背景技术
在近年来的信息通信领域中,使用光来高速交换大容量数据的通信业务量的建设急速进行。其中尤其是伴随互联网的爆发性普及,接入线路的宽带化加速,可以看到FTTH(Fiber To The Home:光纤到户)业务的市场起步明显。在FTTH光传送方式中,当前正在增加需求的是多个用户共用1条光纤的PON(passive optical network:无源光网络)方式。在该方式下,将从收容站通过1条光纤发送来的数据通过分离器分路到16条到32条光纤,并分配到各用户家里,从而可大幅度减少光纤铺设成本。在各用户侧作为终端装置铺设ONU(Optical Network Unit:光网络单元),通过对从收容站向用户侧的下行信号(波长1.5μm)与从用户侧向收容站的上行信号(波长1.3μm)进行波长复用(WDM),而使用同一光纤来传送上行和下行信号。进一步,在ONU内,装载2波长双向光模块,基本上由上行信号发送用的发光元件(LD:Laser Diode:激光二极管)、下行信号接收用的受光元件(PD:Photo Detector:光电检测器)、分离上行/下行信号的WDM滤光器构成。
图9表示现有的模块方式。表示在封装108内在空间上配置了发光元件105、受光元件102、波长选择滤光器107的各光学部件的单芯双向(BIDI:Bi-Directional)模块的基本结构。本方式中由于可独立制作各光部件,所以容易确保制作成品率。另外,由于能够以主动对准的方式与光纤109光连接,所谓主动对准方式就是一边使在分别集成了透镜101、104的CAN封装103、106上装载的光元件105、102动作一边与光纤109进行光轴调芯的方式,所以有可得到稳定的光耦合效率的优点。相反,部件数和加工工序数多,有不利于小型、低成本化的方面。
图10所示的是在《信学技報》vol.107,no.7,R2007-2,pp.7-10中公开的单芯双向模块的第2方式的基本结构。在本例中,将发光元件112、受光元件116、透明基板114上的波长选择滤光器113安装在一个封装117内。透明基板114通过支持部件115以预定的角度来安装。发光元件112和受光元件116经透镜111与单模光纤110光学连接。本例的特点在于实现了将所有光学部件安装在一个封装内的模块的小型化。但是,需要立体配置发光元件112、受光元件116和波长选择滤光器113的情形与第一例同样,需要在小型化的基础上高精度的安装,有调芯的工序也变得复杂的问题。进一步,在考虑了扩展性的情况下,例如在为3波长双向光模块的情况下,光部件数和安装面积需要至少约2倍,小型、低成本化变得越来越困难。
为了兼顾波长的扩展性和小型化、低成本化,需要在紧凑的空间内实现光合波分波器。作为小型的光合波分波器,有将多个滤光器单元装载在公共的平行四棱柱或其他光学块上的方法。例如,在日本专利文献特开昭61-103110号公报中公开的复用设备中,如图11所示那样波长选择滤光器127、128、129与镜125、126的每一个,彼此安装在对通过该基板的光的波长透明的基板124的预定位置上。
传播出射光线120和入射光线121的光纤122经棒透镜123与包含透明基板124的合波分波器光学连接。在合波分波器124中光线通过各光学滤光器依次透射特定波长的光,反射其他的特定波长的光,光形成之字型的光路。各个滤光器中,除去或添加特定波长的光。但是,图11公开的结构经棒透镜130、131、132和光纤133、134、135来将光元件136、137、138和合波分波器124耦合,部件数多,小型化困难。
【专利文献1】日本特开昭61-103110号公报
【非专利文献1】信学技報vol.107,no.7,R2007-2,pp.7-10
如上所述,在现有技术中,若还包含光元件的安装,则光部件的安装工序多。在要求波长分波器的位置精度、尤其是相对角度偏差裕量少,而要求高精度地安装的同时,确保成品率有困难。进一步,在考虑了扩展性的情况下,需要光部件数和安装面积约为2倍,要求小型化和光部件的进一步高精度安装,所以确保成品率变得越来越困难。
发明内容
本发明的目的是提供低价光模块。
因此,本发明的实施例的目的是,对于用作通过一条光纤来传送多个波长的光的波长复用光传送及单芯双向光传送的终端机的光模块,提供一种保证了低损失的光学特性和高可靠性,同时大幅度减少了安装工序,可实现小型化和高成品率的光模块。
本发明的精神如下。
一种光模块,其特征在于,包括:
基座,设置在CAN管座上;
设置在所述基座的一个面上、且其使用波长彼此不同的至少第1发光元件和第1受光元件;
固定在所述管座上,且在其顶部具有出入光用的孔的CAN盖;以及
光合波分波器,为平行平板状,且在对通过光具有透射性的第1基板的一个面上具有第1波长选择滤光器,在与所述一个面相对置的另一面上设置了镜;
在所述光合波分波器的延伸方向相对所述光元件装载基板的一个面在二维截面上倾斜了角度θ的状态下,被固定在所述CAN盖内或CAN封装内(该封装可以不是CAN封装,也可以是其他封装,例如,也可是密封了光元件的封装。下面相同),其中,θ≠2Nπ,N=0,1,2…;
来自所述第1发光元件的出射光通过所述第1波长选择滤光器和第1基板后,入射到所述盖的外部的光纤;
来自所述光纤的出射光入射到所述光合波分波器,并由所述第1波长选择滤光器反射,再由所述镜反射后,射出所述光合波分波器,而入射到所述第1受光元件。
附图说明
图1是作为本发明的第一实施例的三波长双向光发送接收模块的截面图;
图2是说明本发明的第一实施例的光模块的作用的图;
图3是作为本发明的第二实施例的二波长双向光发送接收模块的截面图;
图4是本发明的第三实施例的光模块的截面图,是表示了将第一到第二实施例的光模块与单模光纤耦合的情况下的封装的结构例;
图5是本发明的第四实施例的平面型光模块的结构图;
图6是作为本发明的第五实施例的光模块的结构图;
图7是构成作为本发明的第五实施例的光模块的光元件封装的截面图;
图8是本发明的第六实施例的光模块的截面图;
图9是作为现有模块的第1方式的BIDI模块的基本结构图;
图10是作为现有模块的第2方式的单封装BIDI模块的基本结构图;
图11是现有技术的光合波分波器的基本结构。
附图标记
1…光元件装载基板、2…光合波分波器、3…CAN封装、4…透镜、5…玻璃基板、6…第一波长选择滤光器、7…第二波长选择滤光器、8…第一镜、9…第二镜、10…基座、11…发光元件、12,13…受光元件、14…CAN管座、15…三工器模块、16…BiDi模块、21…尾纤模块壳体、22…单模光纤、23…套筒、30…平面型模块壳体、32…透镜、34…单模光纤、41…光元件装载CAN封装、50…倾斜CAN封装、101,104…透镜、102…受光元件、103,106…CAN封装、105…发光元件、107…波长选择滤光器、108…封装、109…单模光纤、110…单模光纤、111…透镜、112…发光元件、113…波长选择滤光器、114…透明基板、115…支持部件、116…受光元件、117…封装、120…出射光、121…入射光、122,133,134,135…光纤、123,130,131,132…棒透镜、124…光合波分波器、125,126…镜、127,128,129…波长选择滤光器、136,137,138…半导体发光元件或受光元件。
具体实施方式
参考图1来说明解决本发明技术问题用的手段。图1是将本发明应用于使用了三波长的双向光发送接收模块的称作所谓光三工器的模块的例子。
如图1所示,本发明中准备将多个光元件11、12、13(更具体地说,发光元件11与受光元件12和13。)装载在同一平面上的光元件装载基板1(在基座(sub mount)10上装载了光元件11、12、13之后的结构,在这里称作光元件装载基板1)和典型地在透明基板的表面背面装载了波长选择滤光器和镜的光合波分波器2。安装在封装3内,使得相对基板1的一个面,光元件安装面和滤光器表面分别为不平行的角度(θ≠180度)。在封装3内面,设置用于使光合波分波器2和光元件装载基板1非平行安装的例如凹凸。在光元件装载基板1上将彼此使用不同波长的光元件安装在预定的位置上。光合波分波器2,以具有平行的一对相对面、由对使用光的波长为透明的材料制成的预定厚度的基板作为支持基板,在一对平行面的一个上设置至少一种波长选择滤光器,在另一面上设置用于反射通过第一滤光器选择出的波长的光的镜。这时在这些滤光器和镜上设置入射出射用的窗。
接着,说明本发明的模块的作用。从发光元件11出射的波长λ1的光到达第一波长选择滤光器6。将发光元件11和光纤光学连接,使得第一波长选择滤光器6透射λ1的波长,并通过透明基板来折射,平行移动光路,而经封装透镜4入射到外部的光纤(未图示)。与此同时,将光纤和上述光受光元件12、13光学连接,使得从光纤出射的波长λ2、λ3的光分别入射到预定的光受光元件12、13上。
从光纤出射的波长λ2、λ3合波之后的光,入射到透明玻璃基板5上,受到折射后,到达第一波长选择滤光器6。波长λ2、λ3被反射,而到达相对的第一镜8。将由第一镜8反射的光入射到与第一滤光器面上的最初入射位置不同的位置上。在最简单的设计中,形成将由第一镜8一次反射后的光入射到第二滤光器的结构,但是在本结构中,形成来自第一镜8的反射光再次入射到滤光器6,并在滤光器6和第一镜8之间进行另一往返的设计。在滤光器6和第一镜8之间二次往返的光,入射到第二波长选择滤光器7中。这里波长λ2和波长λ3被分离,波长λ2透过滤光器而受到折射,并垂直入射到光受光元件12中。另一方面,波长λ3由第二滤光器反射后入射到第二镜9中。由第二镜9反射的光透过没有滤光器的界面(但是有AR涂层),而入射到受光元件13中。
如以上说明的,构成光合波分波器2的两个平面,以与来自光纤的入射光和发光元件11的光轴不垂直的角度来安装,由此,光倾斜入射到波长选择滤光器阵列和镜阵列中,而在各滤光器和光轴的交点上除去或添加特定波长的光。即,使上述两个平面相对基座10的表面倾斜角度θ1,以使得所述两个平面与入射到光合波分波器2的光的光轴成为90度以外的角度,即,非正交的角度,而将光合波分波器2相对于CAN管座(stem)14或CAN盖(cap)3进行安装。图1是截面图,以上述角度θ1的值沿纸面深度方向不变为原则。
图2定量表示了图1结构中的波长合分器2的作用。如图2所示,各波长的光的光轴的位置关系表示为玻璃基板的厚度和角度的函数。例如,如图2所示,是与x,y,z有关的关系。因此,若在根据设计唯一决定的该光轴的延伸方向上配置各元件的出射端或入射端,则可以取得光纤和光元件的光学耦合。
这样,由于本发明的第一特征是仅通过一次对准玻璃基板来自动对准多个滤光器,所以大幅度减少了本发明的装置的安装工序。
第二特征是,由于在光元件装载基板上平面安装LD、PD,所以与如现有技术那样立体安装的情况相比,可以大幅度简化安装,可以进行高精度安装。在调芯时,由于按每个光元件装载基板来对准,所以与对各元件单独调芯的情况相比,可以减少工序数。
如图2所示那样,在基板平面相对基座10的表面所成的角度为θ1的情况下,从相对基板表面的垂直方向的光纤或光元件11、向光合波分波器2的光的入射的角度(入射角)为θ1。折射后在基板物质内的角度θ2根据斯乃尔(snell)法则,用基板2之外的折射率n1、基板2的折射率n2,为θ2=sin-1(n1·sinθ1/n2)。
这时,基板内部的多重反射的周期y,若设透明基板的厚度为d,则可给出为2d tanθ2。该多重反射的光在通过如上所述的原理通过滤光器进行波长分离后,出射到与入射时的光轴垂直的平面的情况下,其周期z可给出为2dsinθ2·cosθ1。由于周期z对应于在元件装载基板上装载的元件的间隔,所以需要选择d、θ1,以便保持合适的元件间隔。由于元件的大小低于100μm,所以z的值需要为100μm以上。
