm的WC粉末作为原料粉末使用的比较例,与相同组成及(W、M1)2CX和WC的积分峰值强度比(∫I((W、M1)2CX)dθ/∫I(WC)dθ)为同一水平的试样No.25相比,虽然断裂韧性值增大,但是表面粗糙度恶化。这是因为烧结后的WC的平均粒径为1.1μm比其他的试样大。
另外,如图1所示,与添加的M1、M2元素相比,在其效果的程度上多少有些差距,但是,确认了本发明的烧结硬质材料随着(W、M1)2CX(0.8≤X<1.0)的增加,断裂韧性值(Kc)变高。
实施例2
说明本发明中应用脉冲通电烧结(PCS)制法的例子。再有,对于该适用例的结果,一并记录在表1中(在制法栏中记载为PCS+HIP)。
在本例中,仅烧结过程及其条件和上述HP制法不同。即,使用甲醇溶剂的球磨机将原料粉末混合,以10MPa准压制成型,在真空气氛中以20~40MPa加压,进行1400℃~1600℃、10min~60min的PCS烧结后,在Ar气氛中以1500℃、进行1~2小时的HIP处理,通过研磨加工加工至最终形状。而且,求出得到的烧结硬质材料的加工表面粗糙度(Rmax)、断裂韧性值(Kc)、及上述的(W、M1)2CX和WC的积分峰值强度比(∫I((W、M1)2CX)dθ/∫I(WC)dθ)。
如表1所示,确认了(W、M1)2CX和WC的积分峰值强度比(∫I((W、M1)2CX)dθ/∫I(WC)dθ)在本发明的范围内,即使在使用了PCS制法的情况下,断裂韧性值也在4.0以上。再有,可知对于加工表面粗糙度,Rmax在6nm以下,比HP制法更出色。
实施例3
表示在玻璃透镜高温成型装置的透镜成型用模具中应用本发明的烧结硬质材料的例子。
以使用表1所示的本发明的实施例和比较例中所示的烧结硬质材料制作的透镜成型用模具,压制成型玻璃透镜,调查玻璃透镜的表面粗糙度的变化。
在玻璃透镜的压制成型试验中,将球状的光学透镜原料玻璃填入透镜成型用模具的上模和下模之间的模腔,利用气体流入配管,导入氧浓度为50ppm的氮气,利用加热器,将鼓形模加热到500℃。进一步,以2MPa的成型压力保持3分钟后冷却到室温。
得到的玻璃透镜的表面粗糙度示于表2。根据该表确认了,使用本发明的实施例成型的玻璃透镜的表面粗糙度,分别和表1所示的本发明的烧结硬质材料的表面粗糙度为大致相同的值,另外,在对透镜成型用模具的机械加工及透镜成型时的处理上,很难发生崩刃或碎裂。
表1
Figure A200780020592D00131
其中,在试样No.上标有*号的为本发明范围的烧结硬质材料。
表2
 
试样No. Rmax
nm
1 6.04
2 6.49
3 6.31
4 6.59
5 6.06
6 6.35
7 6.01
8 6.29
9 6.53
10 6.68
11 5.77
12 5.76
13 6.85
14 6.40
15 6.81
16 6.89
17 6.46
18 6.83
19 6.30
20 6.65
21 6.70
22 5.94
23 5.77
(24) 9.93
25 6.65
26 6.24
27 6.12
28 6.43
29 6.02
30 6.12
31 6.40
32 6.37
33 5.98
34 5.79
其中,在试样No.上标有*号的为本发明范围的烧结硬质材料。
工业上的可利用性
本发明的烧结硬质材料兼备良好的镜面加工性、耐磨耗性、耐酸蚀磨耗性等,因此,除在光学设备上使用的透镜、棱镜、光栅等高精度光学元件成型用的超精密成型模具和其周边设备以外,作为机械密封圈、轴套滑动轴承等耐热滑动部件、金属·塑胶·复合材料等注射成型用模具、电子部件制造装置用真空夹具的构成材料也能适用。

Claims (5)

1、烧结硬质材料,主要由含有WC和第2相即(W、M1)2CX(0.8≤X<1.0)的碳化钨相构成,
该(W、M1)2CX(0.8≤X<1.0)是W2CX(0.8≤X<1.0)固溶了元素周期表第4a、5a、6a族的W以外的过渡金属元素中的1种或者2种以上即M1而成的,
在将该(W、M1)2CX(0.8≤X<1.0)的(-1-11)面的X射线衍射的积分峰值强度表示为∫I((W、M1)2CX)dθ,WC的(101)面的X射线衍射的积分峰值强度表示为∫I(WC)dθ的情况下,两者的积分峰值强度比∫I((W、M1)2CX)dθ/∫I(WC)dθ在0.5%~10.0%的范围。
2、如权利要求1所述的烧结硬质材料,其中,所述碳化钨相的平均粒径为0.5μm以下。
3、如权利要求1或者2所述的烧结硬质材料,作为WC和第2相即(W、M1)2CX(0.8≤X<1.0)以外的相,所述烧结硬质材料含有由元素周期表第4a、5a、6a族的过渡金属元素即M2的碳化物、氮化物及碳氮化物的1种或2种以上或者它们的复合碳化物或复合碳氮化物构成的M2的化合物相,
在将该M2的化合物的X射线衍射的最大峰值的积分峰值强度表示为∫I(M2的化合物)dθ,WC的(101)面的X射线衍射的积分峰值强度表示为∫I(WC)dθ的情况下,两者的积分峰值强度比∫I(M2的化合物)dθ/∫I(WC)dθ为1.0%以下。
4、如权利要求1~3中任意一项所述的烧结硬质材料,其中,M1和M2的总原子数相对于烧结硬质材料中的W的原子数为0.5%~5.0%的范围,并且,Fe、Co、Ni中的1种或者2种以上的含量为不足0.05质量%。
5、一种模具,其通过权利要求1~4中任意一项所述的烧结硬质材料形成,为光学设备上使用的透镜、棱镜、光栅等高精度光学元件成型用的模具。
CN2007800205921A 2006-07-07 2007-07-06 烧结硬质材料及使用该材料的高精度光学元件成型用的模具 Active CN101460427B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006188664A JP5134217B2 (ja) 2006-07-07 2006-07-07 焼結硬質材料およびそれを用いた金型
JP188664/2006 2006-07-07
PCT/JP2007/063553 WO2008004656A1 (fr) 2006-07-07 2007-07-06 Matériau dur fritté et moule comprenant celui-ci pour le moulage d'un élément optique de haute précision

