CN101449195A - 饱和光学器件 - Google Patents

饱和光学器件 Download PDF

Info

Publication number
CN101449195A
CN101449195A CNA2007800182008A CN200780018200A CN101449195A CN 101449195 A CN101449195 A CN 101449195A CN A2007800182008 A CNA2007800182008 A CN A2007800182008A CN 200780018200 A CN200780018200 A CN 200780018200A CN 101449195 A CN101449195 A CN 101449195A
Authority
CN
China
Prior art keywords
imaging system
psf
function
sampling
pupil function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800182008A
Other languages
English (en)
Other versions
CN101449195B (zh
Inventor
里吉斯·S·凡
爱德华·R·道斯基
肯尼思·S·库贝拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omnivision Technologies Inc
Original Assignee
Omnivision CDM Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2007/009347 external-priority patent/WO2008020899A2/en
Application filed by Omnivision CDM Optics Inc filed Critical Omnivision CDM Optics Inc
Publication of CN101449195A publication Critical patent/CN101449195A/zh
Application granted granted Critical
Publication of CN101449195B publication Critical patent/CN101449195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Glass Compositions (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Lenses (AREA)

Abstract

一种成像系统,其包括用于接收电磁能量并根据所接收的电磁能量生成抽样数据的探测器。该探测器由阈值点表征,使得该抽样数据处于如下两种状态之一:i)当所接收的电磁能量的强度小于阈值点,该抽样数据低于阈值;ii)当该电磁能量的强度小于阈值点,该抽样数据高于阈值。该成像系统还包括用于提供抽样数据特征的饱和光学器件,其中,该抽样数据在小于阈值时的特征不同于该抽样数据大于阈值的特征。

Description

饱和光学器件
相关申请的交叉引用
本发明要求于2006年5月23号提交的名为SATURATIONOPTICS(饱和光学器件)的美国临时申请序列号60/802,724的优先权,要求于2006年5月26号提交的名为SATURATION OPTICS(饱和光学器件)的美国临时申请序列号60/808,790的优先权;以及要求于2007年4月17号提交的名为ARRAYED IMAGING SYSTEMS ANDASSOCIATED METHODS(排列的成像系统及相关方法)的PCT专利申请序列号PCT/US07/09347的优先权,这些申请通过引用并入本文。
通过引用将于2003年2月27号提交的名为OPTIMIZED IMAGEPROCESSING FOR WAVEFRONT CODED IMAGING SYSTEMS(波前编码成像系统的优化的图像处理)的美国专利申请序列号10/376,924的全部内容并入本文。
背景技术
在通常的成像条件下,成像系统被设计为对于平均期望的照明条件的最佳性能并产生质量足够良好的图像。图像可从多种条件和场景收集;具有人工照明(例如,白炽光或荧光灯照明)的户内场景可以极大地不同于明亮的太阳光下的户外场景。
混合户内和户外照明特性的合成照明条件也是可能的。例如,成像系统可位于建筑物的内部,而成像场景包括建筑物中的照明较差的深色物体和建筑物外的明亮太阳光照射下的浅色物体。该组合的户内和户外场景可需要对亮度范围在多个量级上变化的一组物体进行成像。
场景或物体的亮度可在形式上通过测量该场景中的具体物体的亮度来表征。亮度被定义为每平方米坎德拉的数量(“cd/m2")。例如,深色的木质表面的亮度小于1cd/m2,浅色壁可具有大约10cd/m2的亮度,混凝土停车场可具有大约1,000cd/m2的亮度,并且天空可具有大于10,000cd/m2的亮度。
发明内容
在一个实施方式中,公开了用于对电磁能量进行成像的成像系统。该成像系统包括用于接收电磁能量并根据所接收的电磁能量产生抽样数据的探测器。该探测器由阈值点表征,使得抽样数据处于两种状态之一:i)低于阈值,其中,所接收的电磁能量的强度小于该阈值点;以及ii)高于阈值,其中,该电磁能量的强度大于阈值点。所述成像系统还包括用于提供抽样数据特征的饱和光学器件,其中,低于阈值的抽样数据的特征不同于高于阈值的抽样数据的特征。在另一个实施方式中,饱和光学器件包括用于将电磁能量直接引向探测器的成像光学器件和用于修改电磁能量波前的相位修改光学器件。在又一个实施方式中,饱和光学器件包括提供多等分(multi-fold)对称的分区的排列。
在一个实施方式中,用于成像系统中的相位修改光学器件包括常数廓线路径表面,其包括多个分区,该多个分区中的每个均包括表面垂度,该表面垂度由沿着与来自相位修改光学器件的中心的径向矢量相垂直的直线的一维函数来定义。
在一个实施方式中,公开了设计用在成像系统中的瞳孔函数的方法。该方法包括在考虑成像系统和瞳孔函数的特征的前提下选择瞳孔函数并计算抽样的PSF。该方法还包括根据所选的度量来评估抽样的PSF,如果抽样的PSF不符合所选的度量,则利用一组修改参数来修改瞳孔函数,并且重复评估和修改该瞳孔函数,直到该抽样的PSF符合所选的度量。
附图说明
注意,为了更清楚地说明,附图中的某些元件可不按比例画出。还应该注意,为了更清楚地说明和再现一致性,某些图像可在不损失一般性的情况下被简化或反之被加强。
图1是根据实施方式的包括饱和光学器件的成像系统的示意图,其在此示出以说明成像系统对于不饱和照明的响应;
图2是根据实施方式的包括饱和光学器件的成像系统,其在此示出以说明成像系统对于饱和照明的响应;
图3是根据实施方式的用于设计用于饱和光学器件的瞳孔函数的过程的流程图;
图4是根据实施方式的具有空间均匀分区的圆形瞳孔函数的图解;
图5是根据实施方式的具有空间非均匀分区的圆形瞳孔函数的图解;
图6是根据实施方式的具有空间均匀分区的圆形瞳孔函数的图解;
图7是图6所示的圆形瞳孔函数的一部分的细节的图解;
图8示出了根据实施方式的用于定义瞳孔函数的一部分的示例性多项式的绘图;
图9示出了根据实施方式的示例性瞳孔函数的三维(“3D”)网格绘图;
图10示出了示例性平滑函数的3D网格绘图;
图11示出了根据实施方式,结合图9的示例性瞳孔函数和图10的示例性平滑函数的修改的瞳孔函数的3D网格绘图;
图12-15示出了根据实施方式,由包含图9的瞳孔函数的成像系统所获得的抽样的点分布函数(“PSF”)的图像;
图16-19示出了根据实施方式,由包含图11的修改的瞳孔函数的成像系统所获得的抽样的PSF图像;
图20为了方便起见而在此重复示出了图9的3D网格绘图;
图21示出了根据实施方式的示例性外部区域掩模函数的3D网格绘图;
图22示出了根据实施方式的示例性内部区域掩模函数的3D网格绘图;
图23示出了根据实施方式,由图9中的瞳孔函数与图21所示的外部区域掩模函数进行点点相乘而得到的、图9中的瞳孔函数的所选的内部区域的瞳孔函数的3D网格绘图;
图24示出了根据实施方式的,由图9中的瞳孔函数与图22所示的内部区域掩模函数进行点点相乘而得到的、图9中的瞳孔函数的所选的外部区域的瞳孔函数的3D网格绘图;
图25示出了由包含图23所示的所选的内部区域的瞳孔函数的成像系统所获得的饱和的抽样PSF的绘图;
图26示出了由包含图24所示的所选的外部区域的瞳孔函数的成像系统所获得的饱和的抽样PSF的绘图;
图27为了方便起见在此重复示出了图11的3D网格绘图;
图28为了方便起见在此重复示出了图21的3D网格绘图;
图29为了方便起见在此重复示出了图22的3D网格绘图;
图30示出了根据实施方式,由图11的瞳孔函数与图21的外部区域掩模函数进行点点相乘而得到的所选的内部区域瞳孔函数的3D网格绘图;
图31示出了根据实施方式的,由图11的瞳孔函数与图22的内部区域掩模函数进行点点相乘而得到的所选的外部区域瞳孔函数的3D网格绘图;
图32示出了由包含如图30所示的所选的内部区域瞳孔函数的成像系统所获得的饱和的抽样PSF绘图;
图33示出了由包含如图31所示的所选的外部区域瞳孔函数的成像系统所获得的饱和的抽样PSF绘图;
图34示出了根据实施方式的余弦相位瞳孔函数的灰度图像;
图35示出了根据实施方式的随机相位瞳孔函数的灰度图像;
图36示出了分别如图34和35所示的余弦相位和随机相位瞳孔函数之和的灰度图像;
图37示出了由包含图34的瞳孔函数的成像系统所获得的不饱和的抽样PSF的灰度图像;
图38示出了由包含图34的瞳孔函数的成像系统所获得的饱和的抽样PSF的灰度图像;
图39示出了由包含图36的瞳孔函数的成像系统所获得的不饱和的抽样PSF的灰度图像;以及
图40示出了由包含图34的瞳孔函数的成像系统所获得的饱和的抽样PSF的灰度图像。
具体实施方式
当照明条件变化时,成像系统的性能会受到影响;因此,除了其它特征以外,我们现在公开这样的成像系统的设计和实施,即,当电磁能量的照度足够高以使探测器饱和时,该成像系统以特定形式运行。高照度和低照度条件的两个实例为:1)使探测器饱和的高照度以及不能使探测器饱和的低照度;以及2)不能完全使探测器饱和的高照度,但是低照度与高照度的不同足以在存在噪声的情况下辨别这两者。第二定义例如在关于二进制或阈值数字图像时是有用的;即,当考虑低于探测器的饱和点的相对照度时,低照度与高照度之间的区分度可定义为在此处可以确定合适阈值的值。
例如,对于提供电子数据的8位探测器,低照度可意味着不饱和的0至254计数,而高照度可意味着255或更多的计数;即,对于示例性的8位探测器,255计数的值可表示为探测器的饱和点。可选地,对于相同的8位探测器,对应于10和100计数的照度级被分别认为是存在噪声级时的低、高照度级,该噪声级小于90计数从而可辨别这些照度中的差异。
例如,当成像场景的动态范围大于探测器的动态范围时,探测器达到饱和。对于示例性的8位探测器,例如,深色的木质表面(小于1cd/m2)和亮色的墙壁(~10cd/m2)可能不会使探测器饱和,而停车场(~1,000cd/m2)和天空(大于10,000cd/m2)可使探测器饱和。上述物体的强度假定示例性探测器的饱和点例如为20cd/m2的亮度。本文中描述的示例性饱和的抽样PSF与饱和度相关联。例如,图25的抽样PSF 2500记为50×饱和。因此,PSF 2500可与入射到探测器上的1000cd/m2的强度相关联。
除了通常的成像,探测器的饱和度还可发生在艺术成像情况下或发生用来探测探测器或光学器件的响应。艺术成像可包括结构化的照明源的使用、专用的闪光照明和/或长期的暴露。探测操作可使用高强度的不相干或相干源。探测操作可用于确定例如探测器的识别或用于军事应用中的探测器的探测。本文中,专门为高动态范围的强度成像条件所设计的成像光学器件被称为“饱和光学器件”。换句话说,包含饱和光学器件的成像系统是这样一个成像系统,其被设计为使得由物体的成像系统所形成的图像可被设计为例如物体的照度的函数。饱和光学器件包括专门设计的瞳孔函数,使得包含饱和光学器件的成像系统在饱和的成像条件下以预定的方式运转。
饱和光学器件可额外地包括成像光学器件和/或相位修改光学器件,该相位修改光学器件用于对所透过的电磁能量的波前进行编码,例如在通过引用并入本文的美国专利号5,748,371中描述。在某些应用中,相位修改光学器件可包括非转动对称的光学器件。特别地,当形成具有高照度的远点图像时,相位修改光学器件可生成图像,所感知的该图像非常不同于由仅包含转动对称的光学器件的成像系统(即,没有相位修改光学器件的“传统的”成像系统)所生成的图像。
成像系统中的饱和光学器件的使用可提供某些益处。例如,包含有与相位修改光学器件结合的饱和光学器件的成像系统可被配置为生成这样的图像,即,该图像看起来像是由传统的成像系统所生成的,但其具有附加的优点,例如,减少了像差和/或延长的景深。饱和光学器件也可用于成像系统中以生成这样的图像,即,该图像看起来像是由非传统的成像系统所生成的,具有某些可识别特征(例如,数字水印),该特征提供了对使用在成像系统中的光学器件的指示器。当饱和时,还要考虑由传统成像系统所形成的离轴饱和图像可呈现出不期望的效果,例如,当孔径光阑靠着在传统成像系统中的光学器件放置时的光晕。实际上,孔径光阑具有有限的厚度,使得不同视场位置交迭在不同的物理位置上,从而产生会降低图像质量的不对称的饱和响应。因此,饱和光学器件的使用可减少这些问题。
在本文中,许多实施方式是结合点、或点物体或可选地PSF的图像进行描述的。在本文的上下文中,该描述被认为是可互换的。还认为任一物体都可分解为一组点物体,并且其图像可分解为相关的PSF组。
在本发明公开的上下文中,传统观念中的PSF(作为成像系统的光学函数)与称为由探测器所捕获的PSF的“抽样PSF”之间是有差别的。即,抽样PSF是由成像系统中的探测器的某些特征(例如但不限于,抽样图案、失常(pixilation)、波长选择和饱和度)所修改的PSF。抽样PSF的特征直接与成像系统的设计相关,也与由成像系统所成像的入射电磁能量分布相关。抽样PSF的特征包括用于描述抽样PSF形状和形式的任意的可识别特征,例如但不限于,图像中的等高线、轮廓、覆盖区、空间范围、外形、横截面、像素值、方向、梯度、亮度和位置。
而且,抽样PSF可被进一步分类,当照度足以使部分探测器饱和时,其作为饱和的抽样PSF,而当探测器不饱和时,作为不饱和的抽样PSF。来自图像的一组相关的PSF也可由成像系统中的探测器的上述特征来修改,并且,当探测器饱和时,产生具有饱和的抽样PSF的抽样图像,更简明地,产生“饱和的抽样图像”。
图1是根据实施方式、包含饱和光学器件的成像系统100的示意图,在此示出是为了说明成像系统中探测器对具有低照度的不饱和照明的响应。成像系统100对小的、离轴的物体120进行成像,其中,物体120未反射且不发射足够的电磁能量以使探测器饱和。在探测器160(例如,薄膜、CCD、CMOS探测器或微测辐射热计)处,成像系统100还包括用于对物体120进行成像的饱和光学器件140。如下文更加详细说明的那样,饱和光学器件140可包括已被设计为适应饱和条件的成像光学器件和相位修改光学器件。探测器160和可选的信号处理器170合作以产生可用于形成图像180的电子数据。如果物体120足够小,则图像180可被认为是用于成像系统100的抽样PSF。在不饱和条件下,图像180类似于期望来自传统成像系统图像;即,图像180包括类似物体120的形状120′。信号处理器170可通过技术(例如但不限于,滤波、缩放比例以及色彩纠正)的应用来进一步处理图像180。
图2是具有饱和光学器件的成像系统200的示意图,在此示出是为了说明该成像系统对具有高照度的饱和照明的响应。成像系统200的部件与成像系统100的部件基本相同,除了成像系统200用于对高亮度的物体220进行成像。高亮度物体220的照度足够大,从而形成饱和的抽样图像280。饱和光学器件140和探测器160、可选地结合信号处理器170,产生对应于饱和的抽样图像280的电子数据,其中,图像280可呈现不同于图1中的不饱和的抽样图像180的特征,或者不同于由不具有饱和光学器件的传统成像系统所捕获的饱和抽样图像的特征。在如图2所示的示例性情况中,饱和的抽样图像280是所形成的表示文本“CDM”的图像与图像180的叠加(注意,类似于图像180中的点位于饱和的抽样图像280中的“D”的中心)。所形成的图像由饱和成像条件下的饱和光学器件140所生成。该形成的图像可用作例如用于在特定照明条件下识别给定图像系统的数字水印;即,照度可用于识别特殊的成像系统。
图像280可分布在探测器160的大部分上,并近似于由包括例如圆对称光学器件的传统成像系统所形成的抽样PSF。如通过比较图像180和饱和的抽样图像280可看出的那样,可以看出饱和光学器件140的使用导致了仅根据物体的照度而可识别的不同抽样图像。饱和光学器件140也可由定义的视场来表征,使得对应于饱和抽样图像280的抽象PSF的特征可依赖于视场内的物体220的位置。另外,饱和光学器件140的瞳孔函数可被进一步配置为使得对位于视场外的物体进行成像可产生具有仍然不同特征的抽样图像。可选地,可设计饱和光学器件140,使得抽样图像的特征或其部分特征是范围、视场角物体、体积定位(volumetric location)、形状、照度和色彩中的一个或多个的函数。
图3示出了为饱和光学器件设计瞳孔函数的过程300的流程图。过程300可依赖于某些推理的技术,例如已知的瞳孔边缘的衍射效果、可由相位不连续造成的伪像以及用于饱和光学器件设计中的对称性。
过程300从开始步骤310开始,接着是步骤320以选择一个或多个瞳孔函数作为用于设计的初始推测。例如,图9的瞳孔函数900、图10的瞳孔函数100、图34的瞳孔函数3400和图35的瞳孔函数3500适用于步骤320中的选择。一旦选定了作为初始推测的瞳孔函数,过程300就进入步骤340,在该步骤中,考虑所用的光学器件的特征(例如,成像光学器件和所选的瞳孔函数)以及与饱和光学器件一起使用的探测器的规格,计算对应于所选的瞳孔函数的抽样PSF。抽样的PSF可作为例如共轭、饱和以及波长的变量的函数来计算。抽样的PSF也可根据瞳孔函数的一部分(例如,内部和外部区域)而非整体的瞳孔函数来计算。
接下来,在步骤360中,通过与预定的度量进行比较来评估在步骤340中所计算的抽样PSF。例如,可评估饱和的抽样PSF的低亮度区域和不饱和的抽样PSF的高亮度区域来提供特征,例如密度,对称,与由传统成像系统(即,没有饱和光学器件)所产生的抽样PSF的相似度,以及相比于在饱和成像条件下由传统成像系统产生的饱和的抽样PSF、在饱和的抽样PSF中提供的唯一度。然后,做出决定370以决定在步骤360中评估的抽样PSF是否为给定的成像系统所接受。如果决定370的答案是“是”,则抽样PSF是可接受的,过程300在步骤380中结束。如果决定370的答案是“否”,则抽样PSF是不可接受的,过程300进入步骤350,在步骤350中根据某些参数来修改瞳孔函数,然后过程返回至步骤340,在该步骤中,为在步骤350中所修改的瞳孔函数计算抽样的PSF。瞳孔函数可被修改以例如获得或维持一个或多个如下特性:作为角坐标函数(即,极坐标中的θ)的常数相位;作为径向坐标函数(即,极坐标中的R)的最小相位不连续性;以及与饱和与非饱和情况中都相关的抽样PSF的某些特征(例如,抽样PSF具有圆形或闭合的轮廓)。
用于饱和光学器件的合适的瞳孔函数配置的一个实例是分区的瞳孔函数。分区的瞳孔函数可包括任意数量的扇区。例如,图4示出了具有被空间一致地分区为扇区410、420、430、440和450的圆形瞳孔函数400。可选地,图5示出了具有被空间不一致地分区为六个扇区510、520、530、540、550和560并对其进行进一步细分的圆形瞳孔函数500。图4和5所用的各种阴影用于表示不同的数学函数形式。每个扇区均可具有相同或不同的函数形式,并可在扇区(例如,图5的扇区520和560)的每个分区中进一步包括不同的函数形式和/或形状。
设计包括分区的瞳孔函数的一种方法是通过瞳孔函数的结合。例如,如果P0是生成PSF的第一形式的第一瞳孔函数;P1是生成PSF的第二形式的第二瞳孔函数等等,则新的瞳孔函数可定义为各种瞳孔函数的加权组合:
P=F(aP1,bP2,...,zPz)           等式1
其中,a、b和z是参数。函数F可包括任意数学操作,例如乘、除、加、除、卷积、非线性或组合函数、或者上述组合。参数a、b和z可以为部分或全部地修改瞳孔函数的标量或矢量。下文所述的实施例描述了按该函数规定而设计的多种瞳孔函数。包含由等式1所定义的瞳孔函数的饱和光学器件可与信号处理相结合,使得所形成的场景和物体的图像是该物体和场景的亮度函数。
图6示出了具有空间一致分区的第一至第八扇区(分别为610、620、630、640、650、660、670和680)的圆形瞳孔函数600。瞳孔函数600是常数廓线路径(constant profile path)(“CPP“)形式的实施例。CPP形式是利用多条直的线段来构造的;即,每个扇区可被数学地描述为从圆形瞳孔函数600的中心开始沿着垂直于径向矢量的直线段。
每个扇区还均具有由离光轴的距离所定义的至少两个区域(例如,第一扇区610分别具有第一区域612和第二区域614)。最接近瞳孔函数的中心的区域(例如,第一区域612)被称为内部区域,以及离瞳孔函数的中心最远的区域(例如,第二区域614)被称为外部区域。为了清楚起见,仅第一扇区610中的第一和第二区域已在图6中被标记。在一个实施例中,即使整体的瞳孔函数(特别是内部区域)大大背离圆形,被设计为与饱和光学器件一起使用的瞳孔函数的外部区域的等高线通常也为圆形。即,非圆形瞳孔函数可被设计为生成饱和物体的图像,该图像看起来像是由圆形瞳孔函数所生成的。
参考图6,每个扇区的表面形状均作为离瞳孔函数的中心的距离函数而变化。扇区(例如,第一扇区610)的给定区域(例如,第一区域612)可由一维数学函数来表示。对于示例性瞳孔函数600,所有的扇区都由相同的多项式函数(例如,参见图8所讨论的多项式函数810)来描述。瞳孔函数600特别适于在饱和光学器件中使用至少归因于下述特性:1)瞳孔函数600具有偶数的八等分对称,该对称生成对称的PSF,并且因而生成了被认为比由奇对称的PSF所生成的图像更“自然”的图像;2)瞳孔函数600的八等分对称在人眼敏感的水平、垂直、尤其对角线方向提供了充分的调制和亮度;以及3)瞳孔函数600的八等分对称很好地适用于与数字探测器的方点阵和拜耳形进行综合。
图7示出了图6所示的圆形瞳孔函数的一个扇区的某些细节。类似于瞳孔函数600中的八个扇区,扇区700包括内部区域710和外部区域720。通过下述等式给出了通光孔径半径(“CR“)与表面形状高度或垂度(sag)之间的数学关系:
x max = CR · cos ( π 8 ) ,                              等式2
sag ( x ) = Σ n α n x β n ,                               等式3
∀ x > x max , sag ( x ) = sag ( x max ) ,                      等式4
其中,x是广义的一维坐标,αn是系数而βn是指数。另外,所有沿着弦线730的垂度值都限定为具有相同的值。而第一区域710的表面垂度由多项式表示,外部区域720的形状由其它函数确定。
图8示出了定义瞳孔函数的示例性多项式(如插入框810中所示)的绘图800。多项式810是CPP函数的实施例。绘图800的水平轴表示归一化的瞳孔坐标(即,与瞳孔函数的中心的距离),其中,0是瞳孔函数的中心,1是瞳孔函数孔径的边缘。垂直轴表示以波长为单位的表面垂度的高度。CPP函数(例如,多项式810)不仅定义了相位修改光学器件的物理表面的形式,而且当比例合适时,还将用于电磁能量的相位的数学关系式定义为瞳孔坐标的函数。
可结合与图6-8相关联的数学规定来定义瞳孔函数。图9示出了示例性瞳孔函数的3D网格绘图900,该瞳孔函数通过结合上述数学规定而形成。对于网格绘图900和本文中的其它网格绘图,x和y轴表示瞳孔函数的任意空间坐标。这些绘图的垂直轴以波长表示表面垂度。由网格绘图900表示的瞳孔函数适用于能够生成具有例如某些可识别特征的图像的饱和光学器件配置。
由网格绘图900表示的瞳孔函数可利用平滑函数(如图10所示的3D网格绘图)修改为3D网格绘图1000。瞳孔函数与平滑函数的点点相乘导致了修改的瞳孔函数,如图11所示的3D网格绘图1100。由网格绘图1100表示的修改的瞳孔图像适用于实施方式中的饱和光学器件配置。
平滑函数可以是提供期望的“衰减”特征的任意函数,例如但不限于,指数函数、费尔米函数、爱因斯坦函数、高斯函数和S形函数。由3D网格绘图1000表示的平滑函数是余误差函数(complementaryerror function)(“erfc”),其是S形函数的实例。为了形成erfc平滑函数,例如,由图10的网格绘图表示的erfc平滑函数,一维函数erfc转变为转动对称的圆柱形式(即,erfc(x)→erfc(r))。
平滑函数可关于其提供至少如下优点的能力进行选择:1)瞳孔函数在超过CPP多项式的零斜率值(例如,在绘图800中,f’(x=~0.76)=0)的半径上变成常数;2)瞳孔函数在瞳孔函数孔径上圆形对称;以及3)对于瞳孔函数的外部区域中的所有极坐标角来说,瞳孔函数的斜率在径向方向上基本为常数。平滑函数可被设计为使得修改的瞳孔函数的内部区域与外部区域之间的转变发生在斜率为常数的区域中、或发生在离瞳孔函数的中心固定半径处。在实施方式中,如图11所示,原始瞳孔函数和修改的瞳孔函数的内部区域可基本上保持一致。如网格绘图1100所示,外部区域可进行大的修改而显得很不同。
可选地,用于修改电磁能量强度的变迹函数(apodizing function)也可用于生成修改的瞳孔函数,从而生成对透过该元件的电磁能量的相位和强度都进行修改的饱和光学器件。即,用于包含光学器件配置中的瞳孔函数也可只从变迹、强度修改函数来形成。
图12-15示出了在变化的饱和度的情况下与由网格绘图900表示的瞳孔函数相关联的抽样PSF的绘图。在这些绘图和本文随后的抽样PSF绘图中的x和y坐标的单位是探测器像素的单位。图12示出了不饱和的抽样PSF 1200,其看起来非常小且很紧凑。图13示出了10×饱和抽样PSF 1300,其看起来虽然大于不饱和的抽样PSF 1200,但是仍非常小且很紧凑。当照度增加至分别如图14和15所示的50×和500×饱和度时,饱和的抽样PSF变得非常不同于不饱和的抽样PSF 1200。50×饱和的抽样PSF 1400和500×饱和的抽样PSF 1500分别具有星形外形,并且在外形上非常不同于传统成像系统所形成的那些PSF。然而,在消费者应用中总是不希望见到这些效果并且这些效果会被认为是成像较差的物体,该效果可用于专门的目的,例如,水印和艺术成像。
图16-19示出了在变化的饱和度的情况下与由图11的网格绘图1100表示的修改的瞳孔函数相关联的抽样PSF的绘图。不饱和的抽样PSF 1600和10×饱和的抽样PSF 1700看起来类似于与由网格绘图900所表示的瞳孔函数相关联的那些PSF。然而,饱和度更高的抽样PSF(分别为50×饱和的抽样PSF 1800和500×饱和的抽样PSF 1900)看起来非常不同于50×饱和的抽样PSF 1400和500×饱和的抽样PSF1500。50×饱和的抽样PSF 1800和500×饱和的抽样PSF 1900看起来类似于用户期望从与传统成像系统相关联的那些PSF。由与如图12-19所示的PSF相关联的饱和光学器件所产生的图像的处理可改变图像的特征;例如,滤波器可通用于过处理来增强或至少部分地删除饱和的抽样PSF 1400和1500的“星形”轮廓。
图20-24是示出了将瞳孔函数分解为内部区域和外部区域的实例图。为了方便重复,图20示出了图9的瞳孔函数的网格绘图900。图21和22分别示出了示例性内部区域掩模函数和外部区域掩模函数的3D网格绘图2100和2200。对于该实施例,用于这些区域的公共径向边界被定义为归一化的半径r=0.77。选择该归一化的半径值边界使得图8的径向CPP多项式的斜率几乎为零。每个掩模函数均具有用于选择瞳孔函数部分的值1和用于不选择瞳孔函数的值0。图23和24分别示出了由图20所示的瞳孔函数与图21和22中的掩模函数进行点点相乘而得到的所选的内部和外部区域的瞳孔函数的3D网格绘图2300和2400。
图25和26分别示出了与图23和24的所选的内部区域和外部区域的瞳孔函数相关联的饱和的抽样PSF的绘图。x和y轴的单位是探测器像素的单位。与图25的内部区域瞳孔函数相关联的饱和的抽样PSF 2500与不饱和的抽样PSF(例如,分别如图12和16所示的不饱和的抽样PSF 1200和1600)一样紧凑,而与图26的外部区域瞳孔函数相关联的饱和的抽样PSF 2600呈现出大的星形。饱和的抽样PSF2500的相对大小也远小于饱和的抽样PSF 2600的相对大小。因此,看起来外部区域瞳孔函数支配整个瞳孔函数的PSF的效果。
图27-31是示出了将如图11的网格绘图1100所表示的、将修改的瞳孔函数分解为内部和外部区域的实例图。为了方便重复,图27示出了图11的修改的瞳孔函数的网格绘图1100。也为了方便重复,图28和29分别示出了图21和22的掩模函数的3D网格绘图2100和2200。图30和31分别示出了由图27的瞳孔函数与图28和29绘制的掩模函数进行点点相乘而得到的所选的内部和外部区域瞳孔函数的3D网格绘图3000和3100。
图32和33分别示出了与图32和33的所选的内部和外部区域瞳孔函数相关联的饱和的抽样PSF绘图。与图32的内部区域瞳孔函数相关联的饱和的抽样PSF 3200与不饱和的抽样的PSF一样紧凑并基本上与图25的PSF相同。与图31的外部区域瞳孔函数相关联的饱和的抽样PSF 3300非常不同于图26的PSF。如图33所示,与外部区域瞳孔函数相关联的饱和的抽样PSF 3300看起来是圆形的并且是封闭的;也就是说,饱和的抽样PSF 3300看起来是传统成像系统的用户已经希望在饱和的成像条件下获得的轮廓类型。因而,剪裁外部区域瞳孔函数看起来对与其相关的饱和的抽样PSF的形状和大小具有直接的效果。
在本文中可认识到,在不饱和与饱和成像条件下的瞳孔函数的作用是明显不同的。因而,饱和光学器件的设计目的可包括,例如具有如下能力:1)生成P0和P1的合适形式和比例,使得当系统不饱和时,提供充分的图像质量;以及2)生成P1的合适形式,使得当成像系统饱和时,形成的饱和图像是所期望的。在具有圆形孔径的瞳孔函数的情况下,例如,可以希望在孔径的外围围绕的表面的斜率保持作为场角函数的常数,并且希望径向上的相位是连续的。对于非圆形的孔径,外围处的非常数斜率可被定义使得饱和的抽样图像看起来类似于由传统成像系统所形成的图像。对于识别和/或艺术目的,这些设计目的可进行大的修改。这些设计目的可用作图3的过程300的步骤360中的度量以评估抽样的PSF。
用于构造合成瞳孔函数的另一方法是增加两个或更多的完整的瞳孔函数。图34-36示出了瞳孔函数的附加构造的实施例。图34示出了基于数学形式:R3cos(3θ)的示例性瞳孔函数P1的轮廓图3400,其中,R是归一化的径向瞳孔坐标,θ是角度瞳孔坐标。瞳孔函数P1具有大约1.3个波的峰谷波前变化。
图35示出了具有大约0.35个波的峰谷波前变化的统计设计瞳孔函数P2的灰度图像3500。该瞳孔函数的实际形式与该瞳孔函数统计地且空间地相关联。设计过程包括将超过模瞳孔函数的值来建模为单位方差的高斯随机变量,然后用单位体积的第二级高斯函数来卷积二维(“2D”)随机空间变量。生成的包括幅值比例的相关随机变量联并变成瞳孔函数P2的值。可见,此类型的设计过程通常类似于设计衍射相位组件的设计。例如,条形码扫描仪可利用该衍射组件来生成具有凸出照明系统的定位记号。而且,新颖的名片可被模压简单的衍射光学器件,以当由相干电磁能量照明时产生键盘和一般场景的灰度图像。设计该衍射光学器件的技术适用于饱和光学组件的设计中。瞳孔函数P1和P2可加在一起以形成由图36所示的灰度图像3600表示的饱和光学瞳孔函数P1+P2
图37示出了与图34的瞳孔函数P1相关联的不饱和的抽样PSF3700的灰度图像。不饱和的抽样PSF 3700通常是紧凑的并且几乎是转动地对称的。图38示出了与图34的瞳孔函数相关联的饱和的抽样PSF 3800的灰度图像。饱和的抽样PSF 3800示出了非转动对称特征。如上所述,当与由传统成像系统所生成的饱和的抽样PSF相比时,非转动对称特征是更不令人满意的并且具有更低的图像质量。可选地,非转动对称特征可有利地用作识别标记。
图39示出了与图36的瞳孔函数P1+P2相关联的不饱和的抽样PSF3900的灰度图像。图37与图39的比较示出了不饱和的抽样PSF 3700与3900是非常类似的。图40示出了与图36的瞳孔图像P1+P2相关联的饱和的抽样PSF 4000的灰度图像。图38与图40的比较示出了饱和的抽样PSF 3800与4000是非常不同的;即,饱和PSF 3800呈现出非转动对称特征,而图40的饱和PSF 4000通常是圆形对称的并且类似于由传统成像系统所生成的饱和PSF。
抽样PSF可由信号处理器(例如,图1的信号处理器170)处理,从而改变抽样PSF的特征。例如,滤波器可用于或者增强或者至少部分地删除饱和的抽样PSF 3800的三等分对称轮廓,或者滤波器可用于增加不饱和的抽样PSF 3700和3900以及饱和的抽样PSF 4000的紧凑性(即,减小空间范围)。
代替设计图35的瞳孔函数P2以来形成来自成像系统的类似高斯的抽样PSF响应,瞳孔函数可被设计为形成表示文本(例如,如图2所示的“CDM”)的图像,或者作为另一实施例,形成给定成像系统的型号。当该瞳孔被用高照度源(例如,激光器)询问时,所生成的图像可作为该类成像系统的标识符。例如,该效果可以是通过将函数P2放置在仅由离轴照明所照明的成像系统区域内的图像平面上的图像位置的函数。
可对本文所描述的成像系统和过程进行某些改变,但该改变不应背离本文的范围。例如,尽管本文所描述的瞳孔函数在设计饱和光学器件时仅考虑相位,但也可考虑强度或相位和强度。而且,尽管所描述的某些实施方式注意到用两部分来形成饱和光学瞳孔函数,但是多于两部分也是很容易使用的。注意,包含在上文中或在附图中示出的内容应被解释为说明性而非限制性的。权利要求倾向于覆盖所有本文中所描述的所有上位的和下位的特征,以及所有陈述的本发明的方法和系统的范围,由于语言表述的问题,在其之间的也应该落在要求保护的范围内。

Claims (36)

1.一种用于对电磁能量进行成像的成像系统,包括:
探测器,其用于接收所述电磁能量并根据所接收的所述电磁能量生成抽样数据,所述探测器由阈值点来表征,使得所述抽样数据处于两个状态中的一个:i)当所接收的所述电磁能量的强度小于所述阈值点时,所述抽样数据低于阈值;ii)当所述电磁能量大于所述阈值点时,所述抽样数据高于阈值;以及
饱和光学器件,其用于提供所述抽样数据的特征;
其中,所述抽样数据低于阈值时的特征不同于当所述抽样数据高于阈值时的特征。
2.如权利要求1所述的成像系统,其中,所述抽样数据包括抽样的点分布函数(“PSF”)。
3.如权利要求2所述的成像系统,其中,当高于阈值时,所述抽样的PSF是饱和的。
4.如权利要求3所述的成像系统,其中,当高于阈值时,所述抽样的PSF呈现出圆形轮廓和封闭轮廓中的一个。
5.如权利要求3所述的成像系统,由视场表征,其中,当所述抽样的PSF饱和时,所述抽样的PSF对于位于所述视场内的高照度物体和位于所述视场外的高照度物体呈现不同的特征。
6.如权利要求3所述的成像系统,由视场表征,其中,当所述抽样的PSF饱和时,所述抽样的PSF对于位于所述视场内不同位置处的高照度物体呈现不同的特征。
7.如权利要求6所述的成像系统,包括出现在其内的杂散的电磁能量,还包括信号处理器,所述信号处理器用于根据所述抽样的PSF修改与所述杂散的电磁能量相关联的所述抽样数据的一部分。
8.如权利要求2所述的成像系统,还包括用于根据所述抽样的PSF处理所述抽样数据的信号处理器。
9.如权利要求1所述的成像系统,其中,饱和光学器件包括用于将所述电磁能量引向所述探测器的成像光学器件和用于修改所述电磁能量的波前的相位修改光学器件。
10.如权利要求9所述的成像系统,其中,所述相位修改光学器件通常与所述成像光学器件一体形成。
11.如权利要求1所述的成像系统,其中,所述饱和光学器件包括提供多等分对称的分区的排列。
12.如权利要求11所述的成像系统,其中,所述分区中的每个均由表面垂度来表征,所述表面垂度由沿着与来自所述饱和光学器件的中心的径向矢量相垂直的直线的一维函数来描述。
13.如权利要求12所述的成像系统,其中,所述一维函数包括:
sag ( x ) = Σ n a n x β n
其中,并且对于x>xmax,sag(x)=sag(xmax)。
14.如权利要求13所述的成像系统,其中,所述一维函数包括:
sag(x)=-2x+2x9
15.如权利要求11所述的成像系统,其中,所述分区中的每个均进一步至少包括具有不同表面轮廓的内部区域和外部区域。
16.如权利要求15所述的成像系统,其中,所述多个分区的所述外部区域是一致且紧凑的。
17.如权利要求15所述的成像系统,其中,所述多个分区的所述外部区域用平滑函数修改。
18.如权利要求17所述的成像系统,其中,所述平滑函数包括S形。
19.如权利要求18所述的成像系统,其中,所述S形包括余误差函数(“erfc”)。
20.如权利要求11所述的成像系统,其中,所述排列包括大小一致的分区。
21.如权利要求20所述的成像系统,其中,所述分区包括呈现八等分对称的八个分区。
22.如权利要求21所述的成像系统,其中,当所述数据高于阈值时,所述抽样的PSF呈现出预定的图案。
23.如权利要求22所述的成像系统,其中,所述预定的图案包括星形和数字水印中的一种。
24.如权利要求23所述的成像系统,其中,通过用离轴和场外的照明来照明所述成像系统,所述数字水印是可见的。
25.如权利要求11所述的成像系统,其中,所述排列的所述分区中的至少一个在大小上不同于所述排列中的其它分区。
26.用在成像系统中的相位修改光学器件,包括:
常数廓线路径表面,其包括多个分区,所述多个分区中的每个均包括表面垂度,所述表面垂度由沿着与来自所述相位修改光学器件的中心的径向矢量相垂直的直线的一维函数来描述。
27,如权利要求26所述的相位修改光学器件,其中,所述一维函数包括:
sag ( x ) = Σ n a n x β n
其中,
Figure A200780018200C00052
并且对于x>xmax,sag(x)=sag(xmax)。
28.如权利要求27所述的相位修改光学器件,其中,所述一维函数包括:
sag(x)=-2x+2x9
29.如权利要求27或28所述的相位修改光学器件,其中,多个扇区中的每个均至少包括具有不同表面轮廓的内部区域和外部区域。
30.如权利要求29所述的相位修改光学器件,其中,所述多个扇区的所述外部区域是一致且恒定的。
31.如权利要求26所述的相位修改光学器件,还包括用平滑函数修改所述常数廓线路径表面。
32.如权利要求31所述的相位修改光学器件,其中,所述平滑函数包括S形。
33.如权利要求32所述的相位修改光学器件,其中,所述S形包括余误差函数(“erfc”)。
34.如权利要求26所述的相位修改光学器件,其中,所述多个分区在大小上相同。
35.如权利要求26所述的相位修改光学器件,其中,所述多个分区中的至少一个在大小上不同于所述多个分区中的其它分区。
36.一种用于设计用在成像系统中的瞳孔函数的方法,包括:
选择瞳孔函数;
考虑所述成像系统和所述瞳孔函数的特征,计算抽样的PSF;
根据选择的度量评估所述抽样的PSF;以及
如果所述抽样的PSF不符合所述选择的度量,
则利用一组修改参数来修改所述瞳孔函数,
并且重复评估所述瞳孔函数并修改评估所述瞳孔函数,直到所述抽样的PSF符合所述选择的度量。
CN2007800182008A 2006-05-23 2007-05-23 饱和光学器件 Active CN101449195B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US80272406P 2006-05-23 2006-05-23
US60/802,724 2006-05-23
US80879006P 2006-05-26 2006-05-26
US60/808,790 2006-05-26
PCT/US2007/009347 WO2008020899A2 (en) 2006-04-17 2007-04-17 Arrayed imaging systems and associated methods
USPCT/US07/09347 2007-04-17
PCT/US2007/069573 WO2007137293A2 (en) 2006-05-23 2007-05-23 Saturation optics

Publications (2)

Publication Number Publication Date
CN101449195A true CN101449195A (zh) 2009-06-03
CN101449195B CN101449195B (zh) 2013-04-10

Family

ID=40328916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800182008A Active CN101449195B (zh) 2006-05-23 2007-05-23 饱和光学器件

Country Status (9)

Country Link
US (1) US8164040B2 (zh)
EP (2) EP2256538B1 (zh)
JP (1) JP4945635B2 (zh)
KR (1) KR101305868B1 (zh)
CN (1) CN101449195B (zh)
AT (1) ATE462154T1 (zh)
DE (1) DE602007005481D1 (zh)
TW (1) TWI447502B (zh)
WO (1) WO2007137293A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743553B2 (ja) * 2008-09-29 2011-08-10 京セラ株式会社 レンズユニット、撮像装置、および電子機器
US9354212B2 (en) * 2014-01-07 2016-05-31 Applied Materials Israel Ltd. Inspection having a segmented pupil
JP2017143092A (ja) 2016-02-08 2017-08-17 ソニー株式会社 ガラスインタポーザモジュール、撮像装置、および電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300167A (en) * 1980-02-07 1981-11-10 Circon Corporation Automatic iris control system
US4523809A (en) 1983-08-04 1985-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for generating a structured light beam array
US4989959A (en) * 1989-06-12 1991-02-05 Polaroid Corporation Anti-aliasing optical system with pyramidal transparent structure
JP2616297B2 (ja) * 1991-09-17 1997-06-04 三菱電機株式会社 露光制御装置
US5418546A (en) * 1991-08-20 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Visual display system and exposure control apparatus
JP3275010B2 (ja) * 1995-02-03 2002-04-15 ザ・リジェンツ・オブ・ザ・ユニバーシティ・オブ・コロラド 拡大された被写界深度を有する光学システム
US5886798A (en) * 1995-08-21 1999-03-23 Landis & Gyr Technology Innovation Ag Information carriers with diffraction structures
JPH11237656A (ja) * 1998-02-20 1999-08-31 Nitto Kogaku Kk カメラの光量制御装置
JP3791777B2 (ja) 2001-12-28 2006-06-28 オリンパス株式会社 電子内視鏡
CN101118317B (zh) * 2002-02-27 2010-11-03 Cdm光学有限公司 波前编码成像系统的优化图像处理
EP1609112A4 (en) * 2003-03-31 2010-03-24 Cdm Optics Inc SYSTEMS AND METHOD FOR MINIMIZING ABERRATION EFFECTS IN PICTURE SYSTEMS

Also Published As

Publication number Publication date
DE602007005481D1 (de) 2010-05-06
US20100012866A1 (en) 2010-01-21
JP4945635B2 (ja) 2012-06-06
TWI447502B (zh) 2014-08-01
EP2256538A1 (en) 2010-12-01
CN101449195B (zh) 2013-04-10
US8164040B2 (en) 2012-04-24
WO2007137293A3 (en) 2008-03-27
EP2033039A2 (en) 2009-03-11
TW200813593A (en) 2008-03-16
ATE462154T1 (de) 2010-04-15
KR20090025249A (ko) 2009-03-10
KR101305868B1 (ko) 2013-09-09
EP2256538B1 (en) 2015-06-17
WO2007137293A2 (en) 2007-11-29
JP2009542044A (ja) 2009-11-26
EP2033039B1 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
Holmer et al. Sky view factors in forest canopies calculated with IDRISI
Treu et al. The properties of field elliptical galaxies at intermediate redshift—I. Empirical scaling laws
CN105008969B (zh) 用于高分辨率无透镜光学传感的具有奇对称的相位光栅
CN106104318B (zh) 低功率图像改变检测器
CN100565141C (zh) 产生含有深度信息的图像的方法和设备
Lemenkova Seagrass mapping and monitoring along the coasts of Crete, Greece
CN107431748A (zh) 使用具有一个或多个衰减层的图像传感器的无透镜成像系统
CN107607957B (zh) 一种深度信息获取系统及方法、摄像模组和电子设备
CN111290062B (zh) 费马螺旋希腊梯子光子筛的设计方法及其成像光路
CN101449195B (zh) 饱和光学器件
CN101562701A (zh) 一种用于光场成像的数字对焦方法及装置
CN105991990A (zh) 3d信息获取设备、3d信息获取方法、成像设备及电子设备
CN106204554A (zh) 基于多聚焦图像的景深信息获取方法、系统及拍摄终端
Liu et al. 13 Population Estimation and Interpolation Using Remote Sensing
Twumasi et al. Mapping built-up areas using two band ratio on Landsat imagery of ACCRA in Ghana from 1980 to 2017.
CN110989035A (zh) 一种光学遥感探测性能评价方法
Doerry SAR image scaling dynamic range radiometric calibration and display
Helber et al. Generating material maps to map informal settlements
Huang et al. Examination of the EUV intensity in the open magnetic field regions associated with coronal holes
Mohammad et al. A New Design of Fractal Optical Modulation
Thompson et al. A methodology proposed for a South African national wetland inventory
Mårtensson Introduction to remote sensing and geographical information systems
Hasnat et al. Examining International Land Use Policies, Changes, and Conflicts
Li et al. Water extraction based on self-fusion of ETM+ remote sensing data and normalized ratio index
Steeves et al. Aquatic macrophyte mapping using Thematic Mapper imagery and a geographic information system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: FULL VISION TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: OMNIVISION CDM OPTICS INC.

Effective date: 20120810

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20120810

Address after: American California

Applicant after: Full Vision Technology Co., Ltd.

Address before: American Colorado

Applicant before: Omnivision CDM Optics Inc.

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: OmniVision Technologies, Inc.

Address before: American California

Patentee before: Full Vision Technology Co., Ltd.