【发明的效果】
根据本发明,与现有技术相比可以提供低价光模块。
根据本发明的实施例,对于将多个波长的光合波来发送的光发送模块、或按每个波长将合波后的光分波来加以接收的光接收模块、或单芯双向光发送接收模块,保持了低损耗的光学特性和高可靠性,并且大幅度减少了光部件数、安装工序数,可以提供小型化且可实现高成品率的光模块及其制造方法。
下面详细说明实施例。
(实施例1)
图1是作为本发明的第一实施例的光模块的截面图。图1是将本发明应用于使用了三波长的双向光发送接收模块的所谓称作光三工器的模块的例子。
图1是安装在CAN封装上的例子,将在基座10上装载了发光元件11和受光元件12,13之后的光元件装载基板1安装在CAN管座14上,将光合波分波器2安装在CAN盖3上,而构成三工器模块15。光元件11、12、13的使用波长分别是λ1、λ2、λ3,波长的长短关系是λ1<λ2<λ3。但是,波长的大小关系并不限于此。光元件在图1上,从使用波长短的元件、向使用波长长的元件排列。在CAN盖3内部设置了可安装光合波分波器的凹凸。其中,在CAN盖3内部能够固定光合波分波器就可以了。而不关心固定的手段。因此,设置凹凸不是必须的,也可不是凹凸,而例如是,在封装部件设置切口,使得例如光合波分波器和封装部件可以相嵌合。或,也可使封装部件具有凹凸和切口两者。
光合波分波器2将透明玻璃基板5作为支持基板,在一个面上相邻地安装第一波长选择滤光器6和第二波长选择滤光器7,并在与该面平行的相对置的面上安装第一镜8和第二镜9。光合波分波器的安装通过对CAN盖的凹凸的外形匹配来进行,并通过UV固化树脂来粘接。玻璃基板的材质是BK7,厚度是1136μm。安装玻璃基板,使其相对平面的角度为20°,图2中的z、即多重反射的间距在平面上的投影是500μm。波长选择滤光器由Ta2O5和SiO2构成的电介质多层膜构成。第一波长选择滤光器6为具有λ1<λth<λ2的分离波长λth,且透射比该λth短的波长的光、反射比其长的波长的光的性质的滤光器(所谓的短通(short pass)滤光器)。第二滤光器7为分离波长是λ2<λth<λ3的短通滤光器。第一镜8使用的与第一波长选择滤光器6相同,第二镜9使用的与第二波长选择滤光器7相同。光元件集成基板上的光发光元件11使用集成了微透镜的垂直出射型LD。发光元件11还可使用端面出射型LD,但是从安装上的简便性来看最好是垂直出射型,从光耦合的容易性和部件数减少的观点来看最好是透镜集成型。因同样的理由,受光元件12、13也最好是面入射型。放大器及电容器也安装在CAN内,但是这些与通常的情况相同,所以没有图示。
透明基板5的材质相对使用的波长为透明即可,但是并不限于此,最好是价格低、加工精度好的材质。作为满足该条件的材质,在本例中使用了BK7,但是当然也可使用其他玻璃材料、电介质、半导体。
说明本结构例的动作。从发光元件11出射的波长λ1的光到达第一波长选择滤光器6。第一波长选择滤光器6透射λ1的波长,通过透明基板折射,而平行移动光路,经封装透镜4与外部的光纤光连接。另一方面,从光纤出射的波长λ2、λ3合波之后的光入射到透明玻璃基板中,经折射后,到达第一波长选择滤光器6。波长λ2、λ3被反射,而到达相对置的第一镜8。第一镜8与第一波长选择滤光器6相同,因此波长λ2、λ3再次被反射。这里使用与滤光器6相同的第一镜8,是为了提高对波长λ1的阻止能力。从发光元件11出射的波长λ1的光在透镜4的表面及光纤端面等位置上稍稍被反射,成为返回光,再次入射。即使该波长λ1的返回光是微少的光量,若入射到受光元件12、13,则变为噪声。λ1的返回光透过滤光器6,但以微少的量被反射。因此,在第一镜8中再一次透射,光量进一步减少。由于如上这种理由,在本实施方式中,使用了与滤光器6相同的第一镜8,在波长分离标准不严格的情况下,使用通常的没有波长依赖性的镜就足够了。
由第一镜8反射后的光再次入射到滤光器面。在最简单的设计中,是通过第一镜8一次反射后的光入射到第二滤光器的结构,但是在本结构中,是来自第一镜8的反射光再次入射到滤光器6上,并在滤光器6和第一镜8之间进行另一往返的设计。这是因为发光元件11和受光元件12的间隔比多重反射的间距的投影大。这是因为高速驱动的发光元件有成为受光元件侧的噪声源(将其称作电串扰)的危险。在没有电串扰等特别理由的情况下,最好使玻璃基板内的多重反射的间距和元件的安装间距一致,而使反射次数最小。
将在滤光器6和第一镜8之间两次往返的光入射到第二波长选择滤光器7。这里分离波长λ2和波长λ3,波长λ2透过滤光器而折射,垂直入射到光受光元件12中。另一方面波长λ3被反射而入射到第二镜9。第二镜9根据与第一镜8的情况同样的理由,使用了与滤光器7相同的电介质多层滤光器。由第二镜9反射的光透过没有滤光器的界面(但是有AR涂层),而入射到受光元件13中。
(实施例2)
图3是本发明的第二实施例的光模块的截面图。本实施方式是将本发明应用于二波长单芯双向(BIDI:Bi-Directional)模块的结构例。如图3所示,BIDI模块16在由光元件装载基板1、光合波分波器2和CAN封装3构成这方面,与第一实施例相同。但是,在BIDI模块中,由于通过上行一个波长、下行一个波长总共两个波长来进行发送接收,所以在光元件装载基板1上安装的光元件仅是发光元件11和受光元件12。光合波分波器2上,滤光器6和第一镜8分别各安装了一种。
(实施例3)
图4是本发明的第三实施例的光模块的截面图。本实施方式是将本发明应用于带光纤的所谓尾纤(pig-tail)型的模块的例子。如图4所示,在同轴方模块壳体21上安装本发明的第一实施例的三工器模块15,进一步通过套筒(sleeve)23来安装带套圈(ferrule)的光纤22。本例中表示了尾纤型模块的例子,但是也可通过同样的结构,来构成可切除型(レセクタブル)模块。
(实施例4)
图5是表示本发明的第四实施方式的光模块的图。本实施方式是在平面型封装上安装的例子。如图5所示,三工器模块的结构,是在平面型封装30上,安装:在基座10上安装了发光元件11、光受光元件12、13的光元件装载基板1,光合波分波器2,透镜32和单模光纤34。如图10所示,本实施方式中,将表面安装了光元件的光元件装载基板1以从平面型封装的底面垂直竖立的形态来加以安装。作为平面型封装,可以使用例如蝴蝶型封装。在图5所示的形态中,对应于三个波长,但是即使进一步增加波长数,也可比较容易地加以对应,这是本安装方式的特征。
(实施例5)
图6、图7是表示本发明的第五实施方式的光模块的图。本模块特征在于仅将光元件预先集中在一个封装中,并将其与光合波分波器安装在其他封装中。本模块的结构如图5所示那样,在平面型封装40上安装了光元件装载CAN封装41、光合波分波器2、透镜32和单模光纤34。光元件装载CAN封装41的结构如图6所示那样,安装装载了光元件11、12、13的光元件装载基板1。本例中表示平面型封装的例子,但是也可使用平面型之外的模块壳体、例如同轴型的封装。
(实施例6)
图8是表示本发明的第六实施方式的光模块的图。本实施方式是在CAN封装的盖的窗部安装了光合波分波器的例子。通常在CAN模块的盖上安装封装透镜或平板玻璃。如图8所示,在本例的模块中,CAN封装上面相对CAN管座14成非平行角度,通过在其窗部安装光合波分波器2,实现了光合波分波器2与光元件装载基板1非平行地保持。由于窗部倾斜的倾斜CAN被广泛使用,所以本例的CAN封装40的制作不需要特殊的成本。作为将光合波分波器2安装在CAN封装40中的方法,可以使用例如低融点玻璃即可。
图8中,表示了通过光合波分波器2封住CAN封装的窗的结构的例子,但是也可以为由通常的平板玻璃封住窗,在该平板玻璃的下面或上面粘贴光合波分波器2的结构。