CN101432301B - 具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法 - Google Patents

具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法 Download PDF

Info

Publication number
CN101432301B
CN101432301B CN200780015563.6A CN200780015563A CN101432301B CN 101432301 B CN101432301 B CN 101432301B CN 200780015563 A CN200780015563 A CN 200780015563A CN 101432301 B CN101432301 B CN 101432301B
Authority
CN
China
Prior art keywords
district
polypeptide
purifying
igg
sialic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200780015563.6A
Other languages
English (en)
Other versions
CN101432301A (zh
Inventor
杰夫瑞·V·华弗治
善藤金子
尼莫雅恩·福克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockefeller University
Original Assignee
Rockefeller University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38581601&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101432301(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rockefeller University filed Critical Rockefeller University
Publication of CN101432301A publication Critical patent/CN101432301A/zh
Application granted granted Critical
Publication of CN101432301B publication Critical patent/CN101432301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Abstract

本发明提供含有至少一个IgG Fc区的区域的多肽以及该多肽的制备方法,该多肽与未纯化的抗体相比,含有较高的抗炎症活性和较低的细胞毒性活性。

Description

具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法
相关申请的交叉参考
本申请要求2006年4月5日递交的申请号为60/789,383的美国临时专利申请的优先权。
联邦资助研究相关的陈述
导向本发明的研究部分地由国立卫生研究院基金,编号AI034662资助。因此,美国政府可以享有本发明的一定权利。
发明领域
本发明涉及用于设计治疗炎症性疾病的治疗性多肽的新方法。
发明背景
尽管最早鉴定免疫球蛋白的细胞受体是在将近40年以前,但在过去的十年中才发现其在免疫应答中的核心作用。他们在免疫应答的传入期和传出期(both the afferent andefferent phase)都是非常关键的:设定B细胞激活和抗体生成的阈值,调节树突状细胞的成熟并偶联抗体响应效应器途径的精细的特异性,这些效应器途径诸如巨噬细胞吞噬、抗体依赖性细胞毒性作用以及炎症细胞的募集和激活。他们的核心作用将人类免疫系统和天然效应器细胞联系起来,使得他们成为用于增强或限制体内抗体活性的有吸引力的免疫治疗的靶标。
抗体和抗体-抗原复合物与免疫系统中细胞的相互作用影响多种反应,包括抗体依赖性细胞毒性作用(ADCC)和补体依赖性细胞毒性作用(CDC)、巨噬细胞吞噬、炎症介质的释放、抗原的清除,以及抗体的半衰期(综述见Daron,Annu Rev Immunol,15,203-234(1997);Ward和Ghetie,Therapeutic Immunol,2,77-94(1995);Ravetch和Kinet,Annu JRev Immunol,9,457-492(1991),分别以参考文献形式并入本文)。
抗体的恒定区不直接参与抗体对于抗原的结合,但呈现多种效应器功能。抗体或免疫球蛋白根据其重链恒定区的氨基酸序列可被分为不同的类别。有五个主要的免疫球蛋白种类:IgA、IgD、IgE、IgG,和IgM,其中几种可以进一步分为亚类(同种型),例如,IgG1、IgG2、IgG3和IgG4;IgAl和IgA2。与不同种类的免疫球蛋白对应的重链恒定区分别被称为α、δ、ε、γ,和μ。在各种人类免疫球蛋白种类中,人IgGl和IgG3比IgG2和IgG4更有效地介导ADCC。
抗体经木瓜蛋白酶消化产生被称为Fab片段的两个相同的抗原结合片段,分别含有一个单一的抗原结合位点;以及一个剩余的“Fc”片段,其命名反映出其容易结晶的能力。Fc区与抗体的效应器功能密切相关。已确定人类IgG Fc区的晶体结构(Deisenhofer,Biochemistry,20,2361-2370(1981),其以参考文献形式并入本文)。在人类IgG分子中,Fc区由木瓜蛋白酶裂解的N-末端至第226位的半胱氨酸(Cys226)而产生。
长期以来,一直认为IgG通过其Fc片段介导的相互作用既能介导促炎症作用,又能介导抗炎症作用。因此,虽然Fc-Fcγ受体(Fc-FcγR)相互作用负责免疫复合物与细胞毒性抗体的促炎症特性,静脉注射丙种球蛋白(IVIG)及其Fc片段是抗炎症的并被广泛用于抑制炎症性疾病。这种荒谬特性的精细机制尚不清楚,但有人提出IgG的糖基化对于调控IgG的细胞毒性和炎性的潜能是至关重要的。
IgG在其两条重链的CH2区分别含有一个连在天冬酰胺297(Asn297)上的单,N-连接聚糖。共价-连接的复合糖由一个核心的,含有N-乙酰氨基葡萄糖(GlcNAc)和甘露糖(man)的双分支的五多糖组成。在血清抗体中观察到的核心糖结构的进一步修饰发现有岩藻糖、分支GlcNAc、半乳糖(gal)以及末端的唾液酸(sa)等不同的配基。已经检测到这个单一的糖基化位点上共价地连接有超过40种不同的糖型。Fujii等人.,J.Biol.Chem265,6009(1990)。显示IgG的糖基化通过维持两条重链的开放式构象而对所有的FcγR的结合都是必要的。Jefferis and Lund,Immune.lLett.82,57(2002),Sondermann等人.,J.Mol.Biol.309,737(2001)。这种FcγR结合对于IgG糖基化的绝对需求证实去糖基化的IgG抗体无法介导体内触发的炎症反应,诸如ADCC、巨噬细胞吞噬以及炎症介质的释放。Nimmer jahn和Ravetch,Immunity24,19(2006).报道的含有或缺少岩藻糖的IgG抗体的个体FcγR的亲和性的改变,以及其随后对于细胞毒性的影响提示个体IgG的糖基化可能有助于调节炎症反应,这可进一步观察到。Shields等人.,J.Biol.Chem.211,26133(2002),Nimmerjahn和Ravetch,Science310,1510(2005)。已经在类风湿性关节炎和一些自身免疫性脉管炎患者中观察到自身免疫状态和IgG抗体的特定糖基化模式的联系,有报道这些患者中IgG抗体的半乳糖苷化和唾液酸化减少。Parekh等人.,Nature316,452(1985),Rademacher等人.,Proc.Natl.Acad.Sci.USA91,6123(1994),Matsumoto等人.,128,621(2000),Holland等人.,Biochim.Biophys.Acta Dec27;[Epub ahead of print]2005.已经报道IgG糖形的变化与年龄和免疫相关,尽管这些改变在体内的意义还没有确定。Shikata等人.,Glycoconj.J.15,683(1998),Lastra,等人.,Autoimmunity28,25(1998)。
因此,需要开发产生多肽的方法,其可以解释体内IgG性质的不同的观察结果。
发明概述
本发明通过提供这些方法和分子填补上述需要。在一方面,本发明提供含有至少一个IgG Fc区的多肽,所述多肽与未纯化抗体相比具有较高的抗炎活性和较低的细胞毒性活性。
在本发明的不同实施方式中,该多肽含有人类IgG1、IgG2、IgG3或IgG4Fc区,所述多肽与非纯化抗体相比,具有较高的唾液酸含量。
在另一方面,本发明提供一种药物制剂,该制剂含有一种多肽和适当的载体或稀释剂,该多肽含有至少一个Fc区,具有较高的抗炎活性以及较低的细胞毒性活性。
在还有另一方面,本发明提供制备含有至少一个Fc区的多肽的方法,所述多肽具有比未纯化抗体较高的抗炎活性和较低的细胞毒性活性,该方法包括:提供含有至少一个Fc区的非纯化来源的多肽,该含有至少一个Fc区的非纯化来源的多肽包含多个含有至少一个带唾液酸的Fc区的多肽,以及多个含有至少一个缺乏唾液酸的Fc区的多肽;并且提高多个含有至少一个带唾液酸的Fc区的多肽相对于多个含有至少一个缺乏唾液酸的Fc区的多肽的比率。在本发明不同的实施方案中,该多个含有至少一个带唾液酸的Fc区的多肽相对于多个含有至少一个缺乏唾液酸的Fc区的多肽的比率通过去除含有至少一个缺乏唾液酸的Fc区的多肽,或者通过唾液酸化含有至少一个Fc区的非纯化来源的多肽而实现。
附图简要说明
图1表明6A6-IgG抗体同种型糖谱。用基体辅助激光解吸电离飞行时间质谱(MALDI-TOFMS)分析来源于6A6-IgG1、IgG2a和IgG2b的N-糖链。含有唾液酸残基的峰用方括号标出。由瞬时转染的293T细胞产生的重组6A6抗体转换变异体(switchvariant)在其Asn-297连接的糖中含有最低水平的唾液酸残基。
图2显示唾液酸化降低IgG的细胞毒性。(A)附着在抗体Fc-片段中天冬酰胺297(N297)上的充分加工的糖配基的结构。粗体显示核心糖结构。诸如末端的和平分型的糖的可变残基加下划线,并标出特异的连接。也标出糖酰胺酶和神经氨酸酶的切割位点。该充分加工的糖结构在总血清IgG池(pool)中的大约占5%。(1).缩略语:GlcNAc=N-乙酰氨基葡萄糖,man=甘露糖,gal=半乳糖,sa=唾液酸。(B)用西洋接骨木凝集素(SNA)亲和层析富集高唾液酸含量的6A6-IgGl和gG2b抗体。(C)富集唾液酸的(SA)或经神经氨酸酶处理去除唾液酸的(NA)6A6-IgGl和-IgG2b抗体的体内活性。各组小鼠分别注射4μg每种抗体(N=4,平均值+/-平均标准偏差(SEM));*表示p<0.0001,**表示p<0.01。(D)FcγRIIB、FcγRIII和FcγRIV结合带有高水平或低水平唾液酸化的抗体的结合常数(KA);n.b.表示没有结合。粗体数字表示负责介导抗体体内活性的同种型特异的Fc受体。所有这些测定的标准差都低于5%。
图3表明抗体的体内活性是由唾液酸调节的。6A6-IgGl通过SNA-琼脂糖进行亲和层析以富集唾液酸。这种SNA-富集制备物的一部分用神经氨酸酶处理(SNA-富集+神经氨酸酶)。(A)用SNA的凝集素印迹检测抗体制备物中的唾液酸含量。(B)通过监测由分别注射4μg抗体制备物诱导的血小板减少检测体内抗体活性(n=4-5只小鼠每组)。
图4说明IVIG的抗炎症活性需要唾液酸。(A)用磷酸缓冲液(PBS)、IVIG,以及糖酰胺酶PNGaseF-处理的IVIG(PNGaseF IVIG)治疗小鼠K/BxN血清-诱导关节炎的临床评分。(B)除了如图4(A)中显示的治疗之外,用神经氨酸酶-处理的IVIG(NA IVIG)或SNA-富集的IVIG(SNA IVIG)治疗小鼠。(C)用IVIG的Fc片段、神经氨酸酶-处理的Fc(NA Fc),或SNA-富集的Fc(SNA Fc)治疗小鼠的临床评分(N=4,平均值+/-平均标准偏差(SEM))。(D)IVIG制备物的糖谱。显示来自未处理的或神经氨酸酶-处理的IVIG的N-糖链MALDI-TOF-MS谱。含有唾液酸残基的峰用方括号标出,并且各峰的糖组成在图5呈现。(E)代表性的用或不用SNA-富集的IVIG(0.1克/千克)处理的对照小鼠或K/N诱导的关节炎小鼠的踝关节苏木精/伊红染色。在IVIG-SNA(0.1克/千克)治疗小鼠中不存在K/N处理小鼠中观察到的广泛的中性粒细胞浸润。(F)IVIG的对照Fc片段、神经氨酸酶-处理的Fc(NA Fc)以及经过西洋接骨木凝集素(SNA)亲和层析处理的具有高唾液酸含量的Fc(SNA Fc)的凝集素印迹。(G)IVIG中2,3和2,6连接的唾液酸残基的分析。IVIG不经处理(第2道),或用特异作用于2,3连接的唾液酸残基的神经氨酸酶处理(第3道),或用特异作用于2,3连接和2,6连接的唾液酸残基的神经氨酸酶处理(第4道)。用SNA(其识别2,6连接的唾液酸残基)和MAL-I(其识别2,3连接的唾液酸残基)进行凝集素印迹以检测唾液酸的去除。用胎球蛋白(第1道)作为富含2,3连接的唾液酸残基的糖蛋白对照。考马斯染色的胶作为上样对照(考马斯)。(H)减少2,3或者2,3和2,6连接的唾液酸残基的IVIG的抗炎症活性。小鼠注射KRN血清以诱导关节炎,未治疗(KRN),或者用IVIG(KRN+IVIG)、减少2,3连接的唾液酸残基的IVIG(α2-3唾液酸酶处理的IVIG+KRN)或减少2,3和2,6连接的唾液酸残基的IVIG(α2-3,6唾液酸酶处理的IVIG+KRN)治疗。给小鼠注射PBS以作为阴性对照(未处理)。
图5说明从IgG Fc的N297释放的糖配基的组成。连接于抗体重链天冬酰胺残基297的核心糖结构由N-乙酰氨基葡萄糖(GlcNAc)和甘露糖(Man)组成。个体的糖形随着附着一个或两个末端的半乳糖(Gal)残基,附着末端唾液酸-(人类中是N-乙酰神经氨酸或Neu5Ac,小鼠中是N-羟乙酰神经氨酸或Neu5Gc)残基,和/或附着平分型GlcNAc或岩藻糖(Fuc)而变化。数字表示根据MALDI-TOF MS测定的不同糖组成的分子量。标出人类和鼠(加下划线)的聚糖结构的质量。
图6说明去唾液酸的IVIG的血清半衰期和蛋白质完整性。(A)酶联免疫吸附剂测定(ELISA)检测指定日期IVIG治疗的小鼠血清中的人类IgG水平(N=4,平均值+/-SEM)。IVIG和去唾液酸的IVIG的半衰期没有显著性差异。显著性由重复测量的方差分析检验计算。(B)在非-还原性条件下用8%聚丙烯酰胺凝胶通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析10微克IVIG或去唾液酸的IVIG,并用考马斯亮蓝染色。IVIG的单体组成和结构完整性未受神经氨酸酶处理影响。
图7说明SNA-富集的IVIG的血清半衰期和亚类组成。(A)ELISA检测指定日期IVIG治疗的小鼠血清中的人类IgG水平(N=4,平均值+/-SEM)。IVIG和SNA-富集的IVIG组分的半衰期没有显著性差异。显著性由重复测量的方差分析检验计算。(B)ELISA检测未处理的和SNA-富集的IVIG中的IgG亚类。未观察到差异。
图8说明具有相似糖结构的唾液酸化蛋白质不能保护小鼠免患K/BxN血清诱导的关节炎。在注射K/BxN血清前1小时施用等价摩尔数量(6.7微摩尔/千克)或相同重量(1克/千克)的IVIG或唾液酸蛋白胎球蛋白和转铁蛋白,并在第4天检测临床评分(N=4,平均值+/-SEM)。使用PBS作为额外的对照。与IgG相比,胎球蛋白或转铁蛋白在等价摩尔浓度时没有具有统计学显著性的抗炎症作用。显著性用曼-惠特尼(Mann-Whitney)U检验计算。
图9说明SNA富集的IVIG的抗炎症活性需要FcγRIIB。(A)未分级(unfractionated)的IVIG(1克/千克小鼠体重)、SNA-富集的IVIG(0.1克/千克小鼠体重),或作为对照的PBS在注射K/BxN血清前1小时注射FcγRIIB-缺陷的小鼠,在第4天检测临床评分(N=4,平均值+/-SEM)。关节炎的临床评分没有显著差异。显著性用Mann-Whitney的U检验计算。(B)用SNA-富集的IVIG体内富集FcγRIIB+的单核细胞。野生型小鼠注射1克/千克、0.1克/千克IVIG或0.1克/千克SNA-富集的IVIG,或作为对照的PBS。注射后1天收集骨髓(左图)和脾细胞(右图)并用流式细胞术分析(N=4)。用1克/千克IVIG或0.1克/千克SNA-富集的IVIG治疗后,F4/80+FcγRIIB+细胞显著地积累。显著性用Student’s t检验计算。
图10说明主动免疫导致IgG唾液酸化减少。(A)用西洋接骨木凝集素(SNA)进行印迹(见方法)鉴定取自未处理的(免疫前)或患有通过免疫绵羊IgG和肾毒性血清(NTS)诱导的肾毒性肾炎(NTN)的小鼠的血清IgG中的唾液酸含量。(B)用光密度法对未处理小鼠以及NTN小鼠中总血清IgG和IgM抗体以及绵羊IgG-特异的IgG抗体中唾液酸化水平定量(平均值+/-SEM)。在小鼠抗体制备物中不存在可检测的绵羊IgG(数据未显示)。(C)连接于取自未处理小鼠或NTN小鼠的IgG抗体上的糖残基的MALDI-TOF分析。含有唾液酸的部分用方括号标出。单个峰的详细糖配基显示于图5。(D)沉积于注射肾毒性血清,有(NTS+CFA)或没有(只有NTS)用混合在完全弗氏佐剂(CFA)中的绵羊IgG预先免疫的小鼠的肾小球中抗体的唾液酸含量的检测。
发明的详细描述
本发明出乎意料地发现IgG Fc区的细胞毒性和抗炎症反应由Fc-连接的核心多糖不同的唾液酸化而造成。IgG抗体的细胞毒性因唾液酸化而降低;相反地,IVIG的抗炎症活性增强。显示IgG的唾液酸化由抗原-特异的免疫应答的诱导调控,从而提供将IgG从先天性的稳定状态的抗-炎症分子转变成抗原激发下的适应性的促炎症的种类的新手段。
因此,本发明提供产生和选取具有理想的细胞毒性和抗-炎症潜能的IgG的具有优势的策略。
定义
贯穿本说明书与权利要求地,免疫球蛋白重链中残基的编号是如Kabat等人,免疫学目标蛋白的序列(Sequences of Proteins of Immunological Interest),5thEd.PublicHealth Service,National Institutes of Health,Bethesda,Md.(1991)的EU index编号,其以参考文献形式特别地并入本文。“如Kabat中的EU index”指人类IgGl EU抗体的残基编号。
术语“天然的”或“亲本的”指含有Fc氨基酸序列的非修饰多肽。亲本多肽可以包含天然序列的Fc区,或带有预先存在的氨基酸序列修饰(诸如加入、缺少和/或替换)的Fc区。
术语“多肽”指任一含有至少一个IgG Fc区的蛋白质的片段,包括,但不限于,全功能蛋白质,诸如,例如抗体,例如,IgG抗体。
术语“Fc区”用于定义免疫球蛋白重链的C-末端区域。“Fc区”可以是天然序列Fc区,或变异的Fc区。尽管免疫球蛋白重链Fc区的边界可能各有不同,人类IgG重链Fc区通常定义为从氨基酸残基Cys226或Pro230延伸至其羧基端的区域。
人类IgG Fc区的“CH2区”(也被称为“Cγ2”区)通常从氨基酸231延伸至约氨基酸340。CH2区的独特之处在于其与另一个区并不紧密地配对。更确切地说,完整的天然IgG分子的两个CH2区之间插着两个N连接的分支糖链。推测糖可以提供用于区-区配对的替代物,并协助稳定CH2区(Burton,Mol Immunol,22,161-206(1985),其以参考文献形式并入本文)。
“CH3区”包含Fc区中从C-末端延伸至CH2区的残基(即,从IgG的氨基酸残基341至氨基酸残基447)。
术语“铰链区”在人类IgG1中通常定义为Glu216延伸至Pro230(Burton(1985))。其他IgG同种型的铰链区可以通过设定在同样的位置形成重链间S—S键的第一个和最后一个半胱酸残基而与IgG1的序列匹配。
术语“结合域”指多肽中与其他分子结合的区域。对FcR而言,结合域可以包含其多肽链负责结合Fc区的那一部分(例如,其α链)。一个示例性的结合域是FcR链的胞外区。
功能性“Fc区”拥有天然序列的Fc区的至少一部分“效应器功能”。示例性的“效应器功能”包括C1q结合;补体依赖性细胞毒性作用;Fc受体结合;抗体-依赖性细胞介导的细胞毒性(ADCC);巨噬细胞吞噬;细胞表面受体下调(例如,B细胞受体;BCR),等等。这些效应器功能通常需要Fc区与结合结构域(例如,抗体的可变区)结合,并且可以用多种检测来进行评定,例如,如本文公开的检测。
