CN101432641B - 广角反射镜系统 - Google Patents

广角反射镜系统 Download PDF

Info

Publication number
CN101432641B
CN101432641B CN2007800108090A CN200780010809A CN101432641B CN 101432641 B CN101432641 B CN 101432641B CN 2007800108090 A CN2007800108090 A CN 2007800108090A CN 200780010809 A CN200780010809 A CN 200780010809A CN 101432641 B CN101432641 B CN 101432641B
Authority
CN
China
Prior art keywords
light
angle
microbedding
refractive index
mirror system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800108090A
Other languages
English (en)
Other versions
CN101432641A (zh
Inventor
迈克尔·F·韦伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN101432641A publication Critical patent/CN101432641A/zh
Application granted granted Critical
Publication of CN101432641B publication Critical patent/CN101432641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers

Abstract

一种包括宽带薄膜干涉叠堆的复合反射镜系统,薄膜干涉叠堆具有多个微层以及光学厚层,光学厚层的折射率大于空气的折射率但小于叠堆的最小折射率。反射镜系统能够为在叠堆和光学厚层中以超临界角传播的光提供高反射率,同时避免例如由于与支承结构相接触而在反射镜背面存在污垢或诸如吸收材料等其它干扰物而导致的反射率降低。

Description

广角反射镜系统
技术领域
本发明涉及反射镜系统以及利用薄膜干涉叠堆的反射镜系统。
背景技术
许多光学产品和装置因需要高反射率的反射镜而使用薄膜干涉叠堆。能够经济地制成这些叠堆,并且能够将这些叠堆设计为在所需波段内(例如在人类可见的波长谱或指定光源的输出光谱或指定检测器的敏感光谱范围内)提供高反射率。所述叠堆也能够对一定角度范围内的入射光提供反射。在具体的波长或者甚至在所关注的整个波长范围内,对于垂直入射的光和对于中等入射角的光,通常能够获得极好的反射率。这一性能通常非常适合预期的最终用途的应用场合。
然而,如果应用或系统在极端的入射角处也要求高的反射率,那么这种叠堆可能无法提供那样的性能。在这样的极端角度下,干涉叠堆对具体波长的反射率可能由于如下两个因素而降低:(1)光的p偏振分量在叠堆的相邻微层之间的每个介质/介质界面上的反射率随入射角的增大而减小,当角度增加至布鲁斯特角时反射率减小至最小值零;(2)从几何的观点来看,由叠堆内的相邻界面所产生的光的子波之间的光程差而产生的相移变得非常接近π/2弧度,从而使得即使在存在众多微层的累积效应和扩展厚度梯度的情况下,相长干涉也不足以产生可接受的反射。因素(2)可以以不同的方式表达:随着入射角的增大,叠堆的反射带朝着更短的光波长移动,并且在极端的入射角处该反射带移动得如此之远,以至于该反射带不再覆盖所关注的整个波长范围,或者甚至于如此之远,以至于该反射带不再覆盖所关注的整个波长范围的任何部分。关于因素(1),美国专利5,882,774(Jonza等人)和期刊论文“Giant Birefringent Optics(高双折射光学)”Weber等人、Science 287,2365(2000年3月31日)提出如何能够通过利用叠堆内的至少一些双折射微层和通过选择相邻微层的折射率来解决该问题,以减少、消除、或者甚至逆转该p偏振光的反射率随入射角增大而降低的普遍现象(表现在各向同性的微层中)。例如,这些参考文献提出如何能够通过适当选择折射率来消除布鲁斯特角。然而,这种方法并不能解决因素(2)。在许多情况下,仅仅通过增加更多的层来扩展反射带不能够解决因素(2)。
发明内容
申请人已经确定,为了避免因素(1)和(2)不当地降低反射率,需要一种能够反射更宽的入射角范围内的光的反射镜系统。例如在多层干涉叠堆与前表面漫射结构(诸如包含漫射微粒或其它漫射元件的前表面涂层)结合的情况下,这种反射镜系统可能是可取的。该漫射元件可以在多层叠堆中将光散射到所有方向,包括由于因素(1)和/或因素(2)而会传播至多层叠堆的后主表面或背面的极端入射角的光线。如果背面为平的、光滑的、洁净的并且暴露于空气,这些光通过全内反射(TIR)朝向多层叠堆的前表面反射,从而保持了该反射镜系统的高反射率。另一方面,如果该背面被划伤或与吸收材料(例如支撑构件、紧固件、油脂、油墨或污垢)接触,则这些光被吸收,从而降低了系统的反射率。例如,在对多层干涉叠堆的前表面涂布光漫射层的反射镜系统中,将一片双面粘合剂带施加于多层干涉叠堆的背面,能够导致在该反射镜系统前看到灰色的或(换句话讲)黑暗的区域,该区域在尺寸与形状方面对应于粘合剂带与叠堆的接触区域。如果该粘合剂带与吸收性更强的吸收材料(诸如不透明的塑料支撑体或吸收性的油墨)接触或被替换为吸收性更强的吸收材料,那么从前方观察者的视角来看,该区域甚至变得更暗。
由于因素(2)和反射镜背面全内反射的局部损耗的综合因素,当基于多层干涉叠堆的复合反射镜表现出局部降低的背面反射率时,形成了在前方可见的黑暗区域。漫射元件使被散射的一些光以足够大的入射角进入反射镜,从而使得所关注的波长的光不被充分反射(例如,由于在入射角较大时镜面反射带的移动)。相反地,这种光到达反射镜的背面并且穿过局部的反射率较小的区域射出反射镜。同时,到达反射镜背面的相邻区域(保持平坦、光滑、洁净并且暴露于空气)的光经历全内反射。这些相邻区域的不同反射率产生在从反射镜前方观察时可以看见的黑暗区域。
因此,对反射镜系统存在这样的需求:能够反射入射角范围更广的光。对反射镜系统还存在这样的需求:尽管在反射镜背面区域存在反射率局部减小的情况,反射镜系统也能够均匀地反射从前方入射的光。这些需求并不仅限于可见光波长的反射镜;对其它所关注的波长范围而言,这些需求也存在。
因此,除其它内容以外,本发明公开了一种复合反射镜系统,该复合反射镜系统包括形成薄膜干涉叠堆或形成多个叠堆的多个微层。这些微层具有选定的折射率和厚度,以反射在所关注的波长范围内并在所关注的角度范围内的光,所述角度在与所述微层之一相对应的参考介质中测得。所关注的角度范围在本文中被称为所关注的微层角度范围。该系统还包括与所述微层耦合的光学厚层。该光学厚层具有中间折射率,该中间折射率大于空气的折射率,但小于所述微层的折射率。该反射镜系统还包括这样的元件:使“超临界传播角”的光射入该反射镜系统,例如进入光学厚层并且由此进入所述微层,或者在光学厚层之内而由此进入所述微层。超临界传播角的概念将在下面进一步讨论,但是一般来讲指在任何非空气介质层(诸如光学厚层或微层)中的如下传播角:该角度比通过使光从空气中穿过与所述层平行的平坦表面射入所述层而可能获得的传播角更加倾斜。所述光学厚层用于将所关注的波长范围内的射入光限制在所关注的微层角度范围以内,或使在所关注的波长范围内并且在所关注的微层角度范围之外的射入光在该光学厚层的内置界面发生全内反射。通过薄膜干涉叠堆、具有中间折射率的光学厚层和用于射入超临界传播角的光的元件的组合,本发明所公开的这些反射镜系统通常不但能够为垂直入射的光而且能为以极端入射角传播的光(包括超临界入射角)提供高反射率。
本发明还公开了一种反射镜系统,该反射镜系统包括多个微层、与所述微层耦合的光学厚层、以及将光(包括在所述光学厚层中以大致90°的角度传播的光)射入所述光学厚层和所述微层中的结构。所述微层大致垂直于基准轴线,并且具有选定的折射率和厚度以充分地反射在所关注的波长范围和所关注的微层角度范围之内的光。所述光学厚层的折射率大于空气的折射率,但小于所述微层的折射率。所关注的角度范围延伸到在与所述微层之一对应的参考介质中测得的角θamax,并且参考介质中的θamax与该光学厚层中的大致90度传播角对应。
本发明还公开了一种反射镜系统,该反射镜系统包括:多个微层,其折射率和厚度使所关注的波长范围和所关注的微层角度范围之内的光发生反射;与所述微层耦合的光学厚层,所述光学厚层的折射率大于空气的折射率,但小于微层的折射率;以及在所述光学厚层之内或与所述光学厚层耦合的一个或多个漫射元件,其中微层的反射带充分延伸到近红外区,因而尽管在反射镜背面区域反射率局部地减小,在观察者看来,该反射镜系统也均匀地反射可见光。
本发明的这些方面以及其它方面在下面的详细描述中将显而易见。然而,在任何情况下以上内容都不应理解为是对受权利要求书保护的主题的限制,该主题仅受所附权利要求书的限定,在专利申请过程中可以对其进行修正。
附图说明
整个说明书以附图为参照,其中类似的附图标记表示类似的元件,并且其中:
图1为光从空气倾斜入射到薄膜干涉叠堆上的示意性剖视图,其中叠堆具有材料“a”和材料“b”的交替层叠的微层;
图2a-2c为角度图,示出了在图1所示的不同介质中传播的光的可能的传播角范围:图2a为光在空气介质中的情况,图2b为光在叠堆的“a”微层中的情况,图2c为光在叠堆的“b”微层中的情况;
图3为反射率与波长对应关系的曲线图,绘出的几条理想化曲线代表了各向同性的薄膜叠堆在垂直入射和几个倾斜输入角处的反射带;
图4示出了平均反射率与不同反射镜系统构造中叠堆的“a”微层中的传播角(θa)的对应关系的理想化曲线图,其中反射率为所关注的波长(或在波长范围内取平均值)的光的反射率,并且为所有偏振态的平均值;
图5为具有薄膜叠堆的反射镜系统的示意性侧视图,所述薄膜叠堆耦合到能够使光以超临界角射入叠堆的结构;
图6-8示出了反射镜系统,该系统具有能够将光以超临界角射入叠堆的可供选择的结构;
图9为广角反射镜系统的示意性剖视图,该系统包括薄膜叠堆和具有中间折射率的光学厚层,该光学厚层限制光在叠堆之内的传播角,并且也导致以超出叠堆处理能力的极端入射角传播的光在光学厚层的结合界面上被全内反射;
图9a-9c为角度图,示出在图9所示的各种介质中传播的光的传播角的范围:图9a为光在射入层(“c”)中,图9b为光在中间折射率的光学厚层(“i”)中,图9c为光在叠堆的折射率最低的“a”微层中;
图10为另一种广角反射镜系统的示意性剖视图,图10a-10c为角度图,示出在图10所示的不同介质中传播的光的传播角的范围;
图11为另一种广角反射镜系统的示意性剖视图,图11a-11b为角度图,示出在图11所示的各种介质中传播的光的传播角的范围;以及
图12-16是示出实例中讨论的各种反射镜系统的光谱透射率或反射率的曲线图。
具体实施方式
在本具体实施方式部分中,术语“空气”可以指在标准温度和压力下、或在其它温度或压力下的地球大气,甚至可以指真空。本文忽略了这些介质之间的折射率的微小差别,并且假定空气的折射率基本为1.0。在本具体实施方式部分中,还使用了如下的术语:
nmin-在所关注的波长或波长范围内叠堆中的任意微层沿任意轴线的最小折射率。
a、b-在薄膜叠堆中使用的光学材料或由这种光学材料构成的微层,其中a沿至少一条轴线具有折射率nmin,b沿至少一条轴线具有大于nmin的折射率;b材料通常也具有叠堆中的最大折射率(沿任意轴线)。这并不意味着薄膜叠堆仅仅限于两种不同类型的微层;该叠堆也可以包括除“a”和“b”之外的其它光学材料。
i-另一种光学材料,或由这种材料构成的层或其它主体,具有在空气折射率(n=1)和叠堆的最小折射率(n=nmin)之间的中间折射率ni
c-另一种光学材料,或由这种材料构成的层或其它主体,其沿任意轴线的折射率大于ni,并且通常显著大于ni和nmin。在一些情况下,“c”材料可以为“a”材料或“b”材料。
nx-给定材料或层x(x=a,b,c或i)在所关注的波长或波长范围内的折射率。如果该材料为双折射的,则nx可以为沿特定轴线(例如,沿x轴、y轴或z轴)的折射率,或者可以为沿着给定方向传播的特定偏振态光(例如,s偏振光或p偏振光,或者左旋圆偏振光或右旋圆偏振光)的有效折射率。
所关注的波长范围-通常为可见光或近可见光(例如,400nm-700nm波长)、近红外光(例如,700nm-1000nm、700nm-1400nm或700nm-5000nm,选择这些范围中的一种有时取决于所采用的检测器或传输介质),或同时包括可见光和近红外光。也可以使用其它范围作为所关注的波长范围。例如,如果反射镜系统要在具有窄带发射器(诸如LED或激光器)的系统中使用,则所关注的波长范围可以相对较窄(例如,100nm、50nm、10nm或更小)。如果该反射镜系统要在照明系统(诸如用于液晶显示装置或其它显示器中的背光源)中使用,则所关注的波长范围可以较宽(例如,400nm-800nm、400nm-900nm、400nm-1000nm、400nm-1200nm、400nm-1400nm、400nm-1600nm或400nm-1700nm);出于以下更详细地说明的原因,这些范围延伸到可见光以外。
θx-在介质x中传播的光线的角度,在介质x中相对于与介质x垂直或与介质x的表面垂直的轴测得。
θxc-介质x的临界角,即当光线以掠射角(90°)折射进入相邻的空气介质时在介质x中测得的入射角。注意,第二个下标“c”表示“临界”,并且不应该与可能作为第一个下标出现的光学材料“c”相混淆。
θxlim-介质x的与临界角类似的极限角,但其中相邻介质不为空气。因而,θxlim为当光以掠射角(90°)折射进入相邻的非空气介质时在介质x中测得的入射角。
θamax-当薄膜叠堆在所关注的波长范围内提供足够的反射率时,在介质“a”中测得的最大的光传播角。该角度是如下多个因数的函数:例如,预期应用中的所需反射率或目标反射率,以及诸如微层的总数、微层叠堆的厚度梯度、微层之间的折射率差等叠堆设计的详细情况。
现在参照图1,我们在示意性剖视图中看到,薄膜干涉叠堆10浸入折射率n0=1的空气介质中。出于参考的目的,还示出了笛卡尔坐标系x-y-z。具体波长的光12以角度θ0入射到叠堆上,与该叠堆相互作用,从而产生反射光束12a和透射光束12b。
该叠堆通常包括数十、数百或数千个微层14a、14b,这些微层分别由布置在诸如四分之一波叠堆等干涉叠堆中的光学材料a、b构成。光学材料a、b可以为已知可用于干涉叠堆中的任何合适的材料,该材料既可以是无机的(诸如TiO2、SiO2、CaF或其它常规材料),也可以是有机的,例如聚合物(聚萘二甲酸乙二醇酯(PEN)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)、丙烯酸树脂和其它常规材料)。该叠堆可以为全无机的、全有机的或有机/无机混合的构造。为了便于说明,一开始我们讨论微层为各向同性的情况,但是可以容易地将结果引伸至双折射微层。可以在如下的对称反射系统中利用双折射微层:该系统大致同等地反射垂直入射的任何偏振态的光;或者可以在如下的不对称系统中使用双折射微层:该系统对垂直入射的一个偏振态的光具有高反射率,而对垂直入射的正交偏振态的光具有较低的反射率。
微层的光学厚度(物理厚度乘以折射率)为光的波长的一小部分。微层布置为重复的图案,该重复的图案被称为光学重复单元(ORU),例如在ORU中ORU的光学厚度为所关注的波长范围内的光的波长的一半。这些薄层使光的相长干涉或相消干涉成为可能,以便使叠堆获得与波长相关的反射和透射特性。叠堆10的ORU为一对ab层,但是也可能有其它已知的布置方式,例如在美国专利No.5,103,337(Schrenk等人)、3,247,392(Thelen)、5,360,659(Arends等人)和7,019,905(Weber)中讨论的布置方式。如果需要,可以将厚度梯度结合到叠堆中以扩宽反射带,在所述厚度梯度中,ORU的光学厚度沿叠堆的厚度尺寸改变。叠堆10不需要在其整个区域上为平坦的或平面的,而是可以成形、模制或凸印为所需的非平面形状。然而,如同图1所示的叠堆的一部分,可以认为微层至少局部地以大致平行于局部x-y坐标平面的方式设置或延伸。因而,该局部的z轴垂直于微层,并且垂直于相邻微层之间的每个界面。
为了简化说明,在图1中仅仅示出了入射光12的折射部分,但是读者应该理解到,在微层的界面上也产生了反射光的子波,并且这些子波的相干叠加形成了反射光束12a。当入射光12遇到叠堆10时,光束发生折射并且光束的角度从空气中的入射角θ0变为微层14a中的折射角θa。从这里开始,当光进入微层14b时,光束进一步朝向表面法线(平行于z轴)偏转,并获得传播角θb。在交替的a、b层内经历更多次折射后,光作为透射光束12b射出,也可以将该光束理解为透射通过叠堆10的所有子波的相干叠加。
现在我们来考虑改变入射光方向的效果。如果对入射光的方向没有限制,例如,如果我们在空气中从所有方向照明该叠堆,则入射角θ0的范围为0至90°,或0至π/2弧度。微层中的光传播角也会改变,但是由于折射率不同,光传播角的范围不会形成π/2的半角。相反地,光传播角的范围形成θac(对于层14a)和θbc(对于层14b)的半角。这在图2a-2c的角度图中以图示方式示出。在图2a中,弧20的半角为π/2,该弧表示空气介质中的所有传播方向。这些传播方向实际上在三维中形成了半球,而图2a示出了该半球在y-z平面上的部分。如图2b所示,经过折射,该空气中的入射角范围转变为光学材料a中的较窄的入射角范围。在图2b中,以临界角θac为半角的实线弧22a表示射入光在层14a中的所有传播方向。临界角θac可以通过sin-1(1/na)来计算。虚线弧22b表示大于θac的传播角θa,本文称为超临界传播角。因此,超临界传播方向或超临界传播角通常是指在任何非空气介质层(诸如光学厚层或微层)中的如下传播角:这些角比通过使光穿过与上述层平行的平坦平面从空气射入这种层中而可能获得的传播角更加倾斜。由于这正好是图1所示的情况-光从空气中以所有角度穿过平行于微层14a的平坦表面射入所讨论的叠堆10中-没有光以这些超临界角在微层14a中传播,因此以虚线而非实线表示弧22b。
除了光在折射率较大的微层14b中传播以外,图2c所示的角度图与图2b所示的角度图是相似的。以临界角θbc为半角(等于sin-1(1/nb))的实线弧24a表示层14b中的射入光的所有传播方向。虚线弧24b表示大于θbc的传播角,即微层14b中的超临界角。在使用图1所示的空气射入布置方式的情况下,没有光以这些超临界角传播。
图3示出了薄膜叠堆(诸如图1所示的叠堆10)的理想化反射率特性曲线图。曲线30示出了垂直入射(即θ0=θa=θb=0)时叠堆的反射率。薄膜设计领域的普通技术人员能够容易地选择折射率合适的交替层叠的材料、整个叠堆中的微层厚度分布以及微层的总数,以提供具有如下所示特性的叠堆:反射带在整个可见光区域31延伸,并且延伸至近红外区域,具有陡峭的左带边缘和右带边缘,并且至少在整个可见光区域(并且在一些应用中,为在整个近红外区域)具有至少为70%、80%或90%或更高的高平均反射率。例如参考由3M公司出售的VikuitiTM增强的镜面反射器(ESR)薄膜,该薄膜利用了双折射多层叠堆。还参考了可通过以下方法制成的改性薄膜:如以下实例中所述,将诸如VikuitiTMESR薄膜等双折射多层叠堆层合至反射带进一步延伸到红外区域的薄膜叠堆上。
随着入射角从0°开始增大,开始产生与上述因素(1)和(2)相关的两种效应。首先,p偏振光(在入射面内偏振)与s偏振光(垂直于入射面偏振)在微层之间界面的反射率不相同,导致垂直入射反射带分离为p偏振光的第一反射带32a和s偏振光的独立的第二反射带32b。当在薄膜叠堆中仅仅使用各向同性材料时,p偏振光的反射带的峰值反射率随着入射角的增大而单调减小,直到达到布鲁斯特角为止,此时p偏振光的反射率变为零。其次,由于与因素(2)相关的上述相移效应,反射带32a、32b均向更短的波长移动。如p偏振光的第一反射带34a和s偏振光的第二反射带34b所示,随着入射角的进一步增大,反射带继续向更短的波长移动。应该注意,虽然p偏振光的峰值反射率随着入射角接近布鲁斯特角而减小,但是s偏振光的峰值反射率随着入射角的增大而增大。
关于因素(1),美国专利5,882,774(Jonza等人)示出了如何能够减少、消除或逆转p偏振光的反射率随入射角增大而减小的现象。简而言之,在薄膜叠堆中使用双折射材料,从而将相邻微层之间沿z轴的折射率失配控制为较小值(例如,二分之一或四分之一或更小)或零,或者控制为与沿面内(x或y)轴线的折射率失配符号相反。量级为零或几乎为零的z轴折射率失配产生了位于微层之间的这样的界面:作为入射角的函数,该界面对p偏振光的反射率为常数或几乎为常数。极性与面内折射率差相反的z轴折射率失配产生了这样的界面:该界面对p偏振光的反射率随着入射角的增大而增大,这与s偏振光的情况相同。使用这样的原理,可以容易地制成对s偏振光和p偏振光均保持高峰值反射率的薄膜叠堆。
然而,如上所述,对所有偏振光保持高反射率界面几乎不能或完全不能阻止反射带随着入射角的增大而越来越向更短波长移动,即因素(2)的现象。实际上,使用双折射材料来增大或消除布鲁斯特角可能会加速波长随角度的移动。最终,在某些角度,反射带不再覆盖所关注的波长范围,并且在该光谱范围中的反射率下降到可接受的水平或目标以下。这个角度称为θamax。它是在叠堆介质a中评价或测得的。
从设计的观点来看,通过以下方法能将θamax增加为更大的角度:在薄膜叠堆设计中增加更多的微层,并且将层厚度分布延伸为包括光学厚度更大的层。但是为了合理的高目标反射率值,任何有限数量的微层都不能使θamax达到90°。
在一些情况下,将多层叠堆的相邻微层之间的z轴折射率失配调整为仅将对应界面的布鲁斯特角增大为更接近90度(相对于仅具有各向同性微层的多层叠堆)就已足够,而不需将z轴折射率失配调整为完全消除布鲁斯特角。例如,在介质“a”中测得的布鲁斯特角大于θamax就可以是足够的。
还应该指出的是,即使对于利用z轴折射率匹配技术来获得界面间p偏振反射率高的薄膜叠堆,大入射角时的s反射带和p反射带也具有不同的形状并具有不同的带宽,这是由于它们的左带边缘和右带边缘并不随入射角的变化而移动相同的量。对于接近90°的超临界角θa,s和p反射带之间的差异最为明显。通常,p偏振反射带比s偏振反射带窄,并且随着θa增大,p反射带的右带边缘将先于s反射带移过整个所关注的给定波长。换句话讲,即使将该叠堆设计为对p偏振光有高的界面间反射率,随着θa增大,通常也会由于p偏振光的反射带移动到更短的波长而使反射率在所关注的波长或波长范围处发生第一主要下降,但是处在这种角度的s偏振光可以在所关注的波长或波长范围处保持高反射率值。
在一个建模实例中,评价了具有550个微层的双折射四分之一波薄膜叠堆。“a”层沿x轴、y轴、z轴的折射率分别为1.49、1.49和1.49—代表聚甲基丙烯酸甲酯(PMMA)光学材料在633nm处的折射率。这些折射率产生约42°的临界角θac。“b”层沿x轴、y轴、z轴的折射率分别为1.75、1.75和1.49—代表取向的聚萘二甲酸乙二醇酯(PEN)光学材料在633nm处的折射率。该模型也考虑了PMMA和PEN材料的实际散射。在叠堆具有合适的层厚度梯度的情况下,可以使该叠堆的垂直入射反射带从约400nm延伸至约1600nm。对于0至约65°的传播角θa,反射带在可见光区域保持约99%的平均反射率。当传播角超过约65°时,p反射带的移动造成平均反射率急剧下降。因而,对于99%的目标平均反射率,θamax为约65°。
图4示出平均反射率随着介质“a”中的传播角θa而变化的情况的理想视图,并且包括了据信对于具体类型的叠堆来说精确的定性特征。假定反射率是对所有偏振态和在所关注的波长范围内的平均值。曲线40描绘了相邻微层之间的z轴折射率充分匹配的双折射叠堆的反射率(与上述550层的叠堆相似)。曲线42描绘了完全各向同性的叠堆的反射率,该叠堆类似地具有大量微层和相似的垂直入射反射带。曲线40、42在垂直入射和中等值θa处具有高反射率。此外,在超临界角θamax(2)附近,两条曲线均急剧下降。在该角度θamax(2)附近,反射带移动到较短的波长,导致反射带从所关注的波长范围中移出。曲线40因具有良好的倾斜角p偏振反射率而在0≤θa≤θamax(2)的范围内保持相对高的反射率。相反,曲线42的反射率在该范围内下降,并由于布鲁斯特角效应而在角度θamax(1)处降至目标平均反射率41之下。曲线40与目标反射率41在角度θamax(2)处相交。应该注意,如果在不改变该薄膜叠堆的设计的情况下将目标平均反射率41选择为较高,则θamax(1)和θamax(2)将移动到较小的角度,而如果将目标平均反射率41选择为较低,则θamax(1)和θamax(2)将移动到较大的角度。对该目标平均反射率的选择强烈依赖于反射镜的预期应用,但是目标平均反射率的典型值包括90%、95%、96%、97%、98%和99%。
现在我们参照图5-8,讨论能够用于使超临界传播的光射入叠堆的各种结构,以及在设计者仅仅使用常规的薄膜叠堆来实现反射功能的情况下可能出现的问题。诸如棱镜、光导装置、漫射颗粒(例如散射体)或者粗糙化或微结构化的表面之类的结构通常不是为了使超临界光射入到叠堆的单一目的而提供。相反地,所述超临界光的射入是该结构在预期的最终用途的应用中执行功能的结果。
在图5中,由折射率为nc的光学材料“c”制成的棱镜50光耦合到薄膜叠堆52(优选地与薄膜叠堆52紧密地光学接触),而该叠堆52包括由光学材料“a”和“b”构成的微层。光学材料c可以与材料a或b相同,但是nc不小于叠堆中微层的最小折射率nmin。棱镜50在物理上可大可小,可以沿与附图垂直的轴线线性地延伸,或者可为锥形,并且可以为相似或相异棱镜阵列中的一个棱镜。棱镜表面不必须为平坦的或规则的,并且可以使用任意合适的棱镜角。例如,可以使用均由3M公司出售的VikuitiTM增亮薄膜(BEF)系列产品或3MTMScotchliteTM反射材料系列产品中的任何棱镜几何形状。
薄膜叠堆52可以与前述薄膜叠堆10相似。薄膜叠堆52优选地包括数十、数百或数千个微层,这些微层可以布置在单个的叠堆或薄膜包中,或者布置在由光学厚保护性分界层(PBL)间隔开的多个薄膜叠堆或薄膜包中。选定微层的数量、以及它们的厚度和折射率以在所关注的波长范围和在传播角θa范围(该传播角范围包括超临界角并延伸至最大角度θamax,其中0≤θac≤θamax≤90°)内提供比目标平均反射率更高的平均反射率。叠堆52在其外主表面上还可以包括光学厚表层。在这点上,如果层的光学厚度接近或大于所关注的波长范围的平均波长,则可以称该层为为光学厚层。优选的是,该光学厚度至少为该平均波长的10倍、50倍、或100倍。还应注意,如果任何表层或PBL的所有折射率都不小于叠堆中微层的最小折射率nmin,那么可以认为该表层或PBL是薄膜叠堆的一部分。通常,任何表层或PBL是由用于微层的材料a、b中的一种构成的。薄膜叠堆52可以完全为聚合物,并且可以通过共挤出工艺和同样优选的拉伸工艺来制成,以在微层中引入适量的双折射,来提高上述的界面间p偏振反射率。作为另外一种选择,薄膜叠堆52可以包括或限于无机材料,并且可以通过真空蒸镀技术来制成。参考美国专利6,590,707(Weber)所提出的双折射薄膜叠堆,该叠堆可以利用无机材料并且形成双折射。如果分别制造薄膜叠堆52与棱镜50,则可以使用光学粘合剂或其它合适材料的光学薄层或厚层将薄膜叠堆52层合至棱镜50。
来自光源54(发射所关注的波长范围内的光)的光在棱镜50的相对于薄膜叠堆52充分倾斜的棱镜表面56上射入棱镜。该光折射到棱镜50中,然后到达叠堆52。棱镜表面56的倾斜和棱镜的折射率nc使得光能够以大于临界角θac的角度,即以超临界角在叠堆52内传播。如上所述,叠堆52良好地反射所关注的光:这些光以在θa=0和θa=θamax之间的角度(包括一些θac≤θa≤θamax的超临界角)传播。然而,叠堆52并不良好地反射以θaamax的其它超临界角传播的光,本文称这些角为极端传播角或极端入射角。如图5所示,这些光传播通过整个叠堆52,直到达到该叠堆的外主表面52a为止。如果表面52a为平坦的、光滑的、洁净的并且暴露于空气中,则这些光将在表面52a处经历全内反射(TIR),并且如同以小于极端入射角(0≤θa≤θamax)传播的其它光的反射一样,将向回传播穿过叠堆52并进入棱镜50。然而,表面52a(或其一部分)可能为有油脂的、脏的、有划痕的,或与例如安装托架、支撑构件、基底、涂层等其它材料接触。在图5中以干扰物58示意性地绘出了表面52a上的这些干扰物,这些干扰物表示表面52a上的反射率局部降低的区域。因此,无论干扰物58位于哪个位置,处于极端传播角的光将通过表面52a离开叠堆52,并且降低该位置处的反射率。从叠堆中透射或泄漏的光在附图中标为59。
在图6中,用光导装置60代替棱镜50,并且光源54包括帮助光穿过光导装置60的侧表面60a更有效地射入光导装置60的反射器54a。该光导装置如上所述地由光学材料“c”制成,并且也如上所述地光耦合到薄膜叠堆52。该光导装置可以具有任何所需的尺寸或形状,并且可以具有均匀的或逐渐减小的厚度。该光导装置可以(例如)适用于移动电话、膝上型计算机、电视机或其它应用中的液晶显示器(LCD)的背光源。提取特征62设置在光导装置的前表面之上或在光导装置之上或之内的其它位置上,已知这样将光从该光导装置导向液晶面板或其它待照明的部件。
因为光穿过侧表面60a射入到光导装置60中,因此光能够以大入射角在光导装置和叠堆52中传播。如上所述,叠堆良好地反射在所关注的波长范围内的以角度0≤θa≤θamax传播的任何光,但是不能良好地反射处于极端传播角的光。在叠堆的外主表面52a上的局部干扰物58导致这种光59穿过表面52a离开叠堆52,从而也减小该位置的反射率。
在图7中,用光学部件70替换光导装置60,该光学部件包括分散在折射率为nc的基质材料中的漫射颗粒72。只要颗粒72基本上散射光,就可以具有任何所需的类型或构造,无论是在构成、尺寸、分布还是其它方面。光学部件70可以为相对薄或厚的层,或为更复杂的结构。例如,光学部件70可以为表层。光学部件70也可以为粘合剂层,诸如压敏粘合剂或其它粘合剂。来自光源54的光可以从空气介质进入光学部件70,但是由于颗粒72,光在光学部件70中基本上沿着所有方向散射和传播。然后,该光以所有角度入射到叠堆52上。该叠堆良好地反射在所关注的波长范围内的以角度0≤θa≤θamax传播的任何光,但是并不良好地处于反射极端传播角的光。在该叠堆的外主表面52a上的局部干扰物58使得光穿过表面52a离开叠堆52,从而减小该位置的反射率。
在图8中,用光学部件80替换光学部件70,光学部件80具有纹理化的、粗糙化的、微结构化的、或以其它方式不光滑的表面80a。表面80a可以如同无光面一样仅仅是粗糙化的,或者可以使用精密几何图案来进行微复制,或者可以包括形成衍射元件(诸如全息)的微面。光学部件80由折射率为nc的光学材料“c”构成。不光滑表面80a折射、衍射或以其它方式散射来自光源54的光(该光源可以位于空气介质中),从而使得光在光学部件80中以大入射角传播。叠堆52光耦合到光学部件80,并且光从光学部件80以所有角度或者至少一部分超临界角达到该叠堆。该叠堆良好地反射在所关注的波长范围内的以0≤θa≤θamax的角度传播的任何光,但是并不良好地反射极端传播角的光。在该叠堆的外主表面52a上的局部干扰物58使得光59穿过表面52a离开叠堆52,从而减小该位置的反射率。
读者应该理解到,图5-8所示的使超临界传播的光射入叠堆的结构仅仅是示例性的,而并不应该认为是限制性的。此外,这些结构可以以任何方式组合,诸如在棱镜中结合漫射颗粒或在光导装置上结合不光滑表面。
为了提供这样的反射镜系统,即在叠堆的外表面或反射镜系统的其它外表面上的局部干扰物处不损失光的情况下,能够反射极端传播角的光的反射镜系统,图9-11引入了由光学材料“i”构成的光学厚层94,光学材料“i”具有处于空气折射率和叠堆的微层的最小折射率nmin之间的中间折射率ni。根据薄膜堆叠的材料选择,示例的低折射率材料包括无机材料,诸如氟化镁、氟化钙、二氧化硅、溶胶凝胶,以及有机薄膜形成材料,诸如含氟聚合物和硅树脂。气凝胶材料尤其适用,这是因为它们能够达到极低的约为1.2或更低,或甚至为约1.1或更低的有效折射率。气凝胶是通过对由溶剂填充的胶态二氧化硅结构单元构成的凝胶进行高温高压临界点干燥而制成的。所得材料为欠密的多微孔介质。根据多层叠堆中的微层的折射率,在一些情况下可以在光学厚层中使用较高折射率的材料,例如,折射率约为1.5或更小、1.4或更小,或者1.3或更小的材料。该光学厚层的厚度优选地为至少约1微米,或者至少约2微米,以避免产生受抑全内反射现象。
在图9中,反射镜系统90包括上述薄膜叠堆52,以及光学材料“c”的第一层92和光学材料“i”的光学厚层94。第一层92可以为光学部件50、60、70或80的任何一种或它们的组合。第一层92可以是光学厚的、光学薄的、微观的、宏观的、有机的(例如聚合物的)或无机的。在使用上述的任意机构的情况下,光在层92中以超临界传播角传播,并且在示例性实施例中覆盖所有传播角。图9a示出了在层92中传播的光的角度图,其中完整的半圆弧100表示在材料c中以所有的入射角θc传播的光。图9a还示出了材料c的临界角θcc和极限角θclim。在材料c中以极限角θclim传播的光以掠射的方式折射到层94的折射率较低的材料“i”中。因此,在层92中以大于θclim的角度传播的光在层92与层94接触的内置表面94a处发生全内反射。该光在图9中以光线96示出。在层92中传播的其它光折射进入层94,并且在层94中在整个角度范围内传播,如图9b的半圆弧102所示。应该注意,在层94中传播的光包括以大于介质“i”的临界角θic的角度传播的光。
优选地,与叠堆52的设计相关地选择层94的折射率ni,使得在介质“i”中以掠射角θi=90°传播的光以角度θa≈θamax折射进入叠堆的介质“a”。该条件保证了在介质“i”中以超临界角以及甚至以极端角度传播的光以能够被叠堆良好地反射(平均反射率为目标平均反射率或更高,并在所关注的波长范围内)的适当角度折射进入材料“a”层。同样地,任何在材料“a”中以θaamax的角度传播并且遇到与材料“i”的界面的光将在该界面发生全内反射。
在选择材料“i”后,在所关注的波长范围内的从层94入射到叠堆52上的所有光被该叠堆反射,基本上没有光达到外主表面52a。图9c以弧线104a(0≤θa≤θamax)示出在该叠堆的材料“a”的微层中传播的光,弧线104b表示没有光以更大的角度传播。图9示出了入射角逐渐增大的被叠堆52反射的光98a、98b、98c。一些来自层92的光在层94的内置表面发生全内反射,并且来自层92的剩余光由叠堆52反射,而不允许任何光达到表面52a。因而,与图5-8所示的反射镜系统不同,图9所示的反射镜系统90对其外表面(即表面52a)上的任何干扰物都不敏感。然而,反射镜系统90能够通过叠堆52与光学厚层94的组合,至少以目标平均反射率反射所有角度的光。因此,反射镜系统90在所关注的波长范围提供“无漏光反射镜”。
图10示出了与系统90相似的反射镜系统110,但是叠堆52的位置改变为置于层92和94之间。此处,同样,光在层92中以超临界传播角传播,并且在示例性实施例中覆盖所有的传播角。图10a示出了在层92中传播的光的角度图,其中完整的半圆弧114表示在材料c中以所有的入射角θc(包括大于θcc的超临界角)传播的光。然后该光遇到叠堆52,该叠堆52包括材料“a”和“b”的微层。垂直入射的光112a和一些倾斜入射的光112b照常由叠堆52反射,这是因为两种光以在0至θamax范围内的角度θa折射到光学材料“a”中。然而,剩余光以极端传播角折射进入材料“a”,并且没有被该叠堆良好地反射。参见图10b,其中弧线116描绘在材料“a”中以所有入射角θa(包括大于θamax的角)传播的光。
幸运地,层94具有合适的折射率ni,使其可以在内置表面94a上将极端传播的光,诸如光112c全内反射。这种光向回传播,穿过叠堆52并进入层92。从上方入射到层94上的所有光在表面94a上反射,并且图10c中的弧线118表示没有光在层94中传播。布置在层94的下主表面上的任何干扰物58都将不会影响反射镜系统110的反射率,这是因为层94具有足够的厚度来避免在该层中产生任何倏逝波隧道效应。因此,反射镜系统110也在所关注的波长范围上提供“无漏光反射镜”。
图11示出了与图9所示的系统90相似的反射镜系统120,但是其中移除了层92,并且将使光以超临界角射入的任何结构结合到具有中间折射率材料“i”的光学厚层94中。因此,通过使用本发明所公开的任何技术将光射入到层94中,从而使得光在材料“i”中以所有角度θi传播。这在图11a中以弧线124来表示。由于上述对材料“i”及其折射率ni的选择,所有这些光以0≤θa≤θamax的角度范围全部折射进入材料“a”的微层,从而确保叠堆52良好地反射所有这些光,不论是垂直入射的(122a)或是斜入射的(122b,122c)。图11b中的弧线126a示出以从垂直入射到超临界范围内的角度传播的光,而弧线126b示出没有光以超过θa=θamax的角度传播。
如同反射镜系统90一样,没有光到达反射镜系统120的背侧外表面52a,因此在该外表面上存在或布置的任何干扰物将不会影响反射镜系统120的反射率。同时,反射镜系统120反射宽入射角范围的光。反射镜系统120在所关注的波长范围内提供“无漏光反射镜”。
在上述讨论中我们描述了多种结构,这些结构能够执行使光以超临界传播角射入材料“i”的光学厚层中以及射入薄膜干涉叠堆的微层中的特定功能。这些结构的其中一种为微小的光散射颗粒。当为了向给定的应用提供漫射(即光散射)而采用这些散射体时,可以按需要调整多种因素,以控制复合反射镜特性。例如,可以改变颗粒的尺寸、折射率、浓度和分布,也可以改变这些颗粒所在的层(例如,表层、粘合剂层或其它层)的厚度。本发明所公开的另一种结构是成形的表面,使该表面成形以便限定通过在表面上的折射来散射或偏转光的凸起和/或凹陷。(这种表面可以是这样的层的一部分:可以层合到薄膜叠堆,或可以直接凸印到例如位于薄膜叠堆的前表面上的表层或涂层中。)在这种情况下,也可以使用多种因素来控制复合反射镜的特征,例如折射率、形状、尺寸、以及所述凸起/凹陷元件的表面覆盖率和其它表面形貌特性。无论是结构化的表面、散射颗粒、或此二者,这些构造的结构细节均可进行特别处理以产生所需的光散射或偏转的量。例如,散射可以足够强,以提供大致的朗伯分布,或者散射可以较弱。同样,根据预期应用,可以调整构造的细节以产生在优选的角度或角度范围内的散射。
以上描述使得多种具有广角度反射率的反射镜系统的制造成为可能。一种这样的反射镜系统涉及这样的漫反射镜:当浸入到任意折射率的介质中时,在所有的入射角下进行极强的反射。虽然反射镜背侧区域的反射率局部降低,但是这种反射镜系统能够均匀地反射光。
在下面示出的实例中将描述示例性实施例,除非另外指明,其中的份数和百分比均按重量计。
实例1
通过使用光学粘合剂将由取向的PEN和PMMA制成的两个多层反射镜层合在一起,来制成反射带扩展的反射镜薄膜叠堆。第一个反射镜根据美国专利6,783,349(Neavin等人)所描述的方法由530层PEN/PMMA(使用倍增器和两包各265层的材料形成)制成,以提供可见及近红外反射镜,所述反射镜对于垂直入射的非偏振光具有从约400nm延伸至约1000nm的反射带。第二个反射镜以相似的方式制成,但是第二个反射镜仅包括一包265层PEN/PMMA,形成反射带在从约1000nm至1700nm的范围内的红外反射镜。每个反射镜在合适条件下进行双轴拉伸,以使PEN材料成为(在633nm处测得的)具有大小为约1.75的大致等同的面内折射率和大小为约1.49的z轴折射率的双折射材料,而PMMA材料保持为折射率为约1.49的大致各向同性的材料。所述光学粘合剂为3MTMOptically ClearLaminating Adhesive8141(光学透明的层合粘合剂8141),这是一种可得自明尼苏达州圣保罗3M公司的1.0密耳(25微米)厚的丙烯酸压敏粘合剂(633nm处的折射率大约为1.4742)。所得的宽带层合反射镜薄膜叠堆对于垂直入射光具有约400nm至1700nm的反射带。对于倾斜入射,该层合叠堆对于在PMMA材料(这里称为材料“a”)中所测得的传播角θa在0°至约65°的范围内的光保持高反射率。随着θa超过约65°,p偏振光的带边缘开始从近红外波长移动到可见光波长,导致反射镜系统的反射率急剧下降。随着θa的增大,反射率从可见光光谱的长波长端(约700nm)开始急剧下降,并继而越过整个可见光光谱直至更短的波长处。图12所示的曲线A为对于该层合反射镜当光在空气中垂直入射时(这时θa=0)所测得的光谱透射率曲线,而曲线B为p偏振光在空气中以60°入射(这时θa≈35.5°)时的透射率曲线。可以根据该坐标图利用关系式R+T≈100%来确定反射率的值,其中R为给定波长的透射率百分比,而T为给定波长的反射率百分比。
该层合反射镜装置的所关注的波长范围为可见波长区域,为大约400-700nm。所关注的微层角度的范围(在该范围上提供足够的平均反射率)是θa为约0至65°,上限约65°对应于θamax
以如下方式制成含氟聚合物漫射层。含氟聚合物树脂THV-500TM(明尼苏达州圣保罗的Dyneon LLC)为使用标准薄膜制备装置所挤出和浇注而成的2密耳(约0.05mm)厚的薄膜。该薄膜包括以重量计约2%的二氧化钛粉末,该粉末为通常用于白色涂料中的那种类型的粉末。将该粉末混合到单独的THV母料中,粉末的重量百分比为约35%。然后将母料树脂小球混合到透光的THV树脂中,以使得粉末的最终重量百分比为约2%。该THV含氟聚合物的折射率为约1.35,该折射率低于反射镜层合物中PEN和PMMA微层的折射率,而高于空气的折射率。使用关系式na×sinθamax=ni×sinθimax,根据θamax的精确值、THV含氟聚合物的精确折射率值ni、PMMA材料的精确折射率值na,由上述折射率可得到与PMMA材料中的θamax对应的、大约为90°的THV含氟聚合物材料中的传播角θimax。参数θimax为在介质“i”中测得的最大的光传播角,薄膜叠堆在所关注的波长范围为介质“i”提供足够的反射率。根据斯涅尔定律(Snell’slaw)该参数与θamax相关联。θimax≈90°的意义在于这对应于在THV材料中沿着几乎平行于THV层平面的方向传播的光,而这意味着在THV材料中以任何角度或以所有可能的倾斜角传播的光将被反射镜层合物充分地反射。
使用与层合两个多层反射镜所用的光学粘合剂相同的光学粘合剂将所得的散射薄膜层合到反射镜层合物的前表面。结果是得到具有漫反射特性和宽带(复合)干涉叠堆的反射镜系统。通过在后一多层反射镜的露出的背面的有限区域或区段上施加得自SanfordTM永久性标记(permanentmarker)的黑色油墨,来在反射镜系统的背面产生反射率降低的局部区域。
然后测量反射率。除非另有说明,测量反射率使用的是Lambda19分光光度计、积分球和用于做参照的NIST校准的朗伯白光漫反射器。使被测的每个波长的光垂直地入射到给定样本的有限部分上,并且使用积分球收集被该样本反射的所有这些光(在半球立体角的范围内,因而同时包括镜面反射光和漫反射光),以计算反射率百分比。
在图13中,曲线A绘出了以这种方法测得的该宽带反射镜薄膜叠堆自身的反射率,即仅有所述两个层合的多层反射镜,而无前漫射层,并且不在反射镜薄膜的背面施加黑色油墨。曲线B为包括宽带反射镜和含氟聚合物散射层的整个反射镜系统的反射率曲线。曲线B是在对应背面未施加黑色油墨的反射镜系统的前表面的位置上测得的。曲线C与曲线B相似,但前者是在用上述黑色油墨完全涂覆对应背面之后的整个反射镜系统的前表面测得的。如图13所示,曲线A、B、C均在整个可见光光谱范围内表现出高反射率。向曲线B的反射镜系统添加的黑色背衬层并没有显著降低可见光光谱反射率。
当观察者从前方观察该单独的宽带反射镜薄膜叠堆时(图13中的曲线A),该反射镜是发亮的并且提供镜面反射。当观察者从前方观察仅涂覆有含氟聚合物散射层的反射镜区域(图13中的曲线B)以及涂覆有含氟聚合物散射层和黑色背衬的反射镜区域(图13中的曲线C)时,所述的两类反射镜区域均提供漫反射。从前方看,不能辨别曲线B和曲线C所表示的反射镜区域,而需要翻转反射镜系统来查看黑色背衬的位置。
比较例1
构造与实例1相似的反射镜系统,但是省略了第二多层反射镜(其垂直入射反射带从约1000nm延伸至1700nm)。也就是说,仅使用第一反射镜,该反射镜由530层PEN/PMMA制成并且具有从约400nm延伸至约1000nm的垂直入射反射带。将实例1的漫射薄膜施加到该第一多层反射镜的前表面上,并且将实例1的黑色油墨施加到第一多层反射镜的背面的一部分上。使用相同的方法测量反射率。
与实例1的反射镜层合物相比,由于单独的第一反射镜的反射带的光谱宽度变窄,该比较例1的θamax的值明显小于实例1的值65°,并且漫射薄膜对应的θimax明显小于90°。这意味着在漫射薄膜中倾斜传播的光的相当大一部分将不会被比较例1的多层反射镜充分反射。
图14所示的曲线A绘出了第一多层反射镜自身的反射率。曲线B绘出了如下的反射镜系统的反射率:该反射镜系统由第一多层反射镜叠堆和施加在反射镜系统的前表面上的含氟聚合物漫射层构成,并且不在反射镜系统的背面施加黑色油墨。曲线C与曲线B相似,但是在曲线C中的反射镜系统的背面包括黑色油墨层。如图14所示,将黑色背衬层添加到漫反射镜系统上会导致可见光光谱反射率显著下降。
当观察者观察时,曲线A对应的反射镜是发亮的,会形成镜面反射,并且看起来像实例1的未涂覆的宽带反射镜薄膜叠堆(图13中的曲线A)。曲线B和曲线C对应的反射镜区域提供漫反射。当从前方观察时,曲线C对应的区域显然比曲线B对应的区域暗,而不需要将反射镜翻转以辨别这两个区域。
比较例2
构造与实例1相似的反射镜系统,但是其中THV基漫射薄膜由不同的漫射薄膜所取代。在该比较例2中,通过在实例1的宽带反射镜薄膜叠堆的前表面施加可从明尼苏达州圣保罗3M公司商购获得的白色3MTMScotchcalTM3635-70漫射薄膜(3MTMScotchcalTM3635-70Diffuser Film)层而制成另一种替代的反射镜系统。该漫射薄膜包括分散在聚氯乙烯(各向同性的折射率为1.54)基质中的二氧化钛颗粒,并且具有约60%的透光率。该ScotchcalTM产品也包括与聚氯乙烯漫射层接触的透光的压敏粘合剂层。该粘合剂层用于将聚氯乙烯漫射薄膜粘合至所述宽带反射镜薄膜叠堆的前表面。包括粘合剂层和扩散层的ScotchcalTM产品的厚度为约3密耳(约75微米)。
通过将该漫射层的折射率从约1.35增加至1.54,严格地说,比较例2的漫射介质不再是“中间的”,这是因为该漫射介质的反射率超过了多层反射器中PMMA微层的反射率。此外,该折射率的增加将极限值θimax从实例1的大约90°值减小至约61°。这又意味着在漫射薄膜中倾斜传播的光的相当大一部分将不会被比较例2中的多层反射镜充分地反射。
图15中的曲线A绘出了反射镜薄膜叠堆自身的反射率,该曲线与图12所示的曲线A相同。曲线B绘出所述替代反射镜系统的反射率,该系统包括施加在宽带反射镜薄膜叠堆的前表面上的ScothcalTM漫射层,而未将黑色油墨施加到对应的背面。曲线C与曲线B相似,但是其中黑色油墨已经被施加到与该反射镜系统的前测试区域对应的外露背面上。如图15所示,将黑色背衬层添加至曲线B所对应的反射镜上导致可见光光谱反射率显著下降。
当观察者观察时,曲线C对应的区域显然比曲线B对应的区域暗(程度超过比较例1的反射镜系统的对应区域(曲线C)的情况),而不需要翻转反射镜以辨别这两个区域。
比较例3
构造与比较例2相似的反射镜系统,但是其中省略了第二多层反射镜(其垂直入射反射带从1000nm延伸至1700nm)。也就是说,仅使用了第一反射镜,该反射镜由530层PEN/PMMA制成并且具有从约400nm延伸至约1000nm的垂直入射反射带。使用提供的透光压敏粘合剂层将比较例2的ScotchcalTM漫射层施加到第一多层反射镜的前表面上,并且将实例1的黑色油墨施加到该反射镜背面的选定区域。
如同我们在比较例1中所讨论的那样,与实例1的(层合的)干涉叠堆相比,通过移除第二多层反射镜,我们缩窄了薄膜干涉叠堆反射带的光谱宽度。因此,此比较例3的θamax的值明显小于实例1的值65°,从而使值θimax减小至明显小于90°。与比较例1相关的另一个问题是我们也将漫射层的折射率从约1.35增加至1.54,这进一步减小了θimax的值,使得在漫射薄膜中倾斜传播的光的更多部分不能被该多层反射镜充分地反射。
图16所示的曲线A绘出了第一反射镜薄膜叠堆自身的反射率,该曲线与图14中的曲线A相同。曲线B绘出了在第一反射镜薄膜的前表面上施加了ScotchcalTM漫射层的反射镜系统的反射率。曲线C与曲线B相似,但是在曲线C中将黑色油墨施加至该反射镜系统的对应背面。如图16所示,将黑色油墨层添加至曲线B所对应的反射镜上导致可见光光谱反射率显著下降。
当观察者观察时,曲线C的区域显然比曲线B的区域暗(程度超过比较例1和比较例2的反射镜的对应区域的情况),而不需要翻转反射镜来辨别这两个区域。
本发明所公开的反射镜系统的至少一些实施例能够提供以下的特征组合:(1)高的前表面反射率,包括与干涉反射器的微层中的超临界传播角对应的高度倾斜的光的反射率,甚至在如下情况下也是如此:(2)反射镜系统的背面的一部分或全部与背面上的吸收材料或降低反射率的其它介质相接触。这些特征在如下应用中是有利的:要求在反射镜系统的背面附连其它部件,并且要求非常高和均匀的前表面反射率。例如,上述任何一种漫反射的反射镜系统都能够通过附连到反射镜系统的背面而整体固定到壁或者其它支撑结构上,而不需要使用会将该反射镜系统的前反射表面遮住的任何附连机构。此外,这能够在不降低该反射镜系统的前表面反射率(甚至在与背面的附连区域或点直接相对的区域)的前提下成功实现。
一种可以受益于这种设计能力的应用或最终用途是标牌或显示器的背光源腔,包括但不限于液晶显示(LCD)器。背光源的结构壁,包括(例如)大的后表面和较小的侧面,能够由结构特性良好但是光学特性差的材料制成,诸如注模塑料或弯曲金属片。然后,本文所述的至少前表面具有极佳的光学特性但结构特性可能不好(例如,刚度差)的漫反射镜系统,能够仅仅通过将结构部件附连到该反射镜系统的背面而固定到结构部件上,并且几乎不或完全不遮蔽前表面,而且与附连点相关的前表面反射率几乎没有或完全没有下降,从而使背光源腔的反射率实现最大化。
除非另外指明,在说明书和权利要求书中使用的表示部件的尺寸、数量和物理特性的所有数字应当理解为由词语“约”来修饰。因此,除非有相反的指示,在上述说明书和所附权利要求书中所提出的数值参数为近似值,可根据本领域内的技术人员利用本文所公开的说明内容寻求获得的所需特性而变化。
不脱离本发明的各种修改和更改对于本领域内的技术人员都是显而易见的,并且应当理解到,本发明不局限于本文所阐述的示例性实施例。

Claims (7)

1.一种反射镜系统,包括:
薄膜叠堆,其包括多个微层,所述微层大致垂直于基准轴线,并且具有选定的折射率和厚度以充分反射在所关注的波长范围和所关注的微层角度范围内的光;
与所述微层耦合的光学厚层,所述光学厚层的折射率ni大于空气的折射率但小于所述微层的折射率;以及
将光射入到所述光学厚层和所述微层中的结构,所述光包括在所述光学厚层中相对于所述基准轴线以大致90°的角度传播的光;其中,
所述所关注的微层角度范围延伸至在与所述多个微层之一相对应的参考介质中测得的角度θmax,θamax是当所述薄膜叠堆在所关注的波长范围内提供足够的反射率时,在所述参考介质中测得的最大的光传播角,选择折射率ni,使得在所述光学厚层中相对于所述基准轴线以90°的角度传播的光以大约为θamax的角度折射进入所述多个微层的所述参考介质。
2.根据权利要求1所述的反射镜系统,其中所述结构包括分散在所述光学厚层中的散射体。
3.根据权利要求1所述的反射镜系统,其中所述结构包括所述光学厚层的不光滑表面。
4.根据权利要求1所述的反射镜系统,其中,选择所述微层的折射率以消除在相邻微层之间的界面上的布鲁斯特角。
5.根据权利要求1所述的反射镜系统,其中所述光学厚层为在显示器中使用的光导装置。
6.根据权利要求1所述的反射镜系统,其中所述微层的反射带充分远地延伸到近红外区域,因而虽然在反射镜的背面区域反射率局部降低,但是所述反射镜系统在观察者看来均匀地反射可见光。
7.根据权利要求6所述的反射镜系统,其中所述微层的垂直入射反射带从400nm延伸到至少1600nm。
CN2007800108090A 2006-03-31 2007-03-28 广角反射镜系统 Active CN101432641B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74411206P 2006-03-31 2006-03-31
US60/744,112 2006-03-31
PCT/US2007/065366 WO2007115040A2 (en) 2006-03-31 2007-03-28 Wide angle mirror system

Publications (2)

Publication Number Publication Date
CN101432641A CN101432641A (zh) 2009-05-13
CN101432641B true CN101432641B (zh) 2011-10-12

Family

ID=38564189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800108090A Active CN101432641B (zh) 2006-03-31 2007-03-28 广角反射镜系统

Country Status (7)

Country Link
US (2) US20080037127A1 (zh)
EP (1) EP2033025A2 (zh)
JP (3) JP2009532720A (zh)
KR (3) KR20080108255A (zh)
CN (1) CN101432641B (zh)
TW (1) TWI570447B (zh)
WO (1) WO2007115040A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570447B (zh) * 2006-03-31 2017-02-11 3M新設資產公司 廣角鏡系統

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467283B (zh) 2007-05-20 2015-01-01 3M Innovative Properties Co 具有半反射鏡組件之再循環背光
US7915629B2 (en) 2008-12-08 2011-03-29 Cree, Inc. Composite high reflectivity layer
US9461201B2 (en) 2007-11-14 2016-10-04 Cree, Inc. Light emitting diode dielectric mirror
US7708446B2 (en) * 2008-02-26 2010-05-04 Sabic Innovative Plastic Ip B.V. Display film stacks and a method of modeling the films
BRPI0907685A2 (pt) 2008-04-30 2019-02-26 3M Innovative Properties Co sistema de iluminação e acoplador de injeção de luz para o mesmo
US9285531B2 (en) * 2008-08-08 2016-03-15 3M Innovative Properties Company Lightguide having a viscoelastic layer for managing light
US8870436B2 (en) * 2008-09-17 2014-10-28 3M Innovative Properties Company Patterned adhesives for reflectors
EP2366077B1 (en) * 2008-11-19 2018-08-15 3M Innovative Properties Company Brewster angle film for light management in luminaires and other lighting systems
EP2365906B1 (en) 2008-11-19 2016-12-21 3M Innovative Properties Company Reflective film combinations with output confinement in both polar and azimuthal directions and related constructions
US20110222263A1 (en) * 2008-11-19 2011-09-15 Weber Michael F High transmission flux leveling multilayer optical film and related constructions
CN102265195B (zh) * 2008-11-19 2014-05-28 3M创新有限公司 在极角和方位角方向均具有输出限制的多层光学膜及相关构造
CN102326103A (zh) * 2008-12-30 2012-01-18 3M创新有限公司 含氟聚合物多层光学膜及其制备和使用方法
CN102449508B (zh) 2009-04-15 2014-12-17 3M创新有限公司 光学膜
US8964146B2 (en) 2009-04-15 2015-02-24 3M Innovative Properties Company Optical film for preventing optical coupling
TWI605276B (zh) 2009-04-15 2017-11-11 3M新設資產公司 光學結構及包含該光學結構之顯示系統
KR101770837B1 (ko) 2009-04-15 2017-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 공극을 포함하는 광학 필름을 구비한 도광체 및 디스플레이 시스템용 백라이트
US9291752B2 (en) 2013-08-19 2016-03-22 3M Innovative Properties Company Retroreflecting optical construction
EP2419265A4 (en) 2009-04-15 2012-12-05 3M Innovative Properties Co REFLECTIVE OPTICAL CONSTRUCTION
US9464179B2 (en) 2009-04-15 2016-10-11 3M Innovative Properties Company Process and apparatus for a nanovoided article
WO2010120468A1 (en) 2009-04-15 2010-10-21 3M Innovative Properties Company Process and apparatus for a nanovoided article
US8142041B2 (en) * 2009-08-27 2012-03-27 Sabic Innovative Plastics Ip B.V. Lenticular film and backlight modules for use therewith
US9362459B2 (en) 2009-09-02 2016-06-07 United States Department Of Energy High reflectivity mirrors and method for making same
US9063293B2 (en) 2009-10-24 2015-06-23 3M Innovative Properties Company Immersed reflective polarizer with angular confinement in selected planes of incidence
CN102576119B (zh) 2009-10-24 2014-03-26 3M创新有限公司 光源和采用所述光源的显示系统
JP2013508781A (ja) * 2009-10-24 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー 高い軸外反射率を有する浸漬した反射偏光子
JP5898085B2 (ja) * 2009-10-24 2016-04-06 スリーエム イノベイティブ プロパティズ カンパニー 低減した色を有する浸漬された非対称反射体
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
JP5518447B2 (ja) * 2009-11-30 2014-06-11 ヂェンクゥエン ウェイ 積層反射フィルム及び多層光学フィルム
EP3270049A3 (en) 2009-12-08 2018-04-18 3M Innovative Properties Co. Optical constructions incorporating a light guide and low refractive index films
EP3396424A3 (en) 2009-12-17 2018-12-26 Apple Inc. Dichroic glass for cosmetic appeal in an electronic device
US9105824B2 (en) 2010-04-09 2015-08-11 Cree, Inc. High reflective board or substrate for LEDs
US9012938B2 (en) 2010-04-09 2015-04-21 Cree, Inc. High reflective substrate of light emitting devices with improved light output
EP2558288B1 (en) 2010-04-15 2019-01-02 3M Innovative Properties Company Retroreflective articles including optically active areas and optically inactive areas
CN102834254A (zh) 2010-04-15 2012-12-19 3M创新有限公司 包括旋光区域和不旋光区域的回射制品
US9618663B2 (en) 2010-04-15 2017-04-11 3M Innovative Properties Company Retroreflective articles including optically active areas and optically inactive areas
CN102906605B (zh) 2010-05-21 2016-02-03 3M创新有限公司 具有降低的彩色的部分反射型多层光学膜
US9995861B2 (en) 2010-10-20 2018-06-12 3M Innovative Properties Company Wide band semi-specular mirror film incorporating nanovoided polymeric layer
BR112013019210A2 (pt) * 2011-01-28 2019-09-24 Baker Hughes Inc material de revestimento não magnético
US10243121B2 (en) 2011-06-24 2019-03-26 Cree, Inc. High voltage monolithic LED chip with improved reliability
US9728676B2 (en) 2011-06-24 2017-08-08 Cree, Inc. High voltage monolithic LED chip
JP6070550B2 (ja) * 2011-06-24 2017-02-01 コニカミノルタ株式会社 光学反射フィルム
US9099626B2 (en) * 2012-04-02 2015-08-04 Jds Uniphase Corporation Broadband dielectric reflectors for LED
US8807817B2 (en) 2012-08-13 2014-08-19 3M Innovative Properties Company Colorful diffractive luminaires providing white light illumination
US8944662B2 (en) 2012-08-13 2015-02-03 3M Innovative Properties Company Diffractive luminaires
US9625637B2 (en) 2012-08-13 2017-04-18 3M Innovative Properties Company Diffractive lighting devices with 3-dimensional appearance
US8834004B2 (en) 2012-08-13 2014-09-16 3M Innovative Properties Company Lighting devices with patterned printing of diffractive extraction features
US9279921B2 (en) 2013-04-19 2016-03-08 3M Innovative Properties Company Multilayer stack with overlapping harmonics for wide visible-infrared coverage
US20160290599A1 (en) 2013-12-23 2016-10-06 3M Innovative Properties Company Luminaire with semi-specular reflector
US9046637B1 (en) 2014-02-25 2015-06-02 3M Innovative Properties Company Tubular lighting systems with inner and outer structured surfaces
US10161593B2 (en) 2014-02-25 2018-12-25 3M Innovative Properties Company Solid state lighting device with virtual filament(s)
TWI544179B (zh) * 2014-09-05 2016-08-01 台達電子工業股份有限公司 光波長轉換裝置及其適用之光源系統
US9823395B2 (en) * 2014-10-17 2017-11-21 3M Innovative Properties Company Multilayer optical film having overlapping harmonics
US10658546B2 (en) 2015-01-21 2020-05-19 Cree, Inc. High efficiency LEDs and methods of manufacturing
JP6394968B2 (ja) * 2015-02-06 2018-09-26 豊田合成株式会社 光学多層膜および発光素子
DE102016120122C5 (de) * 2016-10-21 2020-03-12 Carl Zeiss Vision International Gmbh Brillenglas mit Beschichtung, Verfahren zum Herstellen eines Brillenglases sowie computerimplementiertes oder experimentelles Verfahren zur Auslegung eines Brillenglases
CN110088651B (zh) * 2016-12-20 2021-09-03 3M创新有限公司 包括隐藏荧光特征的多层膜
KR101945296B1 (ko) * 2017-03-20 2019-02-08 주식회사 리크릭스 선택적 광 반사 필름
CN110997464B (zh) * 2017-08-14 2023-03-31 日产自动车株式会社 具有反射控制层的移动体
US11009662B2 (en) * 2017-09-05 2021-05-18 Facebook Technologies, Llc Manufacturing a graded index profile for waveguide display applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735952B1 (en) * 1993-12-21 2000-03-22 Minnesota Mining And Manufacturing Company Multilayered optical film
CN1360681A (zh) * 1999-07-12 2002-07-24 舱壁玻璃公司 干涉光窄带滤波器
CN1432827A (zh) * 2002-01-08 2003-07-30 鸿富锦精密工业(深圳)有限公司 薄膜滤波器
EP1133705B1 (en) * 1998-11-25 2004-08-04 Minnesota Mining And Manufacturing Company Multilayer reflector with enhanced acceptance angle and selective transmission
CN1745320A (zh) * 2002-12-31 2006-03-08 3M创新有限公司 采用已设计色偏移的光偏振薄膜

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247392A (en) * 1961-05-17 1966-04-19 Optical Coating Laboratory Inc Optical coating and assembly used as a band pass interference filter reflecting in the ultraviolet and infrared
JPH02287301A (ja) * 1989-04-27 1990-11-27 Copal Co Ltd 入射角非依存性高反射率誘電体多層膜反射鏡
US5103337A (en) * 1990-07-24 1992-04-07 The Dow Chemical Company Infrared reflective optical interference film
DE69330425T2 (de) * 1992-11-27 2001-10-25 Yasuhiro Koike Geraet zur fuehrung gestreuten lichtes
US5360659A (en) * 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
US5882774A (en) * 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
JP3448626B2 (ja) 1993-12-21 2003-09-22 スリーエム イノベイティブ プロパティズ カンパニー 反射偏光子ディスプレイ
DE69527515T2 (de) * 1994-04-06 2003-05-08 Minnesota Mining & Mfg Polarisierte lichtquelle
DE69629471T2 (de) * 1995-06-26 2004-06-09 Minnesota Mining And Mfg. Co., Saint Paul Hintergrundbeleuchtungsvorrichtung mit mehrschichtfilmreflektor
US6808658B2 (en) * 1998-01-13 2004-10-26 3M Innovative Properties Company Method for making texture multilayer optical films
US6531230B1 (en) * 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
JP2001135122A (ja) 1999-08-26 2001-05-18 Three M Innovative Properties Co 照明装置及び液晶表示装置
US6590707B1 (en) * 2000-03-31 2003-07-08 3M Innovative Properties Company Birefringent reflectors using isotropic materials and form birefringence
US6630283B1 (en) * 2000-09-07 2003-10-07 3M Innovative Properties Company Photothermographic and photographic elements having a transparent support having antihalation properties and properties for reducing woodgrain
JP2002237211A (ja) * 2001-02-08 2002-08-23 Nitto Denko Corp 偏光面光源及びこれを備えた液晶表示装置
JP2003233061A (ja) * 2001-12-06 2003-08-22 Nec Akita Ltd 半透過型液晶表示装置
US6534903B1 (en) * 2002-02-25 2003-03-18 General Electric Company Broad spectrum reflective coating for an electric lamp
US7215473B2 (en) * 2002-08-17 2007-05-08 3M Innovative Properties Company Enhanced heat mirror films
US6848795B2 (en) * 2002-10-24 2005-02-01 Eastman Kodak Company Increased contrast overhead projection films
US7157839B2 (en) * 2003-01-27 2007-01-02 3M Innovative Properties Company Phosphor based light sources utilizing total internal reflection
US7019905B2 (en) * 2003-12-30 2006-03-28 3M Innovative Properties Company Multilayer reflector with suppression of high order reflections
JP2005251655A (ja) * 2004-03-05 2005-09-15 Kawaguchiko Seimitsu Co Ltd 導光板及びその製造方法とそれを用いたバックライト装置
US7093968B2 (en) * 2004-08-19 2006-08-22 Radiant Opto-Electronics Corporation Light guide plate and LGP-based FFP
US20080037127A1 (en) * 2006-03-31 2008-02-14 3M Innovative Properties Company Wide angle mirror system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735952B1 (en) * 1993-12-21 2000-03-22 Minnesota Mining And Manufacturing Company Multilayered optical film
EP1133705B1 (en) * 1998-11-25 2004-08-04 Minnesota Mining And Manufacturing Company Multilayer reflector with enhanced acceptance angle and selective transmission
CN1360681A (zh) * 1999-07-12 2002-07-24 舱壁玻璃公司 干涉光窄带滤波器
CN1432827A (zh) * 2002-01-08 2003-07-30 鸿富锦精密工业(深圳)有限公司 薄膜滤波器
CN1745320A (zh) * 2002-12-31 2006-03-08 3M创新有限公司 采用已设计色偏移的光偏振薄膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570447B (zh) * 2006-03-31 2017-02-11 3M新設資產公司 廣角鏡系統

Also Published As

Publication number Publication date
JP2016146001A (ja) 2016-08-12
US20080037127A1 (en) 2008-02-14
WO2007115040A2 (en) 2007-10-11
KR20080108255A (ko) 2008-12-12
JP2009532720A (ja) 2009-09-10
US20080291361A1 (en) 2008-11-27
WO2007115040A3 (en) 2008-12-24
KR20160005800A (ko) 2016-01-15
KR20140107642A (ko) 2014-09-04
TW200745624A (en) 2007-12-16
JP2012198576A (ja) 2012-10-18
JP6640014B2 (ja) 2020-02-05
KR101789367B1 (ko) 2017-10-23
JP6001363B2 (ja) 2016-10-05
CN101432641A (zh) 2009-05-13
TWI570447B (zh) 2017-02-11
EP2033025A2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
CN101432641B (zh) 广角反射镜系统
US11675117B2 (en) Optical film including collimating reflective polarizer
JP6510107B2 (ja) 光制御フィルム
TWI463201B (zh) 較高傳輸之光控制薄膜
CN102576113B (zh) 具有减少色彩的浸没式不对称反射器
CN102016659B (zh) 具有优化增益的较少层数反射型偏振器
CN103052898B (zh) 包括哑光表面层的多层膜和制品
CN102449509B (zh) 制作具有包层的光学器件
CN1327253C (zh) 损耗增强的反射式滤光片
CN102822708A (zh) 用于附接至自动立体显示器组件的微复制型膜
CN104379993A (zh) 结构化光学膜
KR19990088395A (ko) 반사형액정패널용광반사판
US10422941B2 (en) Optical film including collimating reflective polarizer and structured layer
CN101410730A (zh) 结构化复合光学薄膜
CN110392859B (zh) 车辆投影组件
CN104335109A (zh) 具有不对称漫射体的光学叠堆
WO2021224761A1 (en) Optical construction and display system including same
CN116068679A (zh) 一种匀光膜、一种增厚复合匀光膜及其制备方法
TWM298514U (en) Anti-glare-reflecting film for polaroid and display device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant