CN101443119B - 耐硫排放物催化剂 - Google Patents

耐硫排放物催化剂 Download PDF

Info

Publication number
CN101443119B
CN101443119B CN2007800172928A CN200780017292A CN101443119B CN 101443119 B CN101443119 B CN 101443119B CN 2007800172928 A CN2007800172928 A CN 2007800172928A CN 200780017292 A CN200780017292 A CN 200780017292A CN 101443119 B CN101443119 B CN 101443119B
Authority
CN
China
Prior art keywords
metal oxide
catalyst
composite metal
composite
numeral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800172928A
Other languages
English (en)
Other versions
CN101443119A (zh
Inventor
彼得·卡德·塔尔博特
乔斯·安东尼奥·阿拉科
杰夫雷·艾伦·爱德华兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Very Small Particle Co Ltd
Original Assignee
Very Small Particle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006901933A external-priority patent/AU2006901933A0/en
Application filed by Very Small Particle Co Ltd filed Critical Very Small Particle Co Ltd
Publication of CN101443119A publication Critical patent/CN101443119A/zh
Application granted granted Critical
Publication of CN101443119B publication Critical patent/CN101443119B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种包含一种或更多种复合氧化物的催化剂,该复合氧化物的名义组成如式(1)所示:AxB1-y-zMyPzOn(1),其中,A选自一种或更多种包括镧系元素的第III族元素或者一种或更多种二价或一价的阳离子;B选自一种或更多种原子序数为22至24、40至42和72至75的元素;M选自一种或更多种原子序数为25至30的元素;P选自一种或更多种原子序数为44至50和76至83的元素;x定义为0<x≤1的数字;y定义为0≤y<0.5的数字;z定义为0<z<0.2的数字。

Description

耐硫排放物催化剂
技术领域
本发明一般而言涉及排放物处理催化剂(emission controlcatalyst),尤其涉及车辆排气催化剂。最常用的排放物催化剂是所谓“三元催化剂”(three-way catalyst,TWC),因为它可同时处理三种有害排放物,即将CO氧化,将NOx还原为N2和将未燃烧的碳氢化合物氧化。在优选的实施方案中,本发明涉及既可用于柴油发动机也可用于汽油发动机的TWC,其具有改善的耐硫中毒性能。
背景技术
日益严格的排放标准导致通过利用改进配方和分层结构来发展改进的三元催化剂。热稳定性和耐久性方面的改进已使催化剂能够承受至高达1100℃的加速老化测试。
改进催化剂性能的一个方法是增加催化剂配方中铂族金属(PGM)的量。然而,这也意味着不可接受的成本增长。已有一些方法用于克服这一问题。已开发出一种仅含Pd的TWC催化剂(1),该催化剂使用钯而不是铂,从而降低成本。这种思想的进一步发展是通过将Pd引入到钙钛矿氧化物中(2)来降低Pd的总量。与Pt相比,钯颗粒生长的趋势更强,因此在高温操作期间活性降低。在发动机操作的氧化循环期间,将Pd引入钙钛矿结构中,随后,在还原循环期间,又在催化剂表面将Pd还原成金属,从而避免Pd颗粒的过度生长。使用钙钛矿氧化物的另一个优势是它们的高储氧能力(OSC),这是高性能TWC必不可少的性质。某些钙钛矿的OSC甚至高于CeO2,该材料最常在TWC中用作OSC成分。
早在20世纪70年代,就已经有研究将钙钛矿氧化物用于与处理汽车尾气排放物相关的催化氧化和还原反应[6-15]。Stephens的美国专利3865923,Remeika等的美国专利3884837和4001371,Lauder的美国专利3897367、4049583和4126580,Donohue的美国专利4107163,Harrison的美国专利4127510,McCann,III的美国专利4151123,Ozawa等的美国专利4921829,Jovanovic等的美国专利5318937,Nakatsuji等的美国专利5380692以及Golden的美国专利5939354、5977017、6352955、6372686和6351425B2均公开了不同PGM含量的钙钛矿催化剂。
最近的研究表明,设计用于满足低排放车辆(LEV)和超低排放车辆(ULEV)标准和含较低水平PGM的催化剂明显受到燃料中硫的抑制(3)。硫导致的催化性能损失受多种因素影响。这些因素包括燃料中硫的水平、催化剂的设计、催化剂的位置和催化剂的组成。TWC催化剂的各成分有起催化作用的PGM、OSC成分和载体。所有这三种成分都会受到硫的影响。
尤其是,应努力将硫对TWC材料中PGM和OSC成分的影响最小化。钯虽然成本较低,但与Pt和Rh相比更容易受硫中毒的影响。研究表明(4),金属-金属键能显著降低这些金属对SO2的亲和力。例如Pd/Rh比纯Pd催化剂更耐燃料中存在的含硫分子。
SO2与具有含二氧化铈成分的TWC相互作用,二氧化铈中毒似乎是与这些催化剂的硫抑制作用相关的主要问题(5)。为改善硫耐受性和增加热稳定性,通常将二氧化铈混入到含有氧化锆的固溶液中。二氧化铈-氧化锆组合也可以增加高温操作时的OSC。
钙钛矿氧化物可以有利地将PGM并入到其结构中。许多钙钛矿组合物易受硫中毒的影响。钙钛矿组合物通常是在钙钛矿分子式ABO3的B位引入过渡金属如铜、钴和锰。许多这些过渡金属可与SO2形成稳定的硫酸盐。
Takeuchi的美国专利6569803要求保护一种用于净化废气的催化剂,该催化剂包含通式为ABO3的钙钛矿,其中B位离子的主要成分通常包含选自Mn、Co和Fe的元素。但是没有评价这些催化剂对SO2的耐受性。
在对催化剂中钙钛矿的全面综述中,L.G.Tejuca、J.L.J.Fierro和J.M.D.Tascon(16)报道了大量的B位使用Mn、Co和Fe的钙钛矿的催化作用测试并得出结论,“这些结果表明这些钙钛矿的SO2中毒效应是通过将该分子吸附到B位发生的......SO2可能还与A位置处的阳离子相互作用,但该过程不会导致催化剂失活”。他们还进一步总结出“虽然通过将贵金属(Pt和Ru)引入钙钛矿结构中,在制备用于CO和碳氢化合物氧化和NO还原的高活性钙钛矿方面取得了一些进展,但是SO2中毒问题仍然没有根本解决”。
将钙钛矿氧化物引入到TWC配方中时的其它困难包括:保持复杂钙钛矿的相纯度,获得热稳定性,以及制备在高操作温度下具有高性能TWC所需要的高表面积的材料。
本发明的一个目的是提供一种包含钙钛矿成分的催化剂。该催化剂可以具有高表面积、是热稳定的、具有减少的PGM成分以及表现出改进的耐硫抑制性。
发明内容
第一方面,本发明提供了一种包含一种或更多种复合氧化物的催化剂,所述复合氧化物具有如式(1)所示的名义组成:
AxB1-y-zMyPzOn    (1)
其中
A选自一种或更多种包括镧系元素的第III族元素或者一种或更多种二价或一价的阳离子;
B选自一种或更多种原子序数为22至24,40至42和72至75的元素;
M选自一种或更多种原子序数为25至30的元素;
P选自一种或更多种原子序数为44至50和76至83的元素;
x定义为0<x≤1的数字;
y定义为0≤y<0.5的数字;以及
z定义为0<z<0.2的数字。
在一个实施方案中,所述一种或更多种复合氧化物具有如式(2)所示的一般组成:
AxA′wB1-y-zMyPzOn    (2)
其中,
A是一种或更多种包括镧系元素的第III族元素;
A′是一种或更多种二价或一价的阳离子;
w定义为0≤w≤1的数字;
0.5<x+w≤1,且
B、M、P、x、y和z如式(1)所示。
在一个优选的实施方案中,A选自La、Ce、Sm和Nd,A′选自Sr、Ba和Ca,B选自Ti、V、W和Mo,M选自Cu和Ni,P选自Pt、Pd、Rh和Ru。
在一个更优选的实施方案中,A是La和/或Ce,A′是Sr,B是Ti,M是Cu和/或Ni,P选自Pt和Rh或Pt、Pd、Rh和Ru中的至少两种。在该实施方案中,所述复合氧化物具有如式(3)所示的通式:
(La,Ce)xSrwTi1-y-zMyPzOn    (3)
其中,P选自Pt、Rh或Pt、Pd、Rh和Ru中的至少两种。
在另一个优选实施方案中,至少一种复合氧化物相是具有通式(4)的钙钛矿:
AxA′wB1-y-zMyPzO3    (4)
更优选式(5):
(La,Ce)xSrwTi1-y-zMy(Pt,Rh,Pd/Rh)zO3    (5)
其中,(4)和(5)中的符号如上述(1)和(2)中的定义。
适宜地,具有所述分子式的钙钛矿成分显示出基本均质、纯相的组成。
所述复合氧化物材料可以具有大于约15m2/g的初始表面积,优选大于约20m2/g,更优选大于约30m2/g,并且在空气中于1000℃老化2小时后,表面积大于约5m2/g,优选大于约10m2/g,更优选大于约15m2/g。
所述复合氧化物材料一般而言可以表现出约2nm至约150nm、优选约2至100nm的平均粒度,并且具有尺寸从约7nm至约250nm、更优选从约10nm至约150nm的微孔。然而,所述复合氧化物材料的平均粒度和孔径可根据所选择的特定复合氧化物而变化。
更优选地,所述复合氧化物材料可以显示出基本上分散的孔径范围。
可通过将上述通式(1)中元素的前体混合,然后通过适当的热处理形成目标相,从而形成本发明的复合氧化物材料。所述前体可以是任何适当的形式,例如所使用元素的盐、氧化物或金属。所述前体混合物可以是固体混合物、溶液或固体和溶液的组合的形式。所述溶液可通过将盐溶于溶剂如水、酸、碱或醇中形成。所述盐可以是但不限于硝酸盐、碳酸盐、氧化物、醋酸盐、草酸盐和氯化物。也可以使用元素的有机金属形式如醇盐。
固态分散体也可用作合适的前体材料。
混合前体以制备复合氧化物的不同方法可以包括但不限于诸如混合和研磨、共沉淀、热蒸发和喷雾热解(spray pyrolysis)、聚合物和表面活性剂复合混合以及溶胶凝胶的技术。如果需要的话,最终相的组成是通过混合后的热处理获得的。加热步骤可使用任何适当的加热设备实施,可以包括但不限于热板或其它加热基板(如用于喷雾热解的加热板)、炉,例如固定炉(stationary table furnace)、回转炉、感应电炉、流化床炉、浴炉、闪速炉(flash furnace)、真空炉、旋转干燥器、喷雾干燥器、旋转闪蒸干燥器(spin-flash dryer)。
在一个优选的实施方案中,通过美国专利6752679“Productionof Fine-Grained Particles(精细颗粒的制备)”中所述的方法形成均匀的复合氧化物,该文献的全部内容通过交叉引用并入本文。
在另一个优选的实施方案中,通过使用美国专利6752679和美国专利申请60/538867所述的方法形成均匀的复合氧化物,其具有所指出的尺寸范围内的纳米尺寸颗粒和所指出的尺寸范围内的纳米级微孔,所述文献的全部内容通过交叉引用并入本文。
在一个更优选的实施方案中,通过使用美国专利6752679和美国专利申请60/538867和美国专利申请60/582905所述的方法形成均匀的复合氧化物,其具有所指出的尺寸范围内的纳米尺寸颗粒和所指出的尺寸范围内的纳米级微孔,并且采用纳米级颗粒的水胶态分散体作为前体元素之一。
第二方面,本发明提供了一种包含如本发明第一方面所述的催化剂的三元催化剂。
第三方面,本发明提供了一种用于处理废气的方法,包括将废气与根据本发明第一方面的催化剂接触。适当地,所述催化剂使得废气中的CO和碳氢化合物氧化,以及使得废气中的氮氧化物还原为N2
本发明还提供了一种包含根据本发明第一方面的催化剂的汽车催化转化器。
附图说明
图1表示NOx转化率对温度的图谱,由实施例5获得;
图2表示NOx转化率对温度的图谱,由实施例6获得;
图3表示NOx转化率对温度的图谱,由实施例7获得;
图4表示NOx转化率对温度的图谱,由实施例8获得;
图5表示CO转化率对温度的图谱,由实施例9获得;
图6表示CO转化率对温度的图谱,由实施例10获得;
图7表示CO转化率对温度的图谱,由实施例11获得;
图8表示CO转化率对温度的图谱,由实施例12获得;
图9表示碳氢化合物(HC)转化率对温度的图谱,由实施例13获得;
图10表示碳氢化合物(HC)转化率对温度的图谱,由实施例14获得;
图11表示碳氢化合物(HC)转化率对温度的图谱,由实施例15获得;
图12表示碳氢化合物(HC)转化率对温度的图谱,由实施例16获得。
具体实施方式
催化剂制备
实施例1
名义分子式为La0.8Sr0.2Ti0.9762Pd0.0117Rh0.0121On加上10%CeO2的复合金属氧化物制备如下。
将45ml水、10g硝酸、46g六水合硝酸镧、5.62g硝酸锶、1.65g的10%硝酸钯溶液和0.53g硝酸铑混合,制成含有除Ti以外的全部所需元素的溶液。
将基于钛的纳米颗粒加入到所述溶液中,在50℃搅拌直到所述颗粒分散并形成澄清的溶液。
然后将16g碳黑加入到该溶液中,并用高速搅拌器搅拌。得到的混合物中加入70g阴离子表面活性剂,并再次用高速搅拌器搅拌。
将最终的混合物缓慢加热到650℃,然后在800℃处理2小时,在1000℃再处理2小时。XRD分析表明,实施例1中存在的主要类型的相是钙钛矿相LaSr0.5Ti2O6和(Ce,La)2Ti2O7
实施例2
利用与实施例1类似的方法制备了名义分子式为La0.5Sr0.25Ti0.942Pd0.018Ni0.04On的复合金属氧化物。XRD分析表明,所存在的主要类型的相是钙钛矿相LaSr0.5Ti2O6和(Ce,La)2Ti2O7
实施例3
利用与实施例1类似的方法制备了名义分子式为La0.8Sr0.2Ti0.936Pd0.024Ni0.04On加10%CeO2的复合金属氧化物。XRD分析表明,所存在的主要类型的相是钙钛矿相LaSr0.5Ti2O6和(Ce,La)2Ti2O7
实施例4
利用与实施例1类似的方法制备了名义分子式为La0.8Sr0.2Ti0.9Pd0.03Ni0.04Cu0.03On加10%CeO2的复合金属氧化物。XRD分析表明,所存在的主要类型的相是钙钛矿相LaSr0.5Ti2O6和(Ce,La)2Ti2O7
催化剂表征和测试
利用X射线衍射(XRD)、透射电子显微镜(TEM)和扫描电子显微镜进行试样的相鉴定和形态表征。表面积和微孔尺寸分布数据使用Micromeritics Tristar表面积分析仪获得。
下面的数据从实施例1给出的试样组成中采集。一系列温度下测定的表面积如下所示:
Figure G2007800172928D00081
三元催化活性的测试
试样制备
用液压机将催化剂粉末原料在2000psi下造粒。将粒料破碎并过筛。留取0.5-1mm(名义上)范围内的尺寸级分作为试样。将重量为0.25±0.02g的催化剂试样插入到1/4英寸的不锈钢反应管中,使床高为20mm,并用石英毛置于适当的位置。热电偶尖端穿入催化剂床中以监测温度。
试样的老化
在测试前,试样在如下所示的原料气体混合物中于1000℃老化6小时,所述原料气体混合物以0.33Hz的频率在还原性组成和氧化性组成之间往复。
原料气体的组成和分布
基于所指出的催化剂床的体积,气体以63000h-1的气时空速(GHSV)供给。含有2ppmSO2的气体组合物用于模拟汽油中约30ppm的硫水平。这些硫水平还是2007年建议的低硫限制下柴油燃料中的典型水平(17)。
为了这些测试,调整气体比例以获得两个特定的R+值;
R=0.86,氧化性条件。
R=1.17,还原性条件。
所述气体组成如下:
Figure G2007800172928D00091
+其中R是原料气体组合物的氧化还原电势。R可近似地表示为{3CHC+CCO}/{CNO+2CO2},其中,C代表气体浓度。
给定所希望的原料气体组成、气时空速(GHSV)和压缩气体组成,计算所需要的各种物质的流量。除水蒸气外,用质量流量控制器(MFC)(MKS Instruments,Inc)获得各种物质的期望流量。
将液态水精确地泵入(Gilson Model307)加热段,水在其中蒸发并进入MFC控制的氮气流中。在从各MFC中流出后,各气体在歧管中混合并分配到三个反应器中。利用位于各反应器出口的针形阀调节通过各反应器的流量,以保证通过所有反应器的流量相等。
废气分析
在所希望的反应器条件稳定后,分析从反应器得到的废气。气流用Perma Pure(派玛派)干燥器处理。用多通路阀将来自各反应器的废气引入到仪器中,以利用Shimadzu(岛津)17A气相色谱测量NO、N2O、CO、CO2、O2和HC。利用化学荧光NO检测器和红外CO检测器连续监测NO和CO的浓度。并行地运行空白反应器作为参照。在开始实验前,试样在R=1.17条件下在650℃预热1小时。
催化剂性能
NOx转化
实施例5
在严格模拟发动机还原循环过程中废气组成的条件下,测试了具有实施例1组成的试样的三元催化活性。图1表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下NOx的转化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O25981ppm,其余为N2。在本次测试中没有使用SO2。数据表明,该催化剂在低达200℃时就已活化。在250℃时,该催化剂实际达到总转化率98-100%。在最高测试温度650℃时仍保持完全转化。
实施例6
在模拟氧化性废气条件下,再次测试了实施例5的试样的NOx转化率。图2表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下NOx的转化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O28407ppm,其余为N2。在本次测试中没有使用SO2。数据表明,该催化剂在250-300℃时活化。在300℃时,该催化剂实现NOx的完全转化,并保持到最高测试温度650℃。
实施例7
在模拟含SO2的还原性废气条件下,再次测试了实施例5的试样的NOx转化率。图3表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下NOx的转化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O25981ppm,SO22ppm,其余为N2。数据表明,该催化剂在200-250℃时活化。在250℃时,该催化剂的NOx转化率达86%。在300℃时,该催化剂实现NOx的完全转化(98%-100%),并保持到最高测试温度650℃。
实施例8
在模拟含SO2的氧化性废气条件下,再次测试了实施例5的试样的NOx转化率。图4表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下NOx的转化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O28407ppm,SO22ppm,其余为N2。数据表明,该催化剂在150和200℃之间的非常低温度下就活化。在250℃时,该催化剂实现NOx的完全转化。完全转化(98%-100%)保持到550℃。在550和650℃之间,观察到转化率略降至95%。
这四个结果表明,该催化剂优异的性能,且气流中的SO2对性能几乎没有抑制。
CO的氧化
实施例9
在严格模拟发动机还原循环时的废气组成条件下,测试了实施例1组合物的三元催化活性。图5表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下CO的转化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O25981ppm,其余为N2。在本次测试中没有使用SO2。数据表明,该催化剂在150和200℃之间活化。在250℃时,达到最大转化率85%。随温度升高到450℃,CO的氧化率降低至66%。在550℃转化率再次升高到74%,但在650℃,降低到62%。
实施例10
在模拟氧化性废气条件下,再次测试了实施例9的试样的CO转化率。图6表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下CO的转化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O28407ppm,其余为N2。在本次测试中没有使用SO2。数据表明,该催化剂在250-300℃时活化。在300℃时,该催化剂具有100%的CO氧化率,并保持到最高测试温度650℃。
实施例11
在模拟含SO2的还原性废气条件下,再次测试了实施例9的试样的CO氧化率。图7表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下CO的氧化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O25981ppm,SO22ppm,其余为N2。数据表明,该催化剂在150-200℃间的极低温度下活化并有至高34%的转化率。在250℃时,该催化剂获得了82%的CO氧化率。随温度升高到350℃,CO的氧化率降低至62%。从350℃到650℃,转化率逐渐升高到71%。
实施例12
在模拟含SO2的氧化性废气条件下,再次测试了实施例9的试样的CO氧化率。图8表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下CO的氧化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O28407ppm,SO22ppm,其余为N2。数据表明,该催化剂在150到200℃间的极低温度下活化。在200℃时,该催化剂获得了47%的CO氧化率。在300℃时获得了最大的97%的CO氧化率。从300℃到650℃,观察到转化率逐步下降到86%。
这些数据证明,该催化剂在含有SO2的废气流中对CO氧化的作用良好。
HC的氧化
实施例13
在严格模拟发动机还原循环时的废气组成条件下,测试了实施例1组合物的三元催化活性。图9表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下HC的氧化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O25981ppm,其余为N2。在本次测试中没有使用SO2。数据表明,该催化剂在200℃和250℃间活化。在250℃时,获得45%的HC氧化率。在300℃时,氧化率达100%,并保持到最高测试温度650℃。
实施例14
在模拟氧化性废气条件下,再次测试了实施例13的试样的HC氧化率。图10表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下HC的氧化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O28407ppm,其余为N2。在本次测试中没有使用SO2。数据表明,该催化剂在250-300℃时活化。在300℃时,该催化剂具有100%的CO氧化率,并保持到最高测试温度650℃。
实施例15
在模拟含SO2的还原性废气条件下,再次测试了实施例13的试样的HC氧化率。图11表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下HC的氧化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O25981ppm,SO22ppm,其余为N2。数据表明,该催化剂在200-250℃下活化。在250℃时,该催化剂获得95%的HC氧化率。该值增加到98%-100%,并在整个测试温度范围内保持。
实施例16
在模拟含SO2的氧化性废气条件下,再次测试了实施例13的试样的HC氧化率。图12表示在气时空速(GHSV)流率为300000h-1时所测试的0.25g上述组成的催化剂情况下CO的氧化率。所述气体组成为NO1500ppm,CO13500ppm,CO2210000ppm,HC750ppm,H2O125000ppm,O28407ppm,SO22ppm,其余为N2。数据表明,在250℃时,该催化剂表现出100%的HC氧化率,并在整个测试温度范围内保持该值。
这些数据表明,该催化剂不仅在含有SO2的气流中表现出优异的性能,而且激活温度(light-off temperature)降低了至多50℃。
本发明提供了一种催化剂,所述催化剂用于促进包含氮氧化物、一氧化碳和未燃烧碳氢化合物的废气的氧化-还原反应。该催化剂可表现出提高的抗硫中毒性能。在一些实施方案中,本发明的催化剂特别适合用作汽车应用中使用的三元催化剂。该催化剂适宜地是一种含有复合氧化物和PGM的高耐热催化剂,并表现出对升高温度的操作环境下比表面积下降的抵抗性。更适宜地,本发明的实施方案提供了一种含复合氧化物和PGM的高耐热催化剂,该催化剂抗废气流中SO2的抑制作用。
参考文献:
1.J.S.Hepburn,K.S.Patel,M:Meneghel,H.S.Gandhi,Engelhard Dev.Team,Johnson Matthey Dev.Team,“Development of Pd-only Three Way CatalystTechnology”,SAE941058(1994).
2.S.J.Golden,A.D.Polli,R.Hatfield,M.G.Cotton,T.J.Truex,Catalytic SolutionsInc.,“Advanced low Platinum Group metal Three-Way Catalyst for Tier2and LEVCompliance”,2001010659(2001).
3.“The Impact of Gasoline Fuel Sulfur on Catalytic Control Systems”,report byManufacturors of Emission Controls Association(MECA),(1998).
4.J.A.Rodriguez,J.Hrbek,T.Jirsak,J.Hanson,S.Chaturvedi,J.L.Brito,“Chernistryof SO2 and Organosulfur on Metal and Oxide Surfaces:Unraveling the Mysterybehind Catalyst poisoning and Desulfurization”Accts.Chem.Res.32,719-728(1999)
5.R.J.Gorte and T.Luo,“SO2 poisoning of ceria-supported,metal catalysts,In,“Catalysis by Coria and Related Materials”,edited by A.Trovarelli,ImperialCollege Press,2002,p377-389.
6.D.B.Meadowcroft,“Low-Cost OxygenElectrode Materials”,Nature(London)226[5248](1970)pp847-48.
7.W.F.Libby,“Promising Catalyst for Auto Exhaust”,Science171[3970](1971)pp449-50.
8.R.J.H.Voorhoeve,J.P.Remeika,P.E.Freelandand B.T.Matthias,“Rare-EarthOxides of Manganese and Cobalt Rival Platinum for the Treatment of CarbonMonoxide in Auto Exhaust”,Science177[4046](1972)pp353-54.
9.R.J.H.Voorhoeve,J.P.Remeika and D.W.Johnson,Jr.,“Rare-Earth Manganitos:Catalysts with Low Ammonia Yield in the Reduction of Nitrogen Oxides”,Science180[4081](1973)pp62-64.
10.D.W.Johnson,Jr.and P.K.Gallagher,“Studies of Some Perovskite OxidationCatalysts Using DTATecbniques”,Thermochimica Acta7[4](1973)pp303-09.
11.P.K.Gallagher,D.W.Johnson,Jr.and F.Schrey,“Supported Perovskite OxidationCatalysts”,Materials Research Bulletin9[10](1974)pp1345-52.
12.R.J.H.Voorhoeve,J.P.Remeika and L.E.Trimble,“Perovskites containingRuthenium as Catalysts for Nitric Oxide Reduction”,Materials Research Bulletin9[10](1974)pp1393-404.
13.S.C.Sorenson,J.A.Wronkiawicz,L.B.Sis and G.P.Wirtz,“Propertiesof La Co,as aCatalyst in Engine Exhaust Gases”,American Ceramic Society Bulletin53[5](1974)pp 446-49.
14.P.K.Gallagher,D.W.Johnson,Jr.,J.P.Remeika,F.Schrey,L.E.Trimble,E.M.VogelandR.J.H.Voorhoeve,“Activity of without Ptand 
Figure G2007800172928D0015114510QIETU
withvarying Pt Contents for the Catalytic Oxidation of CO”,Materials Research Bulletin10[6](1975)pp529-38.
15.D.W.Johnson,Jr.,P.K.Gallagher,F.Schreyand W.W Rhodes,“Preparation ofHigh Surface Area Substituted LaMnO,Catalysts”,Ceramic Bulletin55[5](1976)pp520-27.
16.L.G.Tejuca,J.L.G.Fierro and J.M.D.Tascon,“Structure and Reactivity ofPerovskte Type Oxides”,Advances in Catalysis 36(1989)pp237-328.
17.“Catalyst-Based DieseI Particulate Filters and NOx Adsorbers:A Summary of theTechnologies and the Effects of Fuel Sulfur”,report by Manufactuers of EmissionControls Assoiiation(MECA),(Aug.14,2000).

Claims (14)

1.一种用作催化剂的复合金属氧化物,包含一种或更多种复合氧化物,所述复合氧化物具有如式(1)所示的名义组成:
AxA′wB1-y-zMyPzOn   (1)
其中,
A选自一种或更多种包括镧系元素的第III族元素;
A′选自Sr、Ba和Ca;
B选自Ti、V、W和Mo;
M选自一种或更多种原子序数为25至30的元素;
P选自一种或更多种原子序数为44至50和76至83的元素;
x定义为0<x≤1的数字;
w定义为0≤w≤1的数字;
0.5<x+w≤1;
y定义为0≤y<0.5的数字;
z定义为0<z<0.2的数字;和
n为给出电中性的数字。
2.根据权利要求1所述的复合金属氧化物,其中A选自La、Ce、Sm和Nd,M选自Cu和Ni,P选自Pt、Pd、Rh和Ru。
3.根据权利要求1或权利要求2所述的复合金属氧化物,其中A是La和/或Ce,A ′是Sr,B是Ti,M是Cu和/或Ni,P选自Pt和Rh或Pt、Pd、Rh和Ru中的至少两种,所述复合氧化物具有如式(2)所示的通式:
(La,Ce)xSrwTi1-y-zMyPzOn  (2)。
4.根据权利要求1所述的复合金属氧化物,其中所述复合氧化物相中的至少一种是具有通式(3)的钙钛矿相:
AxA′wB1-y-zMyPzO3     (3)。
5.根据权利要求4所述的复合金属氧化物,其中所述复合氧化物相中的至少一种是具有通式(4)的钙钛矿相:
(La,Ce)xSrwTi1-y-zMy(Pt,Rh,Pd/Rh)zO3   (4)。
6.根据权利要求4所述的复合金属氧化物,其中具有所述分子式的所述钙钛矿成分表现出均质和纯相的组成。
7.根据权利要求1所述的复合金属氧化物,其中所述复合氧化物材料具有大于15m2/g的初始表面积。
8.根据权利要求7所述的复合金属氧化物,其中所述复合氧化物材料在空气中于1000℃老化2小时后,表面积大于5m2/g。
9.根据权利要求1所述的复合金属氧化物,其中所述复合氧化物材料表现出2nm至150nm的平均粒度。
10.根据权利要求1所述的复合金属氧化物,其中所述复合氧化物材料具有尺寸为7nm至250nm的微孔。
11.根据权利要求1所述的复合金属氧化物,其中所述复合氧化物材料表现出分散的孔径范围。
12.一种三元催化剂,所述三元催化剂包含前述权利要求中任一项所述的复合金属氧化物。
13.一种处理废气的方法,所述方法包括将所述废气与前述权利要求中任一项所述的复合金属氧化物接触。
14.一种汽车催化转化器,所述汽车催化转化器包含前述权利要求中任一项所述的复合金属氧化物。
CN2007800172928A 2006-04-12 2007-04-12 耐硫排放物催化剂 Expired - Fee Related CN101443119B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2006901933A AU2006901933A0 (en) 2006-04-12 Sulfur Resistant Emissions Catalyst
AU2006901933 2006-04-12
AU2006902769A AU2006902769A0 (en) 2006-05-23 Sulfur Resistant Emissions Catalyst
AU2006902769 2006-05-23
PCT/AU2007/000488 WO2007115380A1 (en) 2006-04-12 2007-04-12 Sulfur resistant emissions catalyst

Publications (2)

Publication Number Publication Date
CN101443119A CN101443119A (zh) 2009-05-27
CN101443119B true CN101443119B (zh) 2013-03-13

Family

ID=38580650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800172928A Expired - Fee Related CN101443119B (zh) 2006-04-12 2007-04-12 耐硫排放物催化剂

Country Status (6)

Country Link
US (1) US8609575B2 (zh)
EP (1) EP2010317A4 (zh)
JP (1) JP2009533206A (zh)
CN (1) CN101443119B (zh)
AU (1) AU2007236562B2 (zh)
WO (1) WO2007115380A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533206A (ja) 2006-04-12 2009-09-17 ベリー スモール パーティクル コンパニー リミテッド 耐硫黄排出物質触媒
WO2009089590A1 (en) * 2008-01-16 2009-07-23 Very Small Particule Company Limited Fuel additive
JP5388052B2 (ja) * 2008-10-31 2014-01-15 独立行政法人産業技術総合研究所 排ガス処理触媒
KR101654944B1 (ko) * 2009-12-02 2016-09-06 다나까 홀딩스 가부시끼가이샤 혼합 상 세라믹 산화물 3원 촉매 제제 및 상기 촉매의 제조 방법
SG182122A1 (en) 2010-12-23 2012-07-30 Agency Science Tech & Res A perovskite-type strontium titanate
TWI451905B (zh) * 2013-01-25 2014-09-11 Univ Nat Chiao Tung 乙醇重組器觸媒組成物及乙醇重組器觸媒之製備方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318937A (en) * 1990-06-21 1994-06-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Ruthenium-containing perovskite materials, catalysts and methods
JP2004321986A (ja) * 2003-04-25 2004-11-18 Toyota Motor Corp 排気ガス浄化触媒

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865923A (en) 1973-03-19 1975-02-11 Ethyl Corp Catalyst
US3884837A (en) 1973-07-02 1975-05-20 Bell Telephone Labor Inc Catalyst containing a perovskite-like manganite
US4001371A (en) 1973-07-02 1977-01-04 Bell Telephone Laboratories, Incorporated Catalytic process
US3897367A (en) 1973-10-10 1975-07-29 Du Pont Metal oxide catalytic compositions
FR2279463A1 (fr) 1974-04-25 1976-02-20 Du Pont Compositions catalytiques d'oxydes de metaux
US4049583A (en) 1974-04-25 1977-09-20 E. I. Du Pont De Nemours And Company Metal oxide catalytic compositions having perovskite crystal structures and containing metals of the platinum group
CA1077011A (en) 1975-04-08 1980-05-06 Elrey L. Mccann (Iii) Catalytic metal oxides on perovskite supports
US4126580A (en) 1975-04-08 1978-11-21 E. I. Du Pont De Nemours And Company Stable perovskite catalysts
SE433178B (sv) 1975-10-31 1984-05-14 Johnson Matthey Co Ltd Katalysator for rening av bilavgaser av den allmenna typen a?71xm?71yo?71z
US4107163A (en) 1976-04-12 1978-08-15 E. I. Du Pont De Nemours And Company Perovskite-type compositions containing pentavalent Ru
JPH01168343A (ja) 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc 排気ガス用浄化触媒
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
US5939354A (en) 1996-04-10 1999-08-17 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and method for preparing the compounds
US5977017A (en) 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
JP2001269578A (ja) 2000-01-19 2001-10-02 Toyota Motor Corp 排気ガス浄化用触媒
ATE286954T1 (de) 2000-06-29 2005-01-15 Neuftec Ltd Ein brennstoffzusatz
US6752979B1 (en) * 2000-11-21 2004-06-22 Very Small Particle Company Pty Ltd Production of metal oxide particles with nano-sized grains
US6351425B1 (en) 2000-12-07 2002-02-26 Micron Technology, Inc. Method and circuit for high voltage programming of antifuses, and memory device and computer system using same
GB0126663D0 (en) 2001-11-06 2002-01-02 Oxonica Ltd Cerium oxide nanoparticles
GB0301599D0 (en) 2003-01-23 2003-02-26 Oxonica Ltd Cerium oxide nanoparticles as fuel additives
US6752679B1 (en) 2003-11-19 2004-06-22 Hoe King Lui Double doll figurine
KR101158947B1 (ko) * 2004-01-23 2012-06-21 베리 스몰 파티클 컴파니 피티와이 리미티드 금속 산화물의 제조 방법
PT1812340T (pt) * 2004-06-25 2021-03-03 Very Small Particle Company Pty Ltd Método para produzir partículas de grãos finos
US20090023580A1 (en) 2005-03-04 2009-01-22 Daihatsu Motor Co., Ltd. Catalyst Composition
JP2009533206A (ja) 2006-04-12 2009-09-17 ベリー スモール パーティクル コンパニー リミテッド 耐硫黄排出物質触媒

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318937A (en) * 1990-06-21 1994-06-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Ruthenium-containing perovskite materials, catalysts and methods
JP2004321986A (ja) * 2003-04-25 2004-11-18 Toyota Motor Corp 排気ガス浄化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Angove, D.E, et al..Position Dependent Phenomena During Deactivation of Three-way Catalytic Converters on Vehicles.《Catalysis Today》.2000,第63卷图3和图5. *

Also Published As

Publication number Publication date
US20090202408A1 (en) 2009-08-13
EP2010317A1 (en) 2009-01-07
AU2007236562B2 (en) 2011-04-14
CN101443119A (zh) 2009-05-27
WO2007115380A1 (en) 2007-10-18
AU2007236562A1 (en) 2007-10-18
JP2009533206A (ja) 2009-09-17
US8609575B2 (en) 2013-12-17
EP2010317A4 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
Prasad et al. A review on catalytic oxidation of soot emitted from diesel fuelled engines
US9757691B2 (en) High efficiency and durability selective catalytic reduction catalyst
US9216384B2 (en) Method for improving lean performance of PGM catalyst systems: synergized PGM
DE102011121222B4 (de) Produkt umfassend einen Partikelfilter, der einen Perowskit-Katalysator und ein NOx-Speichermaterial umfasst, und Verwendung desselben
Wang et al. The effect of La doping on the structure of Ce0. 2Zr0. 8O2 and the catalytic performance of its supported Pd-only three-way catalyst
Da et al. Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1-xPtxO3 perovskite oxides
CN103089379B (zh) 废气后处理系统
CN101443119B (zh) 耐硫排放物催化剂
Trivedi et al. Reactive calcination route for synthesis of active Mn–Co3O4 spinel catalysts for abatement of CO–CH4 emissions from CNG vehicles
US20150105245A1 (en) Zero-PGM Catalyst with Oxygen Storage Capacity for TWC Systems
WO2016081341A1 (en) Cobalt containing bimetallic zero pgm catalyst for twc applications
CN101711944A (zh) 用于氧化来自使用燃料稀燃混合物的烃燃料源的废气中的一氧化氮的方法和体系结构
Yang et al. Surface reconstruction of a mullite-type catalyst via selective dissolution for NO oxidation
Rico-Pérez et al. Preparation, characterisation and N2O decomposition activity of honeycomb monolith-supported Rh/Ce0. 9Pr0. 1O2 catalysts
Guan et al. Catalytic combustion of soot over Cu, Mn substitution CeZrO2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method
CN101952037A (zh) 催化剂载体及其生产方法
JP3870783B2 (ja) 燃料電池自動車用排ガス浄化システムおよび燃料電池自動車の排ガスの浄化方法
Haaß et al. Structural characterization of automotive catalysts
JP2011183317A (ja) 排気ガス浄化用触媒
Wu et al. Effect of MOx (M= Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion
Wang et al. Evaluation of H2 influence on the evolution mechanism of NOx storage and reduction over Pt–Ba–Ce/γ-Al2O3 catalysts
Díaz-Verde et al. Copper catalysts supported on barium deficient perovskites for CO oxidation reaction
US8227373B1 (en) Exhaust gas purification catalysts and methods of making the same
Guo et al. Characterization of porous LaCoO3 prepared from wood powder template and its catalysis for diesel particulate matter
Mao et al. Comparative study on removal of NO x and soot with a-site substituted La 2 NiO 4 perovskite-like by different valence cation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130313

Termination date: 20140412