“天然序列的Fc区”含有与自然界中发现的Fc区氨基酸序列相同的氨基酸序列。如本领域普通技术人员所理解的“变异的Fc区”含有凭借至少一个“氨基酸修饰”而与天然序列Fc区的氨基酸序列不同的氨基酸序列。优选地,变异的Fc区与天然序列的Fc区或亲本多肽(parent polypeptide)的Fc区相比,含有至少一个氨基酸替换,例如,天然序列的Fc区或亲本多肽(parent polypeptide)的Fc区中含有大约一个至大约十个氨基酸替换,并且,优选地,含有大约一个至大约五个氨基酸替换。本文中变异的Fc区优选拥有与天然序列Fc区和/或亲本多肽Fc区至少约80%的同源性,并更优选与其至少90%同源性,更优选与其至少95%同源性,甚至更加优选地,与其至少99%同源性。
术语“改变的糖基化”指如上面所定义的多肽,可以是天然的或是修饰的,通过操作使其附着在重链恒定区的糖增加或减少特定的糖组分。例如,多肽,诸如,举例来说,特定的细胞系中制备的抗体,诸如,举例来说,Lec2或Lec3,可以在附着的糖部分中缺乏诸如岩藻糖和唾液酸。
术语“Fc受体”或“FcR”用来描述结合于抗体Fc区的受体。在本发明的一个实施方案中,FcR是人类FcR的天然序列。在另一个实施方案中,FcR,包括人类FcR,结合于IgG抗体(γ受体)并包括FcγR、FcγRII和FcγRIII亚类的受体,包括这些受体的等位基因变体和选择性的剪切形式。FcγRII受体包括FcRIIA(“激活性受体”)和FcγRIIB(“抑制性受体”),二者的氨基酸序列相似,区别主要在于其胞浆区。激活性受体FcγRIIA在其胞浆区含有免疫受体酪氨酸-依赖的激活模体(ITAM)。抑制性受体FcγRIIB其胞浆区含有免疫受体酪氨酸依赖的抑制模体(ITIM)。(参见Daron,Annu RevImmunol,15,203-234(1997)的综述;FcR的综述见Ravetch和Kinet,Annu Rev Immunol,9,457-92(1991);Capel等人.,Immunomethods,4,25-34(1994);和de Haas等人.,JLab Clin Med,126,330-41(1995),Nimmerjahn和Ravetch2006,Ravetch Fc受体,基础免疫学,William Paul主编,第五版。以上皆以参考文献形式并入本文。)
“抗体-依赖性细胞-介导的细胞毒性作用”和“ADCC”指细胞在体外或体内介导的反应,其中表达FcR的细胞毒性细胞(例如单核细胞,诸如天然杀伤(NK)细胞和巨噬细胞)识别靶细胞上结合的抗体,并随后导致靶细胞的裂解。原则上,可以触发任何带有激活的FcγR的效应器细胞以介导ADCC。一种这样的细胞,NK细胞,只表达FcγRIII,而单核细胞,取决于其活化状态、定位或分化,可以表达FcγRI、FcγRII和FcγRI II。Ravetch and Bolland,Annu Rev Immunol,(2001)中总结了造血细胞上FcR的表达,其以参考文献形式并入本文。
“人类效应器细胞”是表达一种或多种FcR并执行效应器功能的白细胞。优选地,这些细胞表达至少一种激活的Fc受体,诸如,举例来说,FcγRIII,并执行ADCC效应器功能。介导ADCC的人类白细胞的实例包括外周血单核细胞(PBMC)、自然杀伤(NK)细胞、单核细胞以及中性粒细胞,其中优选PBMC和NK细胞。效应器细胞可以从其天然来源中分离,例如,从如本文描述的血液或PBMC中。
术语“抗体”使用其最宽泛的含义,并特别包括单克隆抗体(包括全长单克隆抗体)、多克隆抗体、多特异性抗体(例如,双特异性抗体),以及抗体片段,只要他们呈现期望的生物活性。
术语抗体的“唾液酸含量”既指抗体重链Fc区中唾液酸残基的总量,也指在非纯化抗体制备物中唾液酸化抗体与非唾液酸化抗体的比例,除非该术语在上下文中明确地提示意指另一种含义。
为了本发明所定义的“抗体片段”包含完整抗体的一部分,通常包括完整抗体的抗原结合区或可变区,或者保留FcR结合能力的抗体的Fc区。抗体片段的实例包括线性抗体;单-链抗体分子;以及由抗体片段形成的多特异性抗体。抗体片段优选保留IgG重链的至少部分铰链区并且可选地,CH1区。更优选地,抗体片段保留IgG重链的全部恒定区,并包括IgG轻链。
本发明使用的术语“单克隆抗体”指从基本同质的抗体群中获得的一种抗体,即,即构成该群抗体的单个抗体是相同的,除了可以少量存在的可能自然发生的变异。单克隆抗体具有高度特异性,针对单一抗原位点。并且,与典型地包含针对不同决定簇(表位)的不同抗体的传统的(多克隆)抗体制备物相比,每一种单克隆抗体针对抗原上的单一决定簇。修饰语“单克隆的”指从基本同质的抗体群中获得的抗体的特征,而不能解释为需要通过任何特别的方法来制备该抗体。例如,根据本发明使用的单克隆抗体可以通过由Kohler和Milstein,Nature,256,495-497(1975)首次描述的并以参考文献形式并入本文的杂交瘤方法制备,或可以通过重组DNA方法(见美国专利号4,816,567,其以参考文献形式并入本文)制备。单克隆抗体也可以使用在例如分别以参考文献形式并入本文的Clackson等人.,Nature,352,624-628(1991)和Marks等人.,J Mol Biol,222,581-597(1991)中描述的技术从噬菌体抗体文库中分离。
在本发明的其他实施方式中,含有至少一个IgG Fc区的多肽可以与其他的蛋白质片段融合,包括,但不限于,全蛋白。许多蛋白质可以与本发明的多肽融合,包括,但不限于,其他免疫球蛋白,特别是,缺少Fc区的免疫球蛋白;这些本领域普通技术人员将可以毋庸置疑地领会。作为选择,其他的生物活性蛋白质或其片段可以与本发明的多肽融合,例如,如美国专利6,660,843中所描述的,其以参考文献形式并入本文。该实施方式特别有利于这些生物活性蛋白质或其片段对于表达Fc受体的细胞的递送。进一步地,可以使用不同的标记,诸如,举例来说,谷胱甘肽转移酶(GST)标签或绿色荧光蛋白,或GFP。
本文中的单克隆抗体特别包括“嵌合”抗体(免疫球蛋白),其重链和/或轻链的一部分与来源于特定种属或属于特定抗体种类或亚类的抗体的对应序列相同或同源,同时链上的其余序列与来源于另一种属或属于另一种类或亚类的抗体的对应序列相同或同源,此外还指这些抗体的片段,只要它们表现出期望的生物活性(见美国专利4,816,567;Morrison等人.,ProcNatl Acad Sci USA,81,6851-6855(1984);Neuberger等人.,Nature,312,604-608(1984);Takeda等人.,Nature,314,452-454(1985);国际专利申请PCT/GB85/00392,其分别以参考文献形式并入本文。)
非人类(例如,鼠的)抗体的“人源化”形式指含有最少序列的来源于非人类免疫球蛋白的嵌合抗体。在大多数情况下,人源化抗体是人类免疫球蛋白(受者抗体),其中,来自受者高变区的残基被具有所需的特异性、亲和力和容量的来自诸如小鼠、大鼠、兔或非人灵长类的非人类种属(供着抗体)的高变区的残基取代。在一些情况下,人类免疫球蛋白的Fv骨架区(FR)残基被相应的非人类残基取代。此外,人源化抗体可以含有既不存在于受者抗体中,也不存在于供者抗体中的残基。这些修饰进一步优化抗体的性能。通常,人源化抗体包含至少一个,通常是两个可变区的几乎所有部分,其中所有或几乎所有的高变环对应非人类免疫球蛋白的高变环区,并且所有或几乎所有FR残基是人类免疫球蛋白序列的FR残基。人源化抗体也可以任选的含有免疫球蛋白恒定区(Fc)的至少一部分,通常是人类免疫球蛋白的序列。进一步的细节见Jones等人.,Nature,321,522-525(1986);Riechmann等人.,Nature,332,323-329(1988);Presta,Curr OpStruct Biol,2,593-596(1992);美国专利5,225,539,其分别以参考文献形式并入本文。
含有至少一个IgGFc区的多肽包括那些通过利用重组DNA技术以修饰编码重链恒定区的基因将特定氨基酸替换、插入或缺失引入亲本序列的多肽。这些修饰的引入采用如诸如分子克隆(Sambrook和Russel,(2001))的操作手册中所描述的分子生物学中的广为采用的技术。此外,至少一个IgG Fc区的多肽可以包括那些被选择具有特定的糖修饰的的多肽,这些多肽可以通过在已知糖基化特异性的细胞系中表达而获得(Stanley P.,等人.,Glycobiology,6,695-9(1996);Weikert S.,等人.,Nature Biotechnology,17,1116-1121(1999);Andresen DC和Krummen L.,Current Opinion in Biotechnology,13,117-123(2002)),或者通过在特异的凝集素上的富集或消耗,或者酶处理而获得(Hirabayashi等人.,J Chromatogr B Analyt Technol Biomed Life Sci,771,67-87(2002);Robertson和Kennedy,Bioseparation,6,1-15(1996))。抗体糖基化的质量和程度根据细胞的类型和培养的条件的不同而有所差异,这在本领域内是已知的。(举例来说,Patel等人.,Biochem J,285,839-845(1992)报道如果抗体以腹水的形式,或在无血清或含血清的培养基中产生,则连接于抗体的糖侧链中的唾液酸含量会有很大的差别。此外,Kunkel等人.,Biotechnol Prog,16,462-470(2000)显示使用用于细胞生长的不同的生物反应器,以及培养基中溶解氧的量都会影响连接于抗体的糖配基中半乳糖和唾液酸的数量。然而,这些研究并没有指出不同水平的唾液酸残基如何影响抗体的体内活性。
宿主表达系统
本发明的多肽可以在宿主表达系统,即,可以进行N-连接的糖基化的宿主细胞中表达。典型地,该宿主表达系统可以包含真菌、植物、脊椎动物或无脊椎动物表达系统。在一个实施方式中,宿主细胞是哺乳动物细胞,诸如中国仓鼠卵巢(CHO)细胞系,(例如CHO-Kl;ATCC CCL-61),绿猴细胞系(COS)(例如COS1(ATCC CRL-1650),COS7(ATCCCRL-1651));小鼠细胞(例如NS/0),幼仓鼠肾(BHK)细胞系(例如ATCC CRL-1632或ATCCCCL-10),或人类细胞(例如HEK293(ATCC CRL-1573)),或任何其他合适的细胞系,例如,可以从诸如美国典型培养物保藏中心(罗克维尔,马里兰州,Rockville,Md.)的公众保藏中心获得的细胞系,诸如鳞翅目细胞系的昆虫细胞系,例如Sf9;植物细胞系;真菌细胞系,例如酵母诸如,举例来说,酿酒酵母、毕赤酵母、汉逊酵母。本领域普通技术人员可以领会,在一些情况下,宿主细胞的修饰可能需要保证产生N-连接的糖基化和聚糖成熟以造成通常在人类IgG的Fc区中出现的复杂的,二天线糖(biantennary sugar)。(见例如Hamilton,SR,等人.Science,313,1441(2006);Li,H,等人.,NatureBiotechnology24,210(2006);Wildt,S和Grengross,TU Nature ReviewsMicrobiology3,119(2005)。)
治疗性制剂(Therapeutic Formulation)
治疗性制剂含有具有所需纯度的含有至少包含一个Fc区的本发明的多肽,可以通过与可选的生理上可接受的载体、赋形剂或稳定剂(见,例如,雷氏药学大全,16版,Osol,A.Ed.(1980))混合,并以冻干制剂或水溶液的形式制备用于贮存。可接受的载体、赋形剂或稳定剂在使用的剂量和浓度对受者无毒,并包括缓冲液诸如磷酸、柠檬酸以及其他有机酸;抗氧化剂包括抗坏血酸和甲硫氨酸;防腐剂(诸如十八烷基二甲基苄基氯化铵;氯化六烃季铵;苯扎氯铵;石炭酸、丁醇或苯甲醇;烷基对羟基苯甲酸酯诸如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;儿茶酚;雷琐辛;环己醇;3-戊醇和间甲酚);低分子量(少于约10个残基)的多肽;蛋白质,诸如血清白蛋白、明胶或免疫球蛋白;亲水性聚合物诸如聚乙烯吡咯烷酮;氨基酸诸如甘氨酸、谷氨酰氨、天冬酰胺、组氨酸、精氨酸,或赖氨酸;单糖、双糖,或其他碳水化合物包括葡萄糖、甘露糖,或糊精;螯合剂诸如乙二胺四乙酸;糖诸如蔗糖、甘露醇、海藻糖或山梨醇;成盐反离子诸如钠离子;金属复合物(例如,Zn-蛋白质复合物);和/或非-离子型表面活性剂,诸如TWEENTM,PLURONICSTM或聚乙二醇(PEG)。
本文的制剂也包含超过一种对于治疗的特定的适应症必要的活性化合物,优选那些具有对彼此不造成相反影响的互补活性的化合物。这类分子适合以对预期目标有效的数量联合使用。
活性成分也可以,例如,通过凝聚技术或通过界面聚合,包裹于制备的微胶囊中,举例来说,分别处于胶体药物递送系统(例如,脂质体、白蛋白微球、微乳液、纳米颗粒和纳米胶囊)或在粗乳状液中的羟甲基纤维素或明胶-微胶囊和聚甲基丙烯酸甲酯微胶囊。这些技术公布于雷氏药学大全,16版,A.Ed.(1980)。
在优选的实施方案中,将在体内施用的该制剂是无菌的。本发明的配方可以很容易地灭菌,例如,经通过无菌的过滤膜而过滤除菌。
也可以制备缓释的制备物。缓释制备物的合适的实例包括含有修饰的抗体的固态疏水性聚合物的半透性基质,该基质以有形物体的形式存在,例如,薄膜或微胶囊。缓释基质的实例包括聚酯类、水凝胶类(例如,聚(甲基丙烯酸-2-羟乙酯),或聚(乙烯醇)),聚乳酸类(见,例如,美国专利3,773,919),L-谷氨酸和L-谷氨酸-γ乙基酯的共聚物,不可降解的乙烯-醋酸乙烯酯,可降解的乳酸-乙醇酸共聚物诸如LUPRON DEPOTTM(由乳酸-乙醇酸共聚物和醋酸亮丙瑞林组成的可注射的微球),和多聚-D-(-)-3-羟基丁酸。诸如乙烯-醋酸乙烯酯和乳酸-乙醇酸的多聚物能够释放分子超过100天,而某些水凝胶释放蛋白的时间比之较短。当装入胶囊的抗体在体内长时间维持时,他们可能因为暴露于37℃的水分中而变性或者聚集,因此导致其生物活性的损失以及可能的免疫原性的改变。根据涉及的机理,可以设计合理的策略以稳定之。例如,如果发现聚集的原理是通过硫代-二硫交换的分子间S—S键的形成,则可以通过修饰巯基残基、在酸性溶液中冻干、控制含水量、使用合适的添加剂,以及开发特异的多聚物基质组分而实现稳定化。
产生含有至少一个IgG Fc区的唾液酸化的多肽
可以进一步地纯化或修饰本发明的多肽,使其与未修饰的和/或未纯化的抗体相比,具有提高的唾液酸数量。存在多种方法达到这个目标。在一种方法中,非纯化来源的多肽,诸如,举例来说,将常规地从中纯化IVIG的含有IgG的血浆组分通过带有已知可以结合唾液酸的凝集素的柱子。在一个实施方式中,凝集素分离自西洋接骨木。于是,含有至少一个IgG Fc区的多肽的唾液酸化组分将保留在柱子上,而非唾液酸化的组分则流过柱子。含有至少一个IgG Fc区的多肽的唾液酸化组分可以用不同的严谨条件的另一次洗脱洗下。因此,获得其唾液酸含量与正常含量相比提高的本发明的多肽制备物是可能的。另外,可以如,例如,在美国专利20060030521中描述的,用唾液酸转移酶和供体唾液酸进行酶促反应。
在要求保护的方法中使用的唾液酸转移酶的合适的非限制性示例是ST3Gal III,其也被称为α-(2,3)唾液酸转移酶(EC2.4.99.6),以及α-(2,6)唾液酸转移酶(EC2.4.99.1)。α-(2,3)唾液酸转移酶催化唾液酸转移至半乳糖-β-1,3-N乙酰葡萄糖胺(Gal-β-1,3GlcNAc)或半乳糖-β-1,3-N乙酰葡萄糖胺(Gal-β-1,4GlcNAc)糖苷的半乳糖(Gal)(见,例如,Wen等人.,J.Biol.Chem.267:21011(1992);Van den Eijnden等人.,J.Biol.Chem.256:3159(1991)),并负责糖肽中天冬酰胺-连接的寡糖的唾液酸化。唾液酸连接到Gal上,在两个糖之间形成α连接。糖之间的键合(连接)发生于N乙酰神经氨酸(NeuAc)的2-位和Gal的3-位。已知这种特定的酶可以分离自大鼠肝脏(Weinstein等人.,J.Biol.Chem.257:13845(1982));人类cDNA(Sasaki等人.(1993)J.Biol.Chem.268:22782-22787;Kitagawa&Paulson(1994)J.Biol.Chem.269:1394-1401)和基因组的(Kitagawa等人.(1996)J.Biol.Chem.271:931-938)DNA序列,这使得以重组表达的方式生产该酶变得很容易。
α-(2,6)唾液酸转移酶的活性造成6-唾液酸化的寡糖,包括6-唾液酸化半乳糖。名称“α-(2,6)唾液酸转移酶”指将唾液酸连接到受体多糖第六个原子上的唾液酸转移酶家族。从不同的组织中可以分离出不同的α-(2,6)唾液酸转移酶的形式。例如,这种酶的一种特异的形式,ST6Gal II,可以分离自脑和胎儿组织。Krzewinski-Recchi等人,Eur.J.Biochem.270,950(2003)。
另外,本领域普通技术人员可以领会,可以利用细胞培养条件来改变唾液酸化的水平。例如,为了提高唾液酸含量,会减少产率,并通常将渗透压维持在适于特定宿主细胞培养的下边界。在从约250毫渗量(mOsm)至约450毫渗量范围内的渗透压适于提高唾液酸含量。在例如,美国专利6,656,466中描述了该条件以及另一个适宜的细胞培养条件。Patel等人.,Biochem J,285,839-845(1992)报道如果抗体以腹水的形式,或在无血清或含血清的培养基中产生,则连接于抗体的糖侧链中的唾液酸含量会有很大的差别。此外,Kunkel等人.,Biotechnol Prog,16,462-470(2000)显示使用用于细胞生长的不同的生物反应器,以及培养基中溶解氧的数量都会影响连接于抗体的糖配基中半乳糖和唾液酸的数量。
在另一个实施方式中,宿主细胞,诸如,举例来说,永生化的人类胚胎视网膜细胞,可以通过引入编码唾液酸转移酶诸如,举例来说,α-2,3-唾液酸转移酶或α-2,6-唾液酸转移酶的核酸修饰,可操作地与启动子连接,诸如,举例来说,CMV启动子。α-2,3-唾液酸转移酶可以是人α-2,3-唾液酸转移酶,或称为SIAT4C或STZ(GenBank登录号L23767),以及,举例来说,如美国专利20050181359中描述的序列。
编码唾液酸转移酶的核酸可以用任一本领域普通技术人员所知的方法引入宿主细胞。合适的引入外源性核酸序列的方法也描述于Sambrook和Russel,分子克隆:实验室手册(第三版),冷泉港出版社,NY,2000。这些方法包括,但不局限于,物理转移技术,诸如,举例来说,显微注射或电穿孔;转染,诸如,举例来说,磷酸钙转染;膜融合转移,使用,例如,脂质体;以及病毒转移,诸如,举例来说,使用DNA或逆转录病毒载体的转移。
含有至少一个IgG Fc区的多肽可以从培养上清中回收,并且,如果需要的话,可以经过一个或多个纯化步骤,诸如,举例来说,离子交换或亲和层析。合适的纯化方法对于本领域普通技术人员是显而易见的。
本领域普通技术人员可以领会,上面公开的唾液酸化方法的不同组合可以导致产生出具有特别高的唾液酸化水平的含有至少一个IgG Fc区的多肽。例如,如上面所描述的,可以在过表达唾液酸转移酶的宿主细胞中表达含有至少一个IgG Fc区的多肽,并且随后通过,例如在酶促反应中使这些多肽唾液酸化,然后利用含有凝集素的柱子进行亲和层析来进一步富集这些多肽的唾液酸化的组分。相似地,对于含有至少一个IgG Fc区的多肽的IVIG来源也可以使用酶促反应紧接亲和层析。
为了检测含有至少一个IgG Fc区的多肽的糖基化程度,可以纯化这些多肽并在还原条件下进行SDS-PAGE分析。可以通过将分离的多肽与特异的亲和素发生相互作用鉴定糖基化,或者,可选择地,如本领域普通技术人员可以领会的,可以用HPLC接连质谱以鉴定糖形。(Wormald,MR等人,Biochem36:1370(1997))。
为了更详细地描述本发明,以下给出几个示例性的实施例。
实施例
实施例1.提高唾液酸含量的IVIG呈现降低的细胞毒性
为了检测IgG特异的糖形是否参与调节抗体的效应器功能,研究了特异的Asn297-连接糖在介导特定的IgG单克隆抗体的细胞毒性中的作用。用质谱分析检测来源于6A6杂交瘤的抗血小板抗体的特异性糖组成和结构(图1),如前面Nitnmerjahn等人在Immunity23,41(2005)中描述的,该抗体由293细胞表达,为IgG12a或2b转换变异体。这些抗体含有最少的唾液酸残基。通过西洋接骨木凝集素亲和层析富集含有唾液酸的种类收获唾液酸含量富集60-80倍的抗体图2B和图3)。唾液酸化和非唾液酸化的6A6-IgG1和2b抗体介导血小板清除的能力的对比显示,抗体的唾液酸化与其体内活性呈负相关。6A6IgG抗体的唾液酸化造成其生物活性下降4080%(图2C和图3)。
为了确定这种活性下降的机制,进行这些抗体针对每一种小鼠FcγRs以及其同源抗原的表面等离子体共振结合试验。
根据Nimmerjahn和Ravetch,Science310,1510(2005)中的描述进行表面等离子体共振分析。简言之,将其糖侧链上含有高或低水平的唾液酸残基的6A6抗体变异体固定于CM5传感芯片表面。室温下通过流通池(flow cells)以流速30μl/分钟注入在HBS-EP运行缓冲液(10mM4羟乙基哌嗪乙磺酸,pH7.4,150mM NaCl,3.4mM EDTA,以及0.005%的表面活性剂P20)中不同浓度的可溶性的Fcγ-受体。可溶性Fc-受体注入3分钟,观察结合的分子解离7分钟。对于对照流通池的背景结合被自动扣除。进行对照试验以排除传质限制。利用对结合相和解离相的感应图的同时拟合以及对组中所有的曲线的整体拟合,从感应图数据中得到亲和常数。1:1朗格缪尔(Langtnuir)结合模型密切拟合观察到的感应图数据,在所有试验中都使用此模型。
观察到这些抗体的唾液酸化形式对其相应的活化FcγR的亲和力与其非相应的唾液酸化形式相比降低5-10倍,而未观察到二者对抗原的亲和力的差别(图2D)。因此,IgG的Asn297连接的糖链结构的唾液酸化造成其对于亚类-限制的活化FcγR的亲和力降低并因而降低其体内细胞毒性。
为了确定观察到的N-连接糖的唾液酸化参与调节其体内抗炎症活性的一般性,进一步研究了N-连接糖在IVIG抗炎症活性中的作用。用从5-10,000位供体的血清池中纯化的IgG组分,以高剂量(1-2克/千克)静脉施用来治疗炎症性疾病,是广为采用的治疗方法。Dwyer,N.Engl.J.Med.326,107(1992).该抗炎症活性是Fc片段的特性,并且在特发性血小板减少性紫癫(ITP)、类风湿关节炎(RA)以及肾毒性肾炎小鼠模型中具有保护性。Imbach等人.,Lancet l,1228(1981),Samuelsson等人.,Science291,484(2001),Bruhns等人.,Immunity18,573(2003),Kaneko等人.,J.Exp.Med.203,789(2006)。
提出的这种抗炎症活性的一个共有机制涉及效应器巨噬细胞上抑制性FcγRIIB分子表面表达的诱导,其因此提高细胞毒性IgG抗体或免疫复合物通过FcγR触发诱导效应器细胞响应所需的阈值。Niramerjahn和Ravetch,Immunity24,19(2006)。
实施例2.IVIG去唾液酸化降低其在小鼠关节炎模型中的抗炎症效果
小鼠
C57BL/6和NOD小鼠购自Jackson实验室(Bar Harbor,ME)。FcγRIIB-/-小鼠产生自发明人所在的实验室,并与C57BL/6背景回交12代。C57BL/6背景的KRN TCR转基因小鼠(K/B)为D.Mathis和C.Benoist(哈佛医学院,波士顿,MA)惠赠,并与NOD小鼠繁殖以产生K/BxN小鼠。在所有试验中都使用8-10周龄的雌性小鼠,并在洛克菲勒大学的动物设施中维持。所有试验都依照联邦法律和机构指南进行,并获得洛克菲勒大学(纽约,NY)的批准。
抗体和可溶性Fc受体
由瞬时转染的293T细胞制备6A6抗体的转换变异体(switch variant),随后根据Nimmerjahn等人.,Immunity23,41(2005)和Nimmerjahn和Ravetch,Science310,1510(2005)用蛋白G纯化。用接骨木凝集素(SNA)琼脂糖(Vector Laboratories,Burlingame,CA)进行凝集素亲和层析以从这些抗体制备物中分离富含唾液酸的抗体变异体。唾液酸含量的富集由凝集素印迹(见下)证实。人静脉注射的免疫球蛋白(5%IVIG于10%麦芽糖中,质谱纯化)购自Octapharma(Hemdon,VA)。根据中的Kaneko Y.等人.,Exp.Med.203,789(2006)描述对IVIG进行消化。简言之,IVIG用0.5毫克/毫升木瓜蛋白酶于37℃消化1小时,加入2.5毫克/毫升碘代乙酰胺终止反应。用HiPrep26/60S-200HR柱(GE医疗集团,Piscataway,NJ)将得到的Fab片段和Fc片段与未-消化的IVIG分离,随后用蛋白G柱(GE医疗集团)和蛋白L柱(Pierce,Rockford,IL)纯化Fc片段和Fab片段。用抗-人IgG Fab或Fc-特异的抗体(Jackson ImmunoResearch,West Grove,PA)进行免疫印迹以检测片段纯度。得到的纯度大于99%。F4/80抗体来自Serotec(Oxford,UK)。Ly17.2抗体来自Caltag(Burl ingame,CA)。绵羊抗-肾小球基底膜(GBM)抗血清(肾毒性血清,NTS)由M.P.Madaio(宾夕法尼亚大学,Philadelphia,PA)惠赠。C-末端含有六组氨酸标签的可溶性Fc受体由瞬时转染的293T细胞产生,并用镍-氨基三乙酸(Ni-NTA)琼脂糖根据说明书(Qiagen)从细胞培养上清中纯化。
用神经氨酸酶处理IVIG,用质谱分析其制备物的组成和结构。神经氨酸酶处理后没有检测到含残留的唾液酸的寡糖(图4D,F和5).随后检测IgG制备物保护小鼠免患由被动输入Kxn血清诱导的关节炎症的能力,该关节炎症是IgG l免疫复合物介导的炎症性疾病模型。用神经氨酸酶去除唾液酸使得IVIG制备物在KxN血清诱导的关节炎模型中的保护效果丧失(Figure4B,C,E)。这种活性的丧失不是因为非唾液酸化IgG血清半衰期的降低(图6A),或是IgG单体组成或结构完整性的改变(图6B)所造成的。用糖苷酶去除所有的聚糖得到相似的结果,且使得IVIG的体内保护作用丧失(图4A)。选择性地去除2,6唾液酸连接使IVIG活性丧失,而去除2,3唾液酸连接则没有显著的效果(图4G,H)。
实施例3.具有富集的唾液酸含量的IVIG组分减轻小鼠关节炎模型中的炎症
制备含有增加的唾液酸含量的IVIG
由于显示IVIG的抗炎症活性需要唾液酸,这种抗炎症活性的高剂量(1克/千克)需求的基础可能是总IVIG制备物中有限的唾液酸化IgG浓度。在SNA-凝集素亲和柱对IVIG分级,以获得富含唾液酸修饰的聚糖结构的IgG分子。
在KxN血清输入性关节炎模型上检测富含唾液酸的部分对比于未分级IVIG的保护效果。观察到SNA-结合部分的保护效果增强10倍,以致0.1克/千克SNA-富集的IVIG与1克/千克未分级IVIG相比,获得等效的保护结果(图4B,C)。SNA富集部分IgG亚型血清半衰期的分布和未分级的IVIG相当(图7A,B)。唾液酸化的效果是IgG特异的;诸如胎球蛋白或转铁蛋白的具有相似的二天线复杂糖结构的唾液酸化的N-连接糖蛋白,与等摩尔浓度的IgG相比,无统计学显著性抗炎症活性(图8)。最后,唾液酸化IVIG制备物的保护机制与非分级的IVIG相似,都依赖于FcγRIIB的表达并造成这种效应器巨噬细胞上的抑制性受体表达的增加(图9)。
实施例4.带有增加的唾液酸含量的IVIG的增强的抗炎症性反应由Fc区中N-连接糖的唾液酸化介导
由于IVIG中的多克隆IgG在其轻链或重链可变区同样可以含有唾液酸化的O连接和N连接的糖,我们证实SNA富集的IgG制备物增加的抗-炎症活性是由Fc中N-连接的糖基化位点中增加的唾液酸化造成的。Fc片段产生自未分级的和SNA分级的IVIG,并检测其体内活性。正如在完整的IgG中观察到的,SNA-纯化的Fc片段与产生自未分级的IVIG的Fc片段相比,其体内保护效果增强(图4C)。相反,Fab片段在体内试验中则未呈现出抗炎症活性。因此,IVIG抗炎症活性的高剂量需求可以归因于在唾液酸化IgG总制备物中的贡献是微小的。通过唾液酸结合的凝集素层析富集这些组分因而可以提高其抗炎症活性。
这些使用IgG抗体被动免疫的结果表明,从促炎症类型转化为抗炎症类型的能力受Fc区中N-连接糖的唾液酸化程度影响。
实施例5.主动免疫应答中存在IgG唾液酸化介导的抗炎活性的增强
患有肺出血-肾炎综合征(Goodpasture症)的小鼠模型
在此模型中,用绵羊IgG合用佐剂初次致敏小鼠,四天以后注射绵羊抗-小鼠肾小球基底膜制备物(肾毒性血清,NTS)。简单地说,用200μg混于CFA中的绵羊IgG(Serotec公司)腹腔预免疫小鼠,紧接着4天以后,每克体重静脉注射2.5μl NTS血清。注射抗-肾小球基底膜(GBM)抗-血清4天后,收集未-处理对照小鼠的血液,用蛋白G(GE医疗集团,普林斯顿,NJ)和通过在NHS-活化的sepharose柱(GE医疗集团,普林斯顿,NJ)上共价偶联绵羊IgG生成的sepharose结合的绵羊IgG柱进行亲和层析以纯化血清IgG。
预致敏随后用NTS处理,可以诱导小鼠IgG2b抗-绵羊IgG抗体(神经营养因子NTN免疫的)。Kaneko Y.等人.,Exp.Med.,203:789(2006)。小鼠IgG2b抗体与NTS抗体一起沉积于肾小球中,并导致由IgG2b介导的浸润巨噬细胞上FcγRIV的活化所造成的急性和重症炎症反应。在不预致敏的情况下,没有观察到炎症,表明小鼠IgG2b抗-绵羊IgG抗体是该炎症反应的介质。
为了检测导致促炎症IgG的主动免疫与唾液酸化的变化是否密切相关,通过SNA凝集素结合鉴定取自预免疫小鼠以及NTS免疫小鼠的血清IgG和IgM的唾液酸含量、图10A,B,C)。与未免疫对照相比,接受免疫的小鼠中总IgG唾液酸化平均降低40%。该效应是IgG特异的,IgM的唾液酸化在免疫前与免疫后相同。这种唾液酸化的不同在分析小鼠血清中绵羊特异的IgG组分时更加明显,显示与免疫前的IgG相比,唾液酸化降低50-60%。(图10B)
这些结果经MALDI-TOF-MS分析而证实。单糖组成分析由加州大学圣地亚哥分校(UCSD)糖技术核心资源中心(San Diego,CA)完成。糖蛋白样品经SDS和2-巯基乙醇变性,并经糖苷酶PNGase F.消化。释放出来的混合的N-聚糖经反相HPLC和固相萃取纯化,继而暴露的N-聚糖的羟基被甲基化。得到的糖衍生物再次经反相HPLC纯化,并用MALDI-TOF-MS分析
免疫前和免疫后IgG的分析证实N-糖结构的改变对于末端的唾液酸配基是特异的(图10C)。先前显示负责征集(engagement)带有FcγRIV的浸润性巨噬细胞的,沉积于肾小球的小鼠IgG2b抗-绵羊抗体呈现与预免疫对照相比降低的唾液酸含量(图10D)。
本文中所引用的所有专利的和非专利的出版物都并入本文,其引用程度如同每个专利的和非专利的出版物以参考其全文的方式并入本文。另外,尽管本发明参考特定的实施例和实施方式而描述,应理解为这些实施例和实施方式仅仅是本发明的原理和应用的例证。因此应理解可以对于示例性的实施方式进行大量的修饰,并且可以设计其他的安排而不偏离如下面的权利要求所定义的本发明的主旨和范围。