Publications (2)

Publication Number Publication Date
CN101460427A true CN101460427A (zh) 2009-06-17
CN101460427B CN101460427B (zh) 2012-08-22

Family

ID=38894622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800205921A Active CN101460427B (zh) 2006-07-07 2007-07-06 烧结硬质材料及使用该材料的高精度光学元件成型用的模具

Country Status (3)

Country Link
JP (1) JP5134217B2 (zh)
CN (1) CN101460427B (zh)
WO (1) WO2008004656A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813873A (zh) * 2011-08-03 2014-05-21 第六元素研磨剂股份有限公司 超硬构造及其制造方法
CN110981488A (zh) * 2019-12-24 2020-04-10 有研工程技术研究院有限公司 一种超高硬度非球面玻璃透镜模具材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182848B2 (ja) * 2012-10-30 2017-08-23 ぺんてる株式会社 ボールペン用ボール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813005B2 (ja) * 1989-09-28 1998-10-22 日本タングステン株式会社 Wc基硬質合金
JP3310138B2 (ja) * 1995-07-11 2002-07-29 ダイジ▲ェ▼ット工業株式会社 焼結硬質材
CN1082551C (zh) * 1998-07-09 2002-04-10 浙江大学 纳米碳化钨-钴硬质合金的制造方法及设备
JP2002226221A (ja) * 2000-11-30 2002-08-14 Ngk Insulators Ltd ガラスプレス用金型及びその製造方法
JP2004238660A (ja) * 2003-02-04 2004-08-26 Tungaloy Corp クロム含有超硬合金
WO2005037731A1 (ja) * 2003-10-22 2005-04-28 Nippon Tungsten Co., Ltd. 耐高温劣化性に優れた硬質材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813873A (zh) * 2011-08-03 2014-05-21 第六元素研磨剂股份有限公司 超硬构造及其制造方法
CN103813873B (zh) * 2011-08-03 2015-09-09 第六元素研磨剂股份有限公司 超硬构造的制造方法
CN110981488A (zh) * 2019-12-24 2020-04-10 有研工程技术研究院有限公司 一种超高硬度非球面玻璃透镜模具材料及其制备方法

Also Published As

Publication number Publication date
JP5134217B2 (ja) 2013-01-30
WO2008004656A1 (fr) 2008-01-10
CN101460427B (zh) 2012-08-22
JP2008013418A (ja) 2008-01-24

Similar Documents

Publication Publication Date Title
EP0698002B1 (en) Densified micrograin refractory metal or solid solution (mixed metal) carbide ceramics
EP0759480B1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
JP5487099B2 (ja) 耐摩耗性部材、耐摩耗性機器および耐摩耗性部材の製造方法
KR20090024788A (ko) 초경질 복합 물질
JPH10512624A (ja) 超微粒子の固溶体粉末からつくられたセメント接合されたセラミックス工具、その製造法、およびその材料
JP2679744B2 (ja) 高硬度耐摩耗性材料
US5993506A (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
CN100542992C (zh) 陶瓷复合材料及其制备方法
EP1930457A1 (en) Sintered body and method for producing same; sliding member, film-forming material and die for hot extrusion molding each using such sintered body; and hot extrusion molding apparatus and hot extrusion molding method each using such die for hot extrusion molding
WO2010104094A1 (ja) サーメットおよび被覆サーメット
EP4357473A1 (en) Wc-based hard alloy and application thereof
CN101460427B (zh) 烧结硬质材料及使用该材料的高精度光学元件成型用的模具
KR20120086457A (ko) 완전 고용체 초경 분말, 판상 탄화물을 보유한 초경 소결체, 코팅초경 및 이들의 제조 방법
JP2004076049A (ja) 超微粒超硬合金
JPWO2011065468A1 (ja) 回転工具
JP2010235351A (ja) アルミナ基セラミック焼結体、切削インサート及び切削工具
JP4331958B2 (ja) 超硬合金の製造方法
KR20130002488A (ko) 절삭공구용 소결체 및 이의 제조방법
JP4366803B2 (ja) 超硬合金押出し材料およびその製造方法並びに切削工具
KR102012442B1 (ko) 고인성 산화물 소결체의 제조 방법
JP2012087045A (ja) バインダレス合金の製造方法
JP7351582B1 (ja) 焼結合金及び金型
JP5132678B2 (ja) サーメット
JP4971564B2 (ja) 高温性質に優れる焼結合金およびそれを用いた熱間成形用金型
KR100372228B1 (ko) 판상-결정체텅스텐카바이드-함유경질합금,판상-결정체텅스텐카바이드의형성용조성물및그경질합금의제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant