CN101450858A - 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 - Google Patents
一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 Download PDFInfo
- Publication number
- CN101450858A CN101450858A CNA2007101784410A CN200710178441A CN101450858A CN 101450858 A CN101450858 A CN 101450858A CN A2007101784410 A CNA2007101784410 A CN A2007101784410A CN 200710178441 A CN200710178441 A CN 200710178441A CN 101450858 A CN101450858 A CN 101450858A
- Authority
- CN
- China
- Prior art keywords
- bace
- doping
- ybacuo
- powder
- single domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 16
- 101150058765 BACE1 gene Proteins 0.000 claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 35
- 238000005516 engineering process Methods 0.000 claims abstract description 14
- 239000002243 precursor Substances 0.000 claims abstract description 12
- 238000000748 compression moulding Methods 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 3
- 239000002019 doping agent Substances 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 238000000498 ball milling Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 abstract description 9
- 239000002887 superconductor Substances 0.000 abstract 4
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 abstract 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 abstract 1
- 229910000510 noble metal Inorganic materials 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- 239000010949 copper Substances 0.000 description 16
- 239000012071 phase Substances 0.000 description 13
- 229910052697 platinum Inorganic materials 0.000 description 10
- 230000004907 flux Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法,该掺杂材料的化学式为BaCe1-xGdxO3,0≤x≤0.2。将BaCO3、CeO2和Gd2O3粉按Ba∶Ce∶Gd=1∶1-x∶x配比,经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3掺杂材料。将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入该Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≤x≤0.2,球磨混合均匀后,用单轴模压成型,采用顶部籽晶辅助熔融织构生长工艺生成单畴结构的YBaCuO超导块。用廉价的BaCe1-xGdxO3替代贵金属Pt掺杂在YBaCuO先驱粉中制备单畴YBaCuO超导块,在不降低材料性能的前提下降低单畴超导块成本。
Description
技术领域
本发明涉及一种降低单畴钇钡铜氧(YBaCuO)超导块成本的方法。
背景技术
YBaCuO超导块的成份以YBa2Cu3O7-y超导相(123相)为主,添加一定量的Y2BaCuO5-x非超导相(211相)。添加非超导的211相的主要目的是防止单畴超导块生长过程中液相的流失。YBaCuO超导块通过包晶反应生成c轴择优取向的晶体结构,最终产物中具有大量颗粒状的211相被俘获在层状123相基体中的特征。大量工艺研究的结果证实,细小的211相颗粒弥散分布在123相基体中可以增加超导材料的磁通钉扎能力,从而提高超导材料的性能。通常细化211相颗粒的方法是在YBaCuO的先驱粉末中掺杂0.2wt%~0.5wt%的铂粉(Pt)。由于Pt是价格昂贵的贵金属元素,Pt的掺杂增加了YBaCuO超导块的原材料成本。使用廉价的CeO2替代Pt有细化211相颗粒和提高性能的作用,但总体效果不如Pt。
发明内容
本发明的目的是提供一种降低单畴YBaCuO超导块成本的掺杂材料,该掺杂材料价格低廉,可以代替贵金属Pt,并不降低低单畴钇钡铜氧(YBaCuO)超导块材料性能。
本发明的另一个目的是提供一种制备降低单畴YBaCuO超导块成本的掺杂材料的方法。
本发明的再一个目的是提供一种用廉价材料替代贵金属Pt的掺杂,降低单畴钇钡铜氧(YBaCuO)超导块原材料成本的方法。
为了实现上述目的,本发明采用以下的技术方案
一种降低单畴YBaCuO超导块成本的掺杂材料,该掺杂材料的化学式为BaCe1-xGdxO3,其中,0≦x≦0.2。
一种制备降低单畴YBaCuO超导块成本的掺杂材料的方法,将BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x配比,其中,0≦x≦0.2,充分混合均匀后经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3掺杂材料,其中,0≦x≦0.2。
一种降低单畴YBaCuO超导块成本的掺杂材料的掺杂方法,将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入该Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≦x≦0.2,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴结构的YBaCuO超导块。
在BaCe1-xGdxO3中,0≦x≦0.2,且其相对于Y1.8Ba2.4Cu3.4Oy先驱粉的添加比例范围为0.25wt%~1.00wt%,在上述范围中能够取得好效果,超出此范围会引起性能的下降。
本发明所采用的球磨混合、单轴模压成型、顶部籽晶辅助熔融织构生长工艺(TSMTG)均为公知工艺。
采用顶部籽晶辅助熔融织构生长工艺(TSMTG),其中,TSMTG是顶部籽晶辅助熔融织构生长工艺英文Top Seeded Melt Textured Growth的缩写。本发明采用BaCe1-xGdxO3替代Pt掺杂在YBaCuO先驱粉中,采用顶部籽晶辅助熔融织构生长工艺(TSMTG)的工艺参数没有变化。
本发明的优点是:本发明用廉价的BaCe1-xGdxO3(0≦x≦0.2)替代贵金属Pt掺杂在YBaCuO先驱粉中制备单畴YBaCuO超导块,在不降低材料性能的前提下达到了降低单畴超导块成本的目的。
附图说明
图1为不同成分YBaCuO单畴超导块磁浮力F与悬浮间隙D之间的关系图。其中A是未掺杂超导块,B是掺0.2wt%Pt的超导块,C是掺杂0.5wt%BaCe3的超导块,D是掺杂0.5wt%BaCe0.9Gd0.1O3的超导块,E是掺杂0.5wt%BaCe0.8Gd0.2O3的超导块。
具体实施方式
BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x(0≦x≦0.2)配比,充分混合均匀后经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3相。将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≦x≦0.2,放入玛瑙罐中用玛瑙球研磨。按300~400目研磨粒度配球,球料重量比约为1:1.2,研磨时间约4小时。经球磨混合均匀后,用150MPa的压强单轴模压成型。再采用顶部籽晶辅助熔融织构生长工艺(Top Seeded Melt Textured Growth,缩写为TSMTG工艺)生成单畴结构的YBaCuO超导块。TSMTG工艺过程和具体参数如下:将c轴取向的SmBaCuO或NdBaCuO小晶体放在模压成型的圆柱状YBaCuO块的顶表面中心位置,保持其c轴与园柱状材料的对称轴平行。将带有籽晶的成型块放入加热炉中,以250℃~350℃/小时的速率快速升温至1050℃±5℃,保温1~2小时后以400℃~600℃/小时的速率快速降温至1010℃~1015℃,再以0.3~0.5℃/小时的速率缓慢降温至975℃±5℃,然后以100~200℃/小时的速率冷却到室温,使YBaCuO块经历部分熔化后再凝固的过程,生成单畴结构的YBaCuO超导块。
实施例1
BaCO3、CeO2粉按Ba:Ce=1:1配比,充分混合均匀后经1400℃~1500℃焙烧5~10小时,生成BaCeO3相。将BaCeO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%,0.50wt%和1.00wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成三种不同成分的单畴YBaCuO超导块。
从上述三种不同成分的单畴超导块上取样,分别测量其在77K温度下的临界电流密度(Jc),其中掺杂0.50wt%BaCeO3的样品效果最好,Jc比未掺杂样品大幅度提高,达到掺0.2wt%Pt样品的同等水平,掺杂0.25wt%和1.00wt%BaCeO3的样品Jc虽然也比未掺杂样品提高,但低于掺0.2wt%Pt样品的水平。
测量了直径30mm厚17mm掺杂0.50wt%BaCeO3的单畴超导块的磁浮力性能。最大磁浮力达到103N,明显高于同等尺寸的未掺杂单畴超导块,与掺杂0.2wt%Pt粉的单畴超导块相当(见图1)。在图1中,掺杂0.5wt%BaCe3的超导块的C曲线,与掺0.2wt%Pt的超导块的B曲线相当,但明显高于同等尺寸的未掺杂单畴超导块的A曲线。
实施例2
BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x(x=0.1,0.2)配比,充分混合均匀后经1400℃~1500℃焙烧5~10小时,生成BaCe1-xGdxO3相。将BaCe1-xGdxO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.50wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块。
分别测量了直径30mm厚17mm掺杂0.50wt%BaCe0.9Gd0.1O3(x=0.1)和掺杂0.50wt%BaCe0.8Gd0.2O3(x=0.2)的单畴超导块的磁浮力性能。最大磁浮力分别为105N和104N,明显高于同等尺寸的未掺杂单畴超导块,与掺杂0.2wt%Pt粉的单畴超导块相当(见图1)。在图1中,掺杂0.5
wt%BaCe0.9Gd0.1O3的超导块的D曲线、掺杂0.5wt%BaCe0.8Gd0.2O3的超导块的E曲线与掺0.2wt%Pt的超导块的B曲线相当,但明显高于同等尺寸的未掺杂单畴超导块的A曲线。
比较例1
将Y1.8Ba2.4Cu3.4Oy粉末用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块。
测量了直径30mm厚17mm的单畴超导块的磁浮力性能。最大磁浮力为75N(见图1)。在图1中,未掺杂单畴超导块的A曲线明显低于同等尺寸的掺杂0.5wt%BaCe3的超导块的C曲线、掺杂0.5wt%BaCe0.9Gd0.1O3的超导块的D曲线和掺杂0.5wt%BaCe0.8Gd0.2O3的超导块的E曲线。
比较例2
将Pt粉按按相对于Y18Ba2.4Cu3.4Oy先驱粉的0.2wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块。
测量了直径30mm厚17mm掺杂0.2wt%Pt粉的单畴超导块的磁浮力性能。最大磁浮力性能为103N(见图1)。在图1中,掺0.2wt%Pt的超导块的B曲线与掺杂0.5wt%BaCe3的超导块的C曲线、掺杂0.5wt%BaCe0.9Gd0.1O3的超导块的D曲线和掺杂0.5wt%BaCe0.8Gd0.2O3的超导块的E曲线相当。
Claims (3)
1、一种降低单畴YBaCuO超导块成本的掺杂材料,其特征在于,该掺杂材料的化学式为BaCe1-xGdxO3,其中,0≦x≦0.2。
2、一种制备降低单畴YBaCuO超导块成本的掺杂材料的方法,其特征在于,将BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x配比,其中,0≦x≦0.2,充分混合均匀后经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3掺杂材料,其中,0≦x≦0.2。
3、一种降低单畴YBaCuO超导块成本的掺杂材料的掺杂方法,其特征在于,将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入该Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≦x≦0.2,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴结构的YBaCuO超导块。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101784410A CN101450858B (zh) | 2007-11-30 | 2007-11-30 | 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101784410A CN101450858B (zh) | 2007-11-30 | 2007-11-30 | 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101450858A true CN101450858A (zh) | 2009-06-10 |
CN101450858B CN101450858B (zh) | 2012-01-25 |
Family
ID=40733366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101784410A Active CN101450858B (zh) | 2007-11-30 | 2007-11-30 | 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101450858B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112126978A (zh) * | 2020-09-03 | 2020-12-25 | 西安航空学院 | 一种二次单畴化生长钆钡铜氧超导块材的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE50014931D1 (de) * | 1999-02-17 | 2008-03-13 | Solvay Infra Bad Hoenningen Gm | Supraleitende körper aus zinkdotiertem kupferoxidmaterial |
US7419736B2 (en) * | 2003-09-03 | 2008-09-02 | Matsushita Electric Industrial Co., Ltd. | Mixed ion conductor |
-
2007
- 2007-11-30 CN CN2007101784410A patent/CN101450858B/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112126978A (zh) * | 2020-09-03 | 2020-12-25 | 西安航空学院 | 一种二次单畴化生长钆钡铜氧超导块材的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101450858B (zh) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hamrita et al. | Superconducting properties of polycrystalline YBa2Cu3O7–d prepared by sintering of ball-milled precursor powder | |
Muralidhar et al. | A low-cost batch process for high-performance melt-textured GdBaCuO pellets | |
ÖZTORNACI et al. | The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1. 8Sr2 AuxCa1. 1Cu2. 1Oy (Bi-2212) ceramics | |
Li et al. | Employment of NdBCO/YBCO/MgO film seed in the infiltration growth technique for fabricating single-grain YBCO bulk superconductors | |
CN101279847A (zh) | 微量稀土元素掺杂钇钡铜氧超导块体材料的制备方法 | |
Li et al. | Effect of the fabrication process on the electrical properties of polycrystalline Bi1. 7Pb0. 3Sr2Ca2Cu3O10 | |
CN1929044B (zh) | 含有Si元素和C元素的MgB2超导材料及其制备方法 | |
CN101450859B (zh) | 用BaCeO3掺杂提高YBaCuO超导体性能的方法 | |
CN101993247A (zh) | 一种基于钙钛矿结构的单相铁基超导材料及其制备方法 | |
CN101450858B (zh) | 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 | |
CN114182123B (zh) | 一种快速制备Nb3Al超导体的方法 | |
Sasakura et al. | New Pb-based Superconductor with the 1222 Structure in the (Pb 0.75 P 0.25) Sr 2 (Eu 1.9− x Ce x Sr 0.1) Cu 2 O z System | |
Li et al. | Growth of single‐grain GdBa2Cu3O7‐x superconductors by top seeded infiltration and growth technique | |
Margiani et al. | Enhancement of phase formation and critical current density in (bi, pb)-2223 superconductor by boron addition and ball milling | |
CN101462881A (zh) | 一种掺杂二硼化镁超导材料的制备方法 | |
Zhang et al. | Thermoelectric properties of Yb-La-Nb-doped SrTiO3 | |
Margiani et al. | Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi, Pb)-2223 HTS | |
Sasakura et al. | New Members of the Pb-based 1222 Superconductor Containing Phosphorus:(Pb 0.75 P 0.25) Sr 2 (Ln 1.9− x Ce x Sr 0.1) Cu 2 O z (Ln= Sm and Gd) | |
Ateş et al. | The effects of Ag addition and magnetic field on melt-processed YBa2Cu3Ox superconductors | |
CN101319380B (zh) | 稀土242相控制组分生长超导块材的方法 | |
YUSMI et al. | Effect of Yb2O3 Nanoparticle Addition on Superconducting Properties of BSCCO (2223)/Ag Tapes by Acetate Precipitation Method. | |
Kayed | Synthesis, X‐ray data, and Hall effect measurements of Li‐doped Tl‐Ba‐Ca‐Cu‐O superconductor | |
JP2006062896A (ja) | 酸化物超電導材料及びその製造方法 | |
Polasek et al. | Processing of bulk Bi-2223 high-temperature superconductor | |
Wang et al. | Comparison of Y 2 Ba 4 CuBiOy Nanoparticles with CeO 2 Doping on the Levitation Force of Single Domain YBCO Bulk Superconductor by TSIG Process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190626 Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing Patentee after: Research Institute of engineering and Technology Co., Ltd. Address before: 100088, 2, Xinjie street, Beijing Patentee before: General Research Institute for Nonferrous Metals |
|
TR01 | Transfer of patent right |