Claims (19)

1.一种药物制剂,包括纯化或修饰的IVIG和合适的载体或稀释剂,经过所述的纯化或修饰,所述的纯化或修饰的IVIG比未纯化或未修饰的IVIG具有更高百分比的唾液酸含量、更高的抗炎症活性和更低的细胞毒性活性,其中所述唾液酸是连接在位于IVIG的Fc区中Asn297上的N连接糖上的α-(2,6)连接的唾液酸。
2.如权利要求1所述的药物制剂,其特征在于,所述修饰的IVIG是用α-(2,6)唾液酸转移酶处理未纯化或未修饰的IVIG获得。
3.如权利要求1所述的药物制剂,其特征在于,所述纯化的IVIG是在凝集素柱上纯化未纯化或未修饰的IVIG获得。
4.如权利要求3所述的药物制剂,其特征在于,所述凝集素柱包括分离自西洋接骨木的凝集素。
5.一种制备如权利要求1-4所述任一药物制剂的方法,该方法包括:
提供一种未纯化或未修饰IVIG的来源,所述未纯化或未修饰IVIG的来源包含多个含有至少一个带有连接在Fc区Asn297上的N连接糖上的α-(2,6)连接的唾液酸的IgG Fc区的多肽,以及多个含有至少一个缺乏唾液酸的IgGFc区的多肽;
提高多个含有至少一个带有连接在Fc区Asn297上的N连接糖上的α-(2,6)连接的唾液酸的IgG Fc区的多肽相对于多个含有至少一个缺乏唾液酸的IgGFc区的多肽的比率,
得到纯化或修饰的IVIG,
将合适的载体或稀释剂与获得的纯化或修饰的IVIG混合。
6.一种用于增强含Fc区多肽的抗炎症活性的方法,包括:
提供含Fc区的多肽的未纯化或未修饰来源,所述含Fc区的多肽的未纯化或未修饰来源包含多个含有至少一个带有连接在Fc区Asn297上的N连接糖上的α-(2,6)连接的唾液酸的IgG Fc区的多肽,以及多个含有至少一个缺乏唾液酸的IgG Fc区的多肽;
提高多个含有至少一个带有连接在Fc区Asn297上的N连接糖上的α-(2,6)连接的唾液酸的IgG Fc区的多肽相对于多个含有至少一个缺乏唾液酸的IgGFc区的多肽的比率,
得到纯化或修饰的具有增强的抗炎活性的含Fc区的多肽。
7.如权利要求5或6所述的方法,其中提高多个含有至少一个带唾液酸的IgG Fc区的多肽相对于多个含有至少一个缺乏唾液酸的IgG Fc区的多肽的比率的步骤通过去除含有至少一个缺乏唾液酸的Fc区的多肽而实现。
8.如权利要求7所述的方法,其中所述去除通过选自HPLC、凝集素亲和层析、高pH阴离子交换层析,以及其任一组合的方法实现。
9.如权利要求5或6所述的方法,其中提高多个含有至少一个带唾液酸的IgG Fc区的多肽相对于多个含有至少一个缺乏唾液酸的IgG Fc区的多肽的比率的步骤通过富集含有至少一个带唾液酸的IgG Fc区的多肽而实现。
10.如权利要求9所述的方法,其中所述富集通过选自HPLC、凝集素亲和层析、高pH阴离子交换层析,以及其任一组合的方法而实现。
11.如权利要求9所述的方法,其中所述富集是通过分离自西洋接骨木的凝集素进行凝集素亲和层析实现。
12.如权利要求5或6所述的方法,其中提高多个含有至少一个带唾液酸的IgG Fc区的多肽相对于多个含有至少一个缺乏唾液酸的IgG Fc区的多肽的比率的步骤通过用唾液酸转移酶处理未修饰或未纯化的多肽而实现。
13.如权利要求12的所述的方法,其中所述的唾液酸转移酶是α-(2,6)唾液酸转移酶。
14.一种药物制剂,包括纯化或修饰的Fc片段和合适的载体或稀释剂,经过所述的纯化或修饰,所述的纯化或修饰的Fc片段比未纯化或未修饰的含Fc区的多肽具有更高百分比的连接在Fc区Asn297上的N连接糖上的α-(2,6)连接的唾液酸、更高的抗炎症活性和更低的细胞毒性活性。
15.如权利要求14所述的药物制剂,其中,所述修饰的Fc片段是用α-(2,6)唾液酸转移酶处理未纯化或未修饰的多肽。
16.如权利要求14所述的药物制剂,其中,所述纯化的Fc片段是在凝集素柱上纯化未纯化或未修饰的多肽获得。
17.如权利要求16所述的药物制剂,其中,所述凝集素柱包括分离自西洋接骨木的凝集素。
18.如权利要求14所述的药物制剂,其中,所述纯化或修饰的Fc片段包括人IgG1、IgG2、IgG3或IgG4Fc区。
19.如权利要求14所述的药物制剂,其中,所述未纯化或修饰的含Fc的多肽是未纯化过的或未修饰过的Fc片段。
CN200780015563.6A 2006-04-05 2007-04-03 具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法 Active CN101432301B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78938406P 2006-04-05 2006-04-05
US60/789,384 2006-04-05
PCT/US2007/008396 WO2007117505A2 (en) 2006-04-05 2007-04-03 Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods

Publications (2)

Publication Number Publication Date
CN101432301A CN101432301A (zh) 2009-05-13
CN101432301B true CN101432301B (zh) 2014-01-08

Family

ID=38581601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780015563.6A Active CN101432301B (zh) 2006-04-05 2007-04-03 具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法

Country Status (13)

Country Link
US (14) US10167332B2 (zh)
EP (3) EP2815768A3 (zh)
JP (6) JP6084761B2 (zh)
CN (1) CN101432301B (zh)
AU (1) AU2007235413B2 (zh)
CA (1) CA2647524C (zh)
EA (1) EA022780B1 (zh)
HK (1) HK1124074A1 (zh)
IL (1) IL194526A (zh)
MX (1) MX2008012843A (zh)
NZ (1) NZ572379A (zh)
WO (1) WO2007117505A2 (zh)
ZA (1) ZA200808900B (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470318B2 (en) 2005-11-07 2013-06-25 The Rockefeller University Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
US20080206246A1 (en) * 2006-04-05 2008-08-28 Ravetch Jeffrey V Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
NZ572379A (en) * 2006-04-05 2012-06-29 Univ Rockefeller Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
CA2694488A1 (en) 2007-07-31 2009-02-05 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
BRPI0907046A2 (pt) 2008-01-18 2015-07-28 Medimmune Llc Anticorpo de cisteína engenheirada, ácido nucleico isolado, vetor, célula hospedeira, conjugado de anticorpo, composição farmacêutica, métodos de detecção de câncer, doenças ou distúrbios autoimunes, inflamatórios ou infecciosos em um indivíduo e de inibição de proliferação de uma célula alvo
CA2722173A1 (en) 2008-04-22 2009-10-29 The Rockefeller University Methods of identifying anti-inflammatory compounds
EP2233499A1 (en) 2009-03-26 2010-09-29 CSL Behring AG Antibody composition with altered Fab sialylation
EP2233502A1 (en) 2009-03-27 2010-09-29 Deutsches Rheuma-Forschungszentrum Berlin Sialylated antigen-specific antibodies for treatment or prophylaxis of unwanted inflammatory immune reactions and methods of producing them
JP5918129B2 (ja) 2009-06-22 2016-05-18 メディミューン,エルエルシー 部位特異的共役のための操作されたFc領域
JP2013527850A (ja) 2010-05-07 2013-07-04 ツェー・エス・エル・ベーリング・アクチエンゲゼルシャフト セイヨウニワトコアフィニティーカラム上の血漿免疫グロブリンアフィニティークロマトグラフィーの分画により得られた抗体組成物
JP5956982B2 (ja) 2010-05-27 2016-07-27 メルク・シャープ・エンド・ドーム・コーポレイション 改善された特性を有する抗体の製造方法
AR085302A1 (es) 2011-02-24 2013-09-18 Sanofi Sa Metodo de produccion de anticuerpos sialilados
EP2702077A2 (en) 2011-04-27 2014-03-05 AbbVie Inc. Methods for controlling the galactosylation profile of recombinantly-expressed proteins
ES2692539T3 (es) * 2011-12-19 2018-12-04 The Rockefeller University Polipéptidos antiinflamatorios no sialilados
EP3539982A3 (en) 2011-12-23 2020-01-15 Pfizer Inc Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
WO2013158279A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Protein purification methods to reduce acidic species
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
WO2014143205A1 (en) 2013-03-12 2014-09-18 Abbvie Inc. Human antibodies that bind human tnf-alpha and methods of preparing the same
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
WO2014149067A1 (en) 2013-03-15 2014-09-25 Momenta Pharmaceuticals, Inc. Methods related to ctla4-fc fusion proteins
CN105263960B (zh) 2013-04-18 2020-05-22 国家医疗保健研究所 具有降低的免疫原性的组合物
EP3719122A1 (en) * 2013-05-02 2020-10-07 Momenta Pharmaceuticals, Inc. Sialylated glycoproteins
WO2014186310A1 (en) 2013-05-13 2014-11-20 Momenta Pharmaceuticals, Inc. Methods for the treatment of neurodegeneration
WO2015051293A2 (en) 2013-10-04 2015-04-09 Abbvie, Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
WO2015057622A1 (en) 2013-10-16 2015-04-23 Momenta Pharmaceuticals, Inc. Sialylated glycoproteins
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
WO2015073884A2 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
CN106573973A (zh) * 2014-06-02 2017-04-19 法国化学与生物科技实验室 Fc片段的产生
EP3613764A1 (en) 2014-10-15 2020-02-26 Xenothera Composition with reduced immunogenicity
CN107847586A (zh) * 2015-03-04 2018-03-27 洛克菲勒大学 抗炎多肽
KR20230142658A (ko) 2016-08-03 2023-10-11 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 항-SIRPalpha 항체 요법의 대식세포 증진 효능에서 Fc 수용체 참여의 붕괴
IL265321B2 (en) 2016-09-14 2024-01-01 Teneobio Inc CD3 binding antibodies
AU2018308364C1 (en) 2017-07-26 2023-02-16 Forty Seven, Inc. Anti-SIRP-alpha antibodies and related methods
MX2020002802A (es) 2017-09-13 2020-10-12 Teneobio Inc Anticuerpos de cadena pesada que se unen a ectoenzimas.
MX2020006372A (es) 2017-12-19 2020-09-03 Univ Rockefeller Variantes de dominio de fc de igg humana con funcion efectora mejorada.
CA3087061A1 (en) 2017-12-27 2019-07-04 Teneobio, Inc. Cd3-delta/epsilon heterodimer specific antibodies
CR20200653A (es) * 2018-07-03 2021-02-11 Gilead Sciences Inc Anticuerpos que se dirigen al gp120 de vih y métodos de uso
MA53493A (fr) 2018-08-31 2021-07-07 Alx Oncology Inc Polypeptides leurres
JP2022501357A (ja) 2018-09-21 2022-01-06 テネオバイオ, インコーポレイテッド ヘテロ二量体多重特異性抗体を精製するための方法
KR20210077706A (ko) * 2018-10-11 2021-06-25 모멘타 파머슈티컬스 인코포레이티드 고도로 실릴화된 IgG 조성물에 의한 치료
KR20210086651A (ko) 2018-10-26 2021-07-08 테네오바이오, 인코포레이티드 Cd38에 결합하는 중쇄 항체
CN110297093B (zh) * 2019-03-18 2022-04-22 山西瑞豪生物科技有限公司 一种检测人免疫球蛋白g4的方法和试剂盒
KR102549282B1 (ko) * 2019-11-18 2023-06-30 건국대학교 산학협력단 시알산화된 면역글로불린을 유효성분으로 포함하는 염증성 질환의 치료용 조성물
CA3158579A1 (en) 2019-12-18 2021-06-24 Pranjali DALVI Heavy chain antibodies binding to cd38
WO2022271987A1 (en) 2021-06-23 2022-12-29 TeneoFour, Inc. Anti-cd38 antibodies and epitopes of same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020164328A1 (en) * 2000-10-06 2002-11-07 Toyohide Shinkawa Process for purifying antibody
CN1166772C (zh) * 1995-06-06 2004-09-15 基因技术股份有限公司 调控由哺乳动物细胞培养物产生的蛋白质唾液酸化的方法
WO2005063808A1 (en) * 2003-12-31 2005-07-14 Merck Patent Gmbh Fc-ERYTHROPOIETIN FUSION PROTEIN WITH IMPROVED PHARMACOKINETICS

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
FR2556219B1 (fr) * 1983-12-07 1987-06-26 Merieux Inst Nouveau medicament immunomodulateur, a base de fragments fc d'igg humaines
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5047335A (en) * 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US5401650A (en) * 1990-10-24 1995-03-28 The Mount Sinai School Of Medicine Of The City University Of New York Cloning and expression of biologically active α-galactosidase A
MC2324A1 (fr) * 1990-11-23 1994-01-18 Gen Hospital Corp Inhibition des interactions entre les proteines d'adherence cellulaire et les hydrates de carbone
US5453272A (en) 1992-10-02 1995-09-26 Alberta Research Council Lectin derived carbohydrate binding-peptide
WO1995023865A1 (en) * 1994-03-03 1995-09-08 Genentech, Inc. Anti-il-8 monoclonal antibodies for treatment of inflammatory disorders
US6656466B1 (en) 1995-06-06 2003-12-02 Genetech, Inc. Human tumor necrosis factor—immunoglobulin(TNFR1-IgG1) chimera composition
US20020045207A1 (en) 1997-10-31 2002-04-18 Lynne A. Krummen Glycoprotein production process
US6660843B1 (en) 1998-10-23 2003-12-09 Amgen Inc. Modified peptides as therapeutic agents
SI1161548T2 (sl) * 1999-04-15 2010-02-26 Crucell Holland Bv Priprava rekombinantnega proteina v humani celici z uporabo sekvenc, ki kodirajo adenovirusni E1 protein
US7297680B2 (en) * 1999-04-15 2007-11-20 Crucell Holland B.V. Compositions of erythropoietin isoforms comprising Lewis-X structures and high sialic acid content
DE19927835A1 (de) * 1999-06-18 2000-12-21 Clariant Gmbh Verwendung von verbesserten Cyanpigmenten in elektrophotographischen Tonern und Entwicklern, Pulverlacken und Ink-Jet-Tinten
AU2001294175A1 (en) * 2000-10-06 2002-04-22 Kyowa Hakko Kogyo Co. Ltd. Method of purifying antibody
AU2002220404A1 (en) 2000-11-20 2002-05-27 Canadian Blood Services Method for treating thrombocytopenia with monoclonal ivig
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
US7427469B2 (en) * 2002-11-05 2008-09-23 Institut Pasteur Method of treating cytomegalovirus with DC-SIGN blockers
JP4496086B2 (ja) 2002-12-23 2010-07-07 ブリストル−マイヤーズ スクイブ カンパニー タンパク質製造のための哺乳類細胞培養方法を用いる生成物品質の増大
US20070048740A1 (en) * 2003-02-14 2007-03-01 Research Association For Biotechnology Full-length cDNA
UA99933C2 (ru) * 2003-04-09 2012-10-25 Дженентек, Инк. Лечение аутоиммунных заболеваний у пациента с неадекватным ответом на ингибитор tnf-альфа
AU2003271194A1 (en) * 2003-10-09 2005-04-21 Daewoong Co., Ltd. Process for purifying human thrombopoietin with high content of sialic acid
EA036531B1 (ru) * 2003-11-05 2020-11-19 Роше Гликарт Аг Гуманизированное антитело типа ii к cd20 (варианты), фармацевтическая композиция, содержащая эти варианты антитела, и их применение
EP2241331A3 (en) * 2003-12-15 2011-03-09 Alexion Pharmaceuticals, Inc. Novel anti-DC-SIGN antibodies
CN101506238B (zh) 2005-06-30 2013-11-06 森托科尔公司 具有提高治疗活性的方法和成分
WO2007024743A2 (en) * 2005-08-19 2007-03-01 Centocor, Inc. Proteolysis resistant antibody preparations
US20080206246A1 (en) * 2006-04-05 2008-08-28 Ravetch Jeffrey V Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
EP1957099B1 (en) 2005-11-07 2015-03-25 The Rockefeller University Reagents, methods and systems for selecting a cytotoxic antibody or variant thereof
US8470318B2 (en) * 2005-11-07 2013-06-25 The Rockefeller University Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
NZ572379A (en) * 2006-04-05 2012-06-29 Univ Rockefeller Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
AU2007317755A1 (en) 2006-10-27 2008-05-15 The Rockefeller University Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
NZ585530A (en) 2007-12-27 2012-06-29 Baxter Int Methods for differentiating plasma-derived protein from recombinant protein in a sample

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166772C (zh) * 1995-06-06 2004-09-15 基因技术股份有限公司 调控由哺乳动物细胞培养物产生的蛋白质唾液酸化的方法
US20020164328A1 (en) * 2000-10-06 2002-11-07 Toyohide Shinkawa Process for purifying antibody
WO2005063808A1 (en) * 2003-12-31 2005-07-14 Merck Patent Gmbh Fc-ERYTHROPOIETIN FUSION PROTEIN WITH IMPROVED PHARMACOKINETICS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Weikert S et al.Engineering chinese hamster ovary cells to maximize sialic acid content of recombinant glycoprotein.《Nature biotechnology》.1999,第17卷(第11期),全文. *

Also Published As

Publication number Publication date
EP2010566A2 (en) 2009-01-07
US20170088608A1 (en) 2017-03-30
CA2647524A1 (en) 2007-10-18
US20170283492A1 (en) 2017-10-05
AU2007235413B2 (en) 2012-08-02
JP6084761B2 (ja) 2017-02-22
US20210101961A1 (en) 2021-04-08
US20230121427A1 (en) 2023-04-20
US20170218050A1 (en) 2017-08-03
WO2007117505A2 (en) 2007-10-18
JP6989979B2 (ja) 2022-02-15
US20100278808A1 (en) 2010-11-04
US20200385443A1 (en) 2020-12-10
ZA200808900B (en) 2009-10-28
IL194526A0 (en) 2011-08-01
US20190127446A1 (en) 2019-05-02
US20170320935A1 (en) 2017-11-09
MX2008012843A (es) 2009-01-19
JP2020117521A (ja) 2020-08-06
JP6686058B2 (ja) 2020-04-22
JP2015038086A (ja) 2015-02-26
JP2017002041A (ja) 2017-01-05
US20160176950A1 (en) 2016-06-23
JP2009532477A (ja) 2009-09-10
EP2815768A3 (en) 2015-01-14
US20190031737A1 (en) 2019-01-31
EP2815768A2 (en) 2014-12-24
JP2018118985A (ja) 2018-08-02
EP2010566B1 (en) 2014-09-03
EP2010566B2 (en) 2017-07-26
JP6322849B2 (ja) 2018-05-16
WO2007117505A3 (en) 2008-10-16
US20190031738A1 (en) 2019-01-31
NZ572379A (en) 2012-06-29
US10167332B2 (en) 2019-01-01
US20130273040A1 (en) 2013-10-17
EP2010566A4 (en) 2010-05-05
EP3456351A1 (en) 2019-03-20
JP7357382B2 (ja) 2023-10-06
EA200870411A1 (ru) 2009-04-28
CN101432301A (zh) 2009-05-13
US20140323696A1 (en) 2014-10-30
IL194526A (en) 2012-04-30
AU2007235413A1 (en) 2007-10-18
CA2647524C (en) 2019-11-26
EA022780B1 (ru) 2016-03-31
JP2022031807A (ja) 2022-02-22
HK1124074A1 (zh) 2009-07-03

Similar Documents

Publication Publication Date Title
CN101432301B (zh) 具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法
US20220162290A1 (en) Polypeptides With Enhanced Anti-Inflammatory And Decreased Cytotoxic Properties And Relating Methods
US20080206246A1 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
US20090004179A1 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
EP2091969A2 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
CA2666308C (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
NZ597651A (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
US20110150867A1 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
CN101528774A (zh) 具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant