CN101447584A - 一种可利用自然光照再生阴极受体的微生物燃料电池 - Google Patents

一种可利用自然光照再生阴极受体的微生物燃料电池 Download PDF

Info

Publication number
CN101447584A
CN101447584A CNA2008102372817A CN200810237281A CN101447584A CN 101447584 A CN101447584 A CN 101447584A CN A2008102372817 A CNA2008102372817 A CN A2008102372817A CN 200810237281 A CN200810237281 A CN 200810237281A CN 101447584 A CN101447584 A CN 101447584A
Authority
CN
China
Prior art keywords
cathode
chamber
fuel cell
acceptor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102372817A
Other languages
English (en)
Other versions
CN101447584B (zh
Inventor
李俊
朱恂
廖强
田鑫
王永忠
丁玉栋
王宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN2008102372817A priority Critical patent/CN101447584B/zh
Publication of CN101447584A publication Critical patent/CN101447584A/zh
Application granted granted Critical
Publication of CN101447584B publication Critical patent/CN101447584B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

一种可利用自然光照再生阴极受体的微生物燃料电池,包括阳极室、阴极室、质子交换膜、阳极电极、阴极电极、阴极室和阳极室用质子交换膜分隔开,阳极室为密闭结构,在阳极室设置有进水口和出水口,在阳极室的内部装有阳极溶液和阳极电极,阴极室内装有阴极溶液和阴极电极,其特点是:阴极室由透明材料制成,所述阴极室的顶部设置有透气孔,所述阴极溶液是易溶于水的碘盐,所述阴极电极为碳纸或碳布或碳毡。本发明不仅突破了一般微生物燃料电池阴极电子受体必须定期更换的缺点,同时也不需要向阴极电极上添加催化剂,不但大大降低了电池的生产成本、避免了催化剂中毒现象,而且还降低了电池的运行成本与复杂度,具有良好的应用前景。

Description

一种可利用自然光照再生阴极受体的微生物燃料电池
技术领域
本发明涉及微生物燃料电池,具体涉及一种可利用自然光照再生阴极受体的微生物燃料电池。
背景技术
微生物燃料电池(Microbial Fuel Cell,MFC)以其本身所特有的原料来源广泛、反应条件温和,可在常温常压下进行反应、生物相容性好、在发电过程中可同时降解废水和产生电能的独特优势,而成为一种极有潜力的可再生能源。MFC其应用领域可以包括:从生物可降解物质中产生可再生能源、生物制氢、生物传感器、污水处理、欠发达地区的分散型能源等等。在此背景下,许多微生物燃料电池的研究均已开展,但绝大部分研究仍集中于微生物燃料电池的阳极研究领域。
对于燃料电池而言,决定电池性能不仅应考虑阳极因素,而且应考虑阴极因素。就现在的文献报道来说,在采用相同的阳极的条件下,若针对阴极作出改进,往往能获得MFC性能方面的很大提升。目前,国内外MFC的阴极可分为生物阴极和非生物阴极。生物阴极一般采用生长在阴极的生物膜直接还原空气中的氧或污水中的氮化合物,但此种阴极存在着反应活性不高,长期运行性能稳定性差的缺点。对非生物阴极,在制备过程中,通常采用未负载催化剂的碳电极或负载催化剂的电极,使用催化剂能有效的降低阴极电子受体还原的活化能,大大加快反应速度。目前,使用的最多的MFC阴极采用的是以碳载铂作为阴极催化剂,氧气作为最终电子受体,其利用形式主要有溶解氧或直接使用气态氧,虽然氧作为阴极反应电子受体时,具有氧化还原电位较高、易获得、产物为H2O,无需后处理的优势,但是氧气在水中溶解度很低,其传质速率较小,极大的降低了阴极的性能;而使用气态氧,又存在耗能和催化剂过于昂贵的缺陷。因此,各国研究者们都尝试使用其它电子受体,如:铁氰根离子、生物矿化的氧化锰、高锰酸钾、双氧水和重铬酸钾等等,但是上述电子受体均受到某些因素的制约而不能广泛的应用于MFC的阴极。例如,对于铁氰根离子,虽然它相对于氧气而言,在MFC阴极具有较大的传质系数,但是由于其无法在在氧气中再生,不能持续工作的缺点限制了它的应用;而对于Fe3+,虽然它能直接利用空气中的氧气或氧化细菌再生,但电子受体再生速率低下、阴极需要较低pH值才能保持稳定工作等缺点也限制了Fe3+作为阴极电子受体在MFC中的应用;另外铁离子的通过渗透进入阳极也是采用Fe3+作为阴极电子受体无法回避的难题;使用双氧水,高锰酸钾和重铬酸钾虽然也有着上述优势,但同样存在着无法不耗能再生,需定期更换的问题,这大大的限制了微生物燃料电池的应用。
发明内容
本发明所要解决的技术问题在于提供一种采用可透光的阴极,以多碘离子为阴极电子受体,利用自然光照再生阴极受体的微生物燃料电池。
为了解决上述技术问题,本发明的技术方案是,提供一种可利用自然光照再生阴极受体的微生物燃料电池,包括阳极室、阴极室、质子交换膜、阳极电极、阴极电极、阴极室和阳极室用质子交换膜分隔开,阳极室为密闭结构,在阳极室设置有进水口和出水口,在阳极室的内部装有阳极溶液和阳极电极,阴极室内装有阴极溶液和阴极电极,其特点是:阴极室由透明材料制成,所述阴极室的顶部设置有透气孔,所述阴极溶液是易溶于水的碘盐,所述阴极电极为碳纸或碳布或碳毡。
污水通过微生物燃料电池进口进入微生物燃料电池阳极中,并被阳极电极上的微生物所降解,并同时释放出电子,H+,降解产物。降解产物通过微生物燃料电池出口排出电池外,电子通过外电路用电器到达阴极,H+通过质子交换膜到达阴极;所述阴极室采用透明材料制成,为保证阴极室内多碘离子的再生所必须的光照条件,并且阴极溶液与通过顶部的透气孔扩散来的氧气发生反应,生成多碘离子,而多碘离子在阴极电极表面发生电化学还原反应,反应生成的碘离子又在氧气和光照的条件下再生为多碘离子,从而完成整个阴极受体的消耗-再生过程。多碘离子在阴极的消耗与再生过程的化学反应方程式如下所示:
多碘离子的消耗:I3 -+3e→3I-
多碘离子的再生:
Figure A200810237281D00061
根据本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池的优选方案,所述阴极室内装的阴极溶液是碘化钾溶液或碘化钠溶液。
根据本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池的优选方案,所述构成阴极室的透明材料是玻璃或聚碳酸酯或聚甲基丙稀酸甲酯。
根据本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池的优选方案,所述阳极溶液由污水和培养基构成,所述培养基的主要成分是:
NaHCO3:2.5g/L,  KCl:0.1g/L,
NH4Cl:1.5g/L,   NaCl:0.1g/L,  MgCl2·6H2O:0.1g/L,
MgSO4·7H2O:0.1g/L,       MnCl2·4H2O:0.005g/L,
NaH2PO4·H2O:0.6g/L,      CaCl2·2H2O:0.1g/L,
Na2MoO4·2H2O:0.001g/L,   酵母提取物:0.05g/L。
根据本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池的优选方案,在所述阳极室和阴极室的底部设置有磁转子。
本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池的有益效果是:所述阴极为完全透明的开放型结构,不仅克服了一般微生物燃料电池阴极电子受体必须定期更换的缺点,同时也不需要向阴极电极上添加催化剂,不但大大降低了电池的生产成本、避免了催化剂中毒现象,而且还降低了电池的运行成本与复杂度,由于碘有杀菌作用,因而在阴极还不会造成电极堵塞问题,使电池的运行稳定性提高;同时,本发明所涉及的微生物燃料电池可以作为一种辅助电源,为偏远山区的家庭或公用设施供电,而且还能作为一种污水处理技术,处理生产和生活中产生的高化学需氧量污水,具有良好的应用前景。
附图说明
图一是本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池结构示意图。
图二是本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池在其阴极加入碘化钾溶液后功率的增加趋势图。
图三是本发明所述的一种可利用自然光照再生阴极受体的微生物燃料电池与其他常见电子受体性能比较图。
具体实施方式
实施例1:
参见图1,一种可利用自然光照再生阴极受体的微生物燃料电池,由阳极室2、阴极室6、质子交换膜7、阳极电极3、阴极电极9、进水口1、出水口4、防尘罩8、磁转子10构成,磁转子10设置在所述阳极室2和阴极室6的底部,进水口1设置在阳极室2的下部,出水口4设置在阳极室2的上部,阴极室6和阳极室2用质子交换膜7分隔开,阳极室2为密闭结构,在阳极室2的内部装有阳极电极3,阳极电极3通过铜丝与外电路相连接,阴极室6由玻璃制成,且阴极室6的顶部8开有透气孔,所述阴极电极9固定在顶部8上,为加强微生物燃料电池内部的传质过程,阳极和阴极室内均有一个磁转子10进行搅拌。在本实施例中阳极室2和阴极室6的容积为800mL;阳极电极3采用的是日本东丽公司的碳纸,质子交换膜7采用的是美国杜邦公司的Nafion膜。
阳极接种细菌:阳极接种细菌前,先将活性污泥以高纯氮气曝气24小时小时;将培养基用高压灭菌锅进行高温杀菌杀菌半小时,再曝高纯氮气除氧15分钟,阳极室保持密闭厌氧状态,将培养基质和污水500mL通过微生物燃料电池进口1进入微生物燃料电池阳极中;所述培养基和污水的主要成分是:
NaHCO3:2.5g/L,NaCH3COO:2.7g/L,KCl:0.1g/L,
NH4Cl:1.5g/L,NaCl:0.1g/L,     MgCl2·6H2O:0.1g/L,
MgSO4·7H2O:0.1g/L,             MnCl2·4H2O:0.005g/L,
NaH2PO4·H2O:0.6g/L,            CaCl2·2H2O:0.1g/L,
Na2MoO4·2H2O:0.001g/L,         酵母提取物:0.05g/L;
取已进行高纯氮气曝气的活性污泥,在惰性气体手套箱中按电池阳极溶液的10%进行接种;
在阴极内,插入一块尺寸为16cm2的碳纸电极9,阴极电极9通过铜丝与外电路相连接,随后向阴极室内加入浓度为0.2mol/L碘化钾溶液500mL,并保持光照;在该条件下,溶液中多碘离子浓度约为10mmol/L;
在阳极和阴极电极之间,连接1000欧姆电阻,电池的功率变化如图2。
实施例二:
与实施例一的不同之处是:阴极室6由聚甲基丙稀酸甲酯制成,在阴极内,插入一块尺寸为16cm2的碳毡电极9,电极9通过铜丝与外电路相连接,随后向阴极室内加入浓度为0.2mol/L碘化钾溶液500mL,并保持光照;在该条件下,溶液中多碘离子浓度约为10mmol/L;
在阳极和阴极电极之间,连接1000欧姆电阻,电池的功率变化如图2。
从图2中可以看出,在没有任何附加能量输入,仅靠光照,采用多碘离子为阴极受体的微生物燃料电池功率密度在三天内从刚加入碘化钾后的30mW/m2增加到400mW/m2。且在随后的一周内,在保持光照的条件下,电池性能并没有因为多碘离子的消耗而下降,相反,其性能却略有提高,至约430mW/m2
实施例三:
与实施例一的不同之处是:阴极室(6)由聚碳酸酯制成,在阴极内,插入一块尺寸为16cm2的碳布电极9,电极9通过铜丝与外电路相连接,随后向阴极室内加入浓度为0.2mol/L碘化钠溶液500mL,并保持光照;在该条件下,溶液中多碘离子浓度约为10mmol/L。
在阳极和阴极电极之间,连接1000欧姆电阻。电池的功率如图3。
实施例四:
与实施例三的不同之处是:阴极室内加入浓度为10mmol/L六氰合铁(III)酸钾溶液500mL,在阳极和阴极电极之间,连接1000欧姆电阻,电池的功率如图3。
实施例五:
与实施例三的不同之处是:阴极室内电极上Pt催化剂担量为1mgPt/cm2,氧气以10mL/min流速通入阴极内,阴极内溶液为500mL蒸馏水,在阳极和阴极电极之间,连接1000欧姆电阻,电池的功率如图3。
从图3中可以看出,在同等实验条件下,采用本发明的多碘化钠为电子受体的微生物燃料电池性能比采用Pt催化的氧气性能高约一倍,比采用六氰合铁(III)酸钾为电子受体的微生物燃料电池性能高两倍以上。

Claims (5)

1、一种可利用自然光照再生阴极受体的微生物燃料电池,包括阳极室(2)、阴极室(6)、质子交换膜(7)、阳极电极(3)、阴极电极(9)、阴极室(6)和阳极室(2)用质子交换膜(7)分隔开,阳极室(2)为密闭结构,在阳极室(2)设置有进水口(1)和出水口(4),在阳极室(2)的内部装有阳极溶液和阳极电极(3),阴极室(6)内装有阴极溶液和阴极电极(9),其特征在于:阴极室(6)由透明材料制成,所述阴极室(6)的顶部(8)设置有透气孔,所述阴极溶液是易溶于水的碘盐,所述阴极电极(9)为碳纸或碳布或碳毡。
2、根据权利要求1所述的一种可利用自然光照再生阴极受体的微生物燃料电池,其特征在于:所述阴极室(6)内的阴极溶液是碘化钾溶液或碘化钠溶液。
3、根据权利要求2所述的一种可利用自然光照再生阴极受体的微生物燃料电池,其特征在于:所述构成阴极室(6)的透明材料是玻璃或聚碳酸酯或聚甲基丙稀酸甲酯。
4、根据权利要求1或2或3所述的一种可利用自然光照再生阴极受体的微生物燃料电池,其特征在于:所述阳极溶液由污水和培养基构成,所述培养基的主要成分是:
NaHCO3:2.5g/L,KCl:0.1g/L,NH4Cl:1.5g/L,NaCl:0.1g/L,MgCl2·6H2O:0.1g/L,MgSO4·7H2O:0.1g/L,MnCl2·4H2O:0.005g/L,NaH2PO4·H2O:0.6g/L,CaCl2·2H2O:0.1g/L,Na2MoO4·2H2O:0.001g/L,酵母提取物:0.05g/L。
5、根据权利要求4所述的一种可利用自然光照再生阴极受体的微生物燃料电池,其特征在于:在所述阳极室(2)和阴极室(6)的底部设置有磁转子(10)。
CN2008102372817A 2008-12-29 2008-12-29 一种可利用自然光照再生阴极受体的微生物燃料电池 Expired - Fee Related CN101447584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102372817A CN101447584B (zh) 2008-12-29 2008-12-29 一种可利用自然光照再生阴极受体的微生物燃料电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102372817A CN101447584B (zh) 2008-12-29 2008-12-29 一种可利用自然光照再生阴极受体的微生物燃料电池

Publications (2)

Publication Number Publication Date
CN101447584A true CN101447584A (zh) 2009-06-03
CN101447584B CN101447584B (zh) 2010-11-10

Family

ID=40743080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102372817A Expired - Fee Related CN101447584B (zh) 2008-12-29 2008-12-29 一种可利用自然光照再生阴极受体的微生物燃料电池

Country Status (1)

Country Link
CN (1) CN101447584B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646843A (zh) * 2012-04-28 2012-08-22 大连理工大学 化学阴极微生物燃料电池浸出钴酸锂中Co(III)的方法
CN104091961A (zh) * 2014-07-15 2014-10-08 武汉理工大学 一种燃料电池及其制备方法
CN105489919A (zh) * 2016-01-20 2016-04-13 重庆大学 无缓冲液运行下空气阴极微生物燃料电池及性能提升方法
CN107245580A (zh) * 2017-05-08 2017-10-13 大连理工大学 一种清洁有效的从酸性废蚀刻溶液中分离并回收铜、锡和铁的方法
CN107359365A (zh) * 2017-07-12 2017-11-17 中国农业科学院农田灌溉研究所 一种水动力微生物燃料电池脱盐装置
CN110112449A (zh) * 2019-06-06 2019-08-09 哈尔滨工业大学 一种高效还原二氧化碳的光催化阴极型微生物燃料电池及利用其还原二氧化碳的方法
CN111564642A (zh) * 2020-05-29 2020-08-21 哈尔滨工业大学 碳化铌纳米粒子修饰的碳布电极的制备方法及其应用
CN114551903A (zh) * 2022-02-25 2022-05-27 广州大学 微生物燃料电池阴极、制备方法及其应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646843A (zh) * 2012-04-28 2012-08-22 大连理工大学 化学阴极微生物燃料电池浸出钴酸锂中Co(III)的方法
CN104091961A (zh) * 2014-07-15 2014-10-08 武汉理工大学 一种燃料电池及其制备方法
CN104091961B (zh) * 2014-07-15 2017-05-17 武汉理工大学 一种燃料电池及其制备方法
CN105489919A (zh) * 2016-01-20 2016-04-13 重庆大学 无缓冲液运行下空气阴极微生物燃料电池及性能提升方法
CN107245580A (zh) * 2017-05-08 2017-10-13 大连理工大学 一种清洁有效的从酸性废蚀刻溶液中分离并回收铜、锡和铁的方法
CN107359365A (zh) * 2017-07-12 2017-11-17 中国农业科学院农田灌溉研究所 一种水动力微生物燃料电池脱盐装置
CN110112449A (zh) * 2019-06-06 2019-08-09 哈尔滨工业大学 一种高效还原二氧化碳的光催化阴极型微生物燃料电池及利用其还原二氧化碳的方法
CN110112449B (zh) * 2019-06-06 2022-01-18 哈尔滨工业大学 一种高效还原二氧化碳的光催化阴极型微生物燃料电池及利用其还原二氧化碳的方法
CN111564642A (zh) * 2020-05-29 2020-08-21 哈尔滨工业大学 碳化铌纳米粒子修饰的碳布电极的制备方法及其应用
CN114551903A (zh) * 2022-02-25 2022-05-27 广州大学 微生物燃料电池阴极、制备方法及其应用

Also Published As

Publication number Publication date
CN101447584B (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101447584B (zh) 一种可利用自然光照再生阴极受体的微生物燃料电池
Gul et al. Bioelectrochemical systems: sustainable bio-energy powerhouses
Kadier et al. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production
Rahimnejad et al. Microbial fuel cell as new technology for bioelectricity generation: A review
Varanasi et al. Biohydrogen production using microbial electrolysis cell: recent advances and future prospects
Barua et al. Electricity generation from biowaste based microbial fuel cells
Hamelers et al. New applications and performance of bioelectrochemical systems
Behera et al. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness
Virdis et al. Microbial fuel cells
CN105047977B (zh) 一种光催化和生物复合阳极与生物阴极耦合燃料电池
JP2007528709A (ja) 水素の製造方法
CN101299463A (zh) 光燃料电池
CN102800883A (zh) 硝化微生物燃料电池
Siddiqui et al. Wastewater treatment and energy production by microbial fuel cells
CN201340872Y (zh) 一种微生物燃料电池
Duţeanu et al. Microbial fuel cells–an option for wastewater treatment
Azuma et al. Catalyst development of microbial fuel cells for renewable-energy production
Mishra et al. A review on electrical behavior of different substrates, electrodes and membranes in microbial fuel cell
CN204966598U (zh) 光催化和生物复合阳极与生物阴极耦合燃料电池
Zhang et al. Electricity production from molasses wastewater in two-chamber microbial fuel cell
Makhtar et al. Microbial fuel cell (MFC) development from anaerobic digestion system
KR101040185B1 (ko) 기능성 전극을 장착한 미생물 연료 전지 단위체 및 이를 이용한 미생물 연료 전지
CN206040825U (zh) 无氧阴极光电微生物燃料电池
Cheng et al. Microbial fuel cells and other bio-electrochemical conversion devices
CN108217915A (zh) 用于污水处理的微生物电化学生物转盘

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101110

Termination date: 20131229