CN101450858A - 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 - Google Patents

一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 Download PDF

Info

Publication number
CN101450858A
CN101450858A CNA2007101784410A CN200710178441A CN101450858A CN 101450858 A CN101450858 A CN 101450858A CN A2007101784410 A CNA2007101784410 A CN A2007101784410A CN 200710178441 A CN200710178441 A CN 200710178441A CN 101450858 A CN101450858 A CN 101450858A
Authority
CN
China
Prior art keywords
bace
doping
ybacuo
powder
single domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101784410A
Other languages
English (en)
Other versions
CN101450858B (zh
Inventor
肖玲
焦玉磊
郑明辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN2007101784410A priority Critical patent/CN101450858B/zh
Publication of CN101450858A publication Critical patent/CN101450858A/zh
Application granted granted Critical
Publication of CN101450858B publication Critical patent/CN101450858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法,该掺杂材料的化学式为BaCe1-xGdxO3,0≤x≤0.2。将BaCO3、CeO2和Gd2O3粉按Ba∶Ce∶Gd=1∶1-x∶x配比,经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3掺杂材料。将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入该Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≤x≤0.2,球磨混合均匀后,用单轴模压成型,采用顶部籽晶辅助熔融织构生长工艺生成单畴结构的YBaCuO超导块。用廉价的BaCe1-xGdxO3替代贵金属Pt掺杂在YBaCuO先驱粉中制备单畴YBaCuO超导块,在不降低材料性能的前提下降低单畴超导块成本。

Description

一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法
技术领域
本发明涉及一种降低单畴钇钡铜氧(YBaCuO)超导块成本的方法。
背景技术
YBaCuO超导块的成份以YBa2Cu3O7-y超导相(123相)为主,添加一定量的Y2BaCuO5-x非超导相(211相)。添加非超导的211相的主要目的是防止单畴超导块生长过程中液相的流失。YBaCuO超导块通过包晶反应生成c轴择优取向的晶体结构,最终产物中具有大量颗粒状的211相被俘获在层状123相基体中的特征。大量工艺研究的结果证实,细小的211相颗粒弥散分布在123相基体中可以增加超导材料的磁通钉扎能力,从而提高超导材料的性能。通常细化211相颗粒的方法是在YBaCuO的先驱粉末中掺杂0.2wt%~0.5wt%的铂粉(Pt)。由于Pt是价格昂贵的贵金属元素,Pt的掺杂增加了YBaCuO超导块的原材料成本。使用廉价的CeO2替代Pt有细化211相颗粒和提高性能的作用,但总体效果不如Pt。
发明内容
本发明的目的是提供一种降低单畴YBaCuO超导块成本的掺杂材料,该掺杂材料价格低廉,可以代替贵金属Pt,并不降低低单畴钇钡铜氧(YBaCuO)超导块材料性能。
本发明的另一个目的是提供一种制备降低单畴YBaCuO超导块成本的掺杂材料的方法。
本发明的再一个目的是提供一种用廉价材料替代贵金属Pt的掺杂,降低单畴钇钡铜氧(YBaCuO)超导块原材料成本的方法。
为了实现上述目的,本发明采用以下的技术方案
一种降低单畴YBaCuO超导块成本的掺杂材料,该掺杂材料的化学式为BaCe1-xGdxO3,其中,0≦x≦0.2。
一种制备降低单畴YBaCuO超导块成本的掺杂材料的方法,将BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x配比,其中,0≦x≦0.2,充分混合均匀后经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3掺杂材料,其中,0≦x≦0.2。
一种降低单畴YBaCuO超导块成本的掺杂材料的掺杂方法,将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入该Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≦x≦0.2,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴结构的YBaCuO超导块。
在BaCe1-xGdxO3中,0≦x≦0.2,且其相对于Y1.8Ba2.4Cu3.4Oy先驱粉的添加比例范围为0.25wt%~1.00wt%,在上述范围中能够取得好效果,超出此范围会引起性能的下降。
本发明所采用的球磨混合、单轴模压成型、顶部籽晶辅助熔融织构生长工艺(TSMTG)均为公知工艺。
采用顶部籽晶辅助熔融织构生长工艺(TSMTG),其中,TSMTG是顶部籽晶辅助熔融织构生长工艺英文Top Seeded Melt Textured Growth的缩写。本发明采用BaCe1-xGdxO3替代Pt掺杂在YBaCuO先驱粉中,采用顶部籽晶辅助熔融织构生长工艺(TSMTG)的工艺参数没有变化。
本发明的优点是:本发明用廉价的BaCe1-xGdxO3(0≦x≦0.2)替代贵金属Pt掺杂在YBaCuO先驱粉中制备单畴YBaCuO超导块,在不降低材料性能的前提下达到了降低单畴超导块成本的目的。
附图说明
图1为不同成分YBaCuO单畴超导块磁浮力F与悬浮间隙D之间的关系图。其中A是未掺杂超导块,B是掺0.2wt%Pt的超导块,C是掺杂0.5wt%BaCe3的超导块,D是掺杂0.5wt%BaCe0.9Gd0.1O3的超导块,E是掺杂0.5wt%BaCe0.8Gd0.2O3的超导块。
具体实施方式
BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x(0≦x≦0.2)配比,充分混合均匀后经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3相。将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≦x≦0.2,放入玛瑙罐中用玛瑙球研磨。按300~400目研磨粒度配球,球料重量比约为1:1.2,研磨时间约4小时。经球磨混合均匀后,用150MPa的压强单轴模压成型。再采用顶部籽晶辅助熔融织构生长工艺(Top Seeded Melt Textured Growth,缩写为TSMTG工艺)生成单畴结构的YBaCuO超导块。TSMTG工艺过程和具体参数如下:将c轴取向的SmBaCuO或NdBaCuO小晶体放在模压成型的圆柱状YBaCuO块的顶表面中心位置,保持其c轴与园柱状材料的对称轴平行。将带有籽晶的成型块放入加热炉中,以250℃~350℃/小时的速率快速升温至1050℃±5℃,保温1~2小时后以400℃~600℃/小时的速率快速降温至1010℃~1015℃,再以0.3~0.5℃/小时的速率缓慢降温至975℃±5℃,然后以100~200℃/小时的速率冷却到室温,使YBaCuO块经历部分熔化后再凝固的过程,生成单畴结构的YBaCuO超导块。
实施例1
BaCO3、CeO2粉按Ba:Ce=1:1配比,充分混合均匀后经1400℃~1500℃焙烧5~10小时,生成BaCeO3相。将BaCeO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%,0.50wt%和1.00wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成三种不同成分的单畴YBaCuO超导块。
从上述三种不同成分的单畴超导块上取样,分别测量其在77K温度下的临界电流密度(Jc),其中掺杂0.50wt%BaCeO3的样品效果最好,Jc比未掺杂样品大幅度提高,达到掺0.2wt%Pt样品的同等水平,掺杂0.25wt%和1.00wt%BaCeO3的样品Jc虽然也比未掺杂样品提高,但低于掺0.2wt%Pt样品的水平。
测量了直径30mm厚17mm掺杂0.50wt%BaCeO3的单畴超导块的磁浮力性能。最大磁浮力达到103N,明显高于同等尺寸的未掺杂单畴超导块,与掺杂0.2wt%Pt粉的单畴超导块相当(见图1)。在图1中,掺杂0.5wt%BaCe3的超导块的C曲线,与掺0.2wt%Pt的超导块的B曲线相当,但明显高于同等尺寸的未掺杂单畴超导块的A曲线。
实施例2
BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x(x=0.1,0.2)配比,充分混合均匀后经1400℃~1500℃焙烧5~10小时,生成BaCe1-xGdxO3相。将BaCe1-xGdxO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.50wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块。
分别测量了直径30mm厚17mm掺杂0.50wt%BaCe0.9Gd0.1O3(x=0.1)和掺杂0.50wt%BaCe0.8Gd0.2O3(x=0.2)的单畴超导块的磁浮力性能。最大磁浮力分别为105N和104N,明显高于同等尺寸的未掺杂单畴超导块,与掺杂0.2wt%Pt粉的单畴超导块相当(见图1)。在图1中,掺杂0.5
wt%BaCe0.9Gd0.1O3的超导块的D曲线、掺杂0.5wt%BaCe0.8Gd0.2O3的超导块的E曲线与掺0.2wt%Pt的超导块的B曲线相当,但明显高于同等尺寸的未掺杂单畴超导块的A曲线。
比较例1
将Y1.8Ba2.4Cu3.4Oy粉末用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块。
测量了直径30mm厚17mm的单畴超导块的磁浮力性能。最大磁浮力为75N(见图1)。在图1中,未掺杂单畴超导块的A曲线明显低于同等尺寸的掺杂0.5wt%BaCe3的超导块的C曲线、掺杂0.5wt%BaCe0.9Gd0.1O3的超导块的D曲线和掺杂0.5wt%BaCe0.8Gd0.2O3的超导块的E曲线。
比较例2
将Pt粉按按相对于Y18Ba2.4Cu3.4Oy先驱粉的0.2wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块。
测量了直径30mm厚17mm掺杂0.2wt%Pt粉的单畴超导块的磁浮力性能。最大磁浮力性能为103N(见图1)。在图1中,掺0.2wt%Pt的超导块的B曲线与掺杂0.5wt%BaCe3的超导块的C曲线、掺杂0.5wt%BaCe0.9Gd0.1O3的超导块的D曲线和掺杂0.5wt%BaCe0.8Gd0.2O3的超导块的E曲线相当。

Claims (3)

1、一种降低单畴YBaCuO超导块成本的掺杂材料,其特征在于,该掺杂材料的化学式为BaCe1-xGdxO3,其中,0≦x≦0.2。
2、一种制备降低单畴YBaCuO超导块成本的掺杂材料的方法,其特征在于,将BaCO3、CeO2和Gd2O3粉按Ba:Ce:Gd=1:1-x:x配比,其中,0≦x≦0.2,充分混合均匀后经1400℃~1500℃焙烧5~10小时,反应生成BaCe1-xGdxO3掺杂材料,其中,0≦x≦0.2。
3、一种降低单畴YBaCuO超导块成本的掺杂材料的掺杂方法,其特征在于,将BaCe1-xGdxO3按相对于Y1.8Ba2.4Cu3.4Oy先驱粉的0.25wt%~1.00wt%的比例加入该Y1.8Ba2.4Cu3.4Oy先驱粉末中,在BaCe1-xGdxO3中,0≦x≦0.2,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴结构的YBaCuO超导块。
CN2007101784410A 2007-11-30 2007-11-30 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法 Active CN101450858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101784410A CN101450858B (zh) 2007-11-30 2007-11-30 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101784410A CN101450858B (zh) 2007-11-30 2007-11-30 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法

Publications (2)

Publication Number Publication Date
CN101450858A true CN101450858A (zh) 2009-06-10
CN101450858B CN101450858B (zh) 2012-01-25

Family

ID=40733366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101784410A Active CN101450858B (zh) 2007-11-30 2007-11-30 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法

Country Status (1)

Country Link
CN (1) CN101450858B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126978A (zh) * 2020-09-03 2020-12-25 西安航空学院 一种二次单畴化生长钆钡铜氧超导块材的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50014931D1 (de) * 1999-02-17 2008-03-13 Solvay Infra Bad Hoenningen Gm Supraleitende körper aus zinkdotiertem kupferoxidmaterial
US7419736B2 (en) * 2003-09-03 2008-09-02 Matsushita Electric Industrial Co., Ltd. Mixed ion conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126978A (zh) * 2020-09-03 2020-12-25 西安航空学院 一种二次单畴化生长钆钡铜氧超导块材的方法

Also Published As

Publication number Publication date
CN101450858B (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
Hamrita et al. Superconducting properties of polycrystalline YBa2Cu3O7–d prepared by sintering of ball-milled precursor powder
Muralidhar et al. A low-cost batch process for high-performance melt-textured GdBaCuO pellets
ÖZTORNACI et al. The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1. 8Sr2 AuxCa1. 1Cu2. 1Oy (Bi-2212) ceramics
Li et al. Employment of NdBCO/YBCO/MgO film seed in the infiltration growth technique for fabricating single-grain YBCO bulk superconductors
CN101279847A (zh) 微量稀土元素掺杂钇钡铜氧超导块体材料的制备方法
Li et al. Effect of the fabrication process on the electrical properties of polycrystalline Bi1. 7Pb0. 3Sr2Ca2Cu3O10
CN1929044B (zh) 含有Si元素和C元素的MgB2超导材料及其制备方法
CN101450859B (zh) 用BaCeO3掺杂提高YBaCuO超导体性能的方法
CN101993247A (zh) 一种基于钙钛矿结构的单相铁基超导材料及其制备方法
CN101450858B (zh) 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法
CN114182123B (zh) 一种快速制备Nb3Al超导体的方法
Sasakura et al. New Pb-based Superconductor with the 1222 Structure in the (Pb 0.75 P 0.25) Sr 2 (Eu 1.9− x Ce x Sr 0.1) Cu 2 O z System
Li et al. Growth of single‐grain GdBa2Cu3O7‐x superconductors by top seeded infiltration and growth technique
Margiani et al. Enhancement of phase formation and critical current density in (bi, pb)-2223 superconductor by boron addition and ball milling
CN101462881A (zh) 一种掺杂二硼化镁超导材料的制备方法
Zhang et al. Thermoelectric properties of Yb-La-Nb-doped SrTiO3
Margiani et al. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi, Pb)-2223 HTS
Sasakura et al. New Members of the Pb-based 1222 Superconductor Containing Phosphorus:(Pb 0.75 P 0.25) Sr 2 (Ln 1.9− x Ce x Sr 0.1) Cu 2 O z (Ln= Sm and Gd)
Ateş et al. The effects of Ag addition and magnetic field on melt-processed YBa2Cu3Ox superconductors
CN101319380B (zh) 稀土242相控制组分生长超导块材的方法
YUSMI et al. Effect of Yb2O3 Nanoparticle Addition on Superconducting Properties of BSCCO (2223)/Ag Tapes by Acetate Precipitation Method.
Kayed Synthesis, X‐ray data, and Hall effect measurements of Li‐doped Tl‐Ba‐Ca‐Cu‐O superconductor
JP2006062896A (ja) 酸化物超電導材料及びその製造方法
Polasek et al. Processing of bulk Bi-2223 high-temperature superconductor
Wang et al. Comparison of Y 2 Ba 4 CuBiOy Nanoparticles with CeO 2 Doping on the Levitation Force of Single Domain YBCO Bulk Superconductor by TSIG Process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190626

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088, 2, Xinjie street, Beijing

Patentee before: General Research Institute for Nonferrous Metals

TR01 Transfer of patent right