CN101426920B - 病原体诱导合成启动子 - Google Patents

病原体诱导合成启动子 Download PDF

Info

Publication number
CN101426920B
CN101426920B CN200780014280XA CN200780014280A CN101426920B CN 101426920 B CN101426920 B CN 101426920B CN 200780014280X A CN200780014280X A CN 200780014280XA CN 200780014280 A CN200780014280 A CN 200780014280A CN 101426920 B CN101426920 B CN 101426920B
Authority
CN
China
Prior art keywords
promoter
pathogen
minimal promoter
seq
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780014280XA
Other languages
English (en)
Other versions
CN101426920A (zh
Inventor
K·施密特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KWS SAAT SE and Co KGaA
Original Assignee
KWS SAAT SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KWS SAAT SE and Co KGaA filed Critical KWS SAAT SE and Co KGaA
Publication of CN101426920A publication Critical patent/CN101426920A/zh
Application granted granted Critical
Publication of CN101426920B publication Critical patent/CN101426920B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8239Externally regulated expression systems pathogen inducible
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Communicable Diseases (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及适于调控核酸转录并包括最小启动子的病原体诱导合成启动子,其特征在于所述最小启动子包括序列基序a)dbrmwa或者b)twcccmt,所述序列基序位于TATA区的下游并在转录起始位点前,所述转录起始位点位于最小启动子上并且待调控的核酸转录在所述转录起始位点开始。

Description

病原体诱导合成启动子
本发明涉及适于调节核酸转录并包括最小启动子的病原体-诱导合成启动子。此外,本发明还涉及转基因植物细胞以及转基因植物。本发明还涉及产生病原体抗性植物的方法。
已知用于产生针对病原体例如真菌、病毒、细菌和线虫的具有抗性的植物的不同方法。这些方法中的一种使用植物的过敏反应(HR),其中坏死出现在病原体和植物的直接接触部位。作为HR的结果,广谱的病原体防御机制在相邻细胞中被触发,这预防病原体在植物组织中的进一步繁殖。
所述HR可以在效应基因表达例如病原体的无毒性基因以及与相应抗性基因(R-基因)产物的相互作用后发生。本文中R-基因可以已经存在于植物中或者视情况而定可以利用基因技术方法被导入各自的植物基因组中(Stuiver等1998,Keller等,1999,Belbahri等,2001)。除此以外,R-基因的过表达或者自体活化(Autoaktivierung)可以触发HR(Tao等,2000,Tang等,1999,Bendahmane等,2002,Howles等,2005)。通过R-基因的过表达,阈值被超过,这导致信号级联的起始,而所述信号级联通常只有在病原体或者视情况而定无毒性基因产物存在时才被起始。通过触发或者激活这种级联,可以获得广泛有效的病原体抗性(Oldroyd和Staskawicz,1998,Tang等,1999,Tao等,2000,Howles等,2005)。那些R-基因的特征在于是自体活化的R-基因,所述R-基因被修饰到这样的程度以致病原体/无毒性基因产物的存在对于信号级联的起始不是必需的,并且同时,与非修饰形式相比降低水平的表达足以实现信号级联的起始。
Stuiver等(1998)示出了用来自致植物病真菌黄枝孢霉(Cladosporiumfulvum)的avr9基因在来自马铃薯的病原体诱导Gstl-启动子的控制下转化带有相应Cf9-基因的番茄植物产生了广泛有效的真菌抗性。在用来自隐地疫霉(P.cryptogea)的激发子cryptogen或者来自致植物病细菌青枯病菌(Ralstonia solanacearum)的细菌激发子popA转化烟草(Nicotiana tabacum)后能够在烟草中实现抗烟草黑胫病菌(Phytophthora parasitica var nicotianae)的抗性。两种基因均在来自烟草的病原体诱导启动子hsr203J的控制下(Keller等,1999,Belbahri等,2001)。
HR触发系统需要对感染部位的效应基因表达的严格控制。在表达不受控制的情况下,所述效应基因的表达对植物生长进而对园艺作物的收成造成负面影响(Stuiver和Custers,2001)。但是通过选择合适的病原体诱导启动子可以实现受控表达。但是,这些应该是在非感染条件下没有表达或者只有很少的表达,但在感染情况下造成感染部位显著更高的表达。在用来自亚麻(Linum usitatissimum)的L6锈菌抗性基因的两种不同自体活化形式转化受天然Fisl启动子(由来自亚麻的锈菌诱导)控制的亚麻后,可以观察到两种表型。一方面,正常生长的植物未显示提高的抗病原体抗性,另一方面,矮生植物具有广泛的病原体抗性(Howles等,2005)。这些结果显示,根据使用的自体活化R-基因的形式,结果可以是已经超过信号级联诱导阈值的启动子活性,而在表型不显著的植物中Fisl-启动子的诱导不足以达到这个阈值。因此天然Fisl-启动子的特异性不足以实现广泛有效的病原体抗性并且对植物生长无负面影响。
天然病原体诱导启动子经常显示非特异活性,并被多种刺激激活,因此它们用于上述效应基因表达的用途是不现实的,因为在非感染条件下也可能存在HR-触发。启动子的这种“泄漏(Undichtigkeit)”导致植物生长的损害,从而导致园艺作物收成的降低。因此开发了合成启动子,它含有来自与病原体诱导相关的天然病原体诱导启动子的序列基序(顺式调控元件)。相反,去除针对其他刺激的序列基序。顺式调控元件被克隆到最小启动子的上游,从而产生功能性启动子,所述功能性启动子与天然启动子相比显示提高的特异性,所述天然启动子分离自相应的顺式调控元件(Rushton等,2002)。作为双子叶植物的最小启动子,使用花椰菜花叶病毒35S-基因的-46到+8区域。除此之外,来自天然启动子(从中克隆出相应的顺式调控元件)的最小启动子的用途是已知的(Perl-Treves等,2004)。对于单子叶植物,描述了来自稻ActI基因的最小启动子的用途(Lü等,2000)。
尽管描述的合成启动子比天然启动子有改进,但是这些合成启动子甚至在非感染条件下也显示本底活性。这些本底活性在不同植物类型之间各不相同。因此,迄今为止所有被检查的植物类型中都可以检测到病原体可诱导性,但是启动子的诱导强度和绝对活性各不相同。在未感染组织存在过强本底活性的情况下,只检测到很低的病原体可诱导性,所述病原体可诱导性表示为感染组织中的启动子活性除以未感染组织中的启动子活性得到的商。
迄今为止,只有使用的顺式调控元件被认为造成合成启动子的本底活性水平。这些对启动子的强度有很大影响(Rushton等,2002)。迄今为止几乎没有对最小启动子的影响进行研究。根据文献记载,最小启动子对于启动子活性的调节只有非常小的影响(Singh,1998)。但是Bhuliar等(2003)检测到当最小启动子(-46到+1)与异源植物最小启动子交换时,35S-启动子的启动子活性明显降低。这些差异归因于TATA盒的不同序列,但是按照他们的观点,最小启动子TATA盒的侧翼区与启动子活性无关。
因此本发明的任务是提供具有低本底活性的病原体诱导合成启动子。
根据本发明,所述任务的解决方案通过具有最小启动子的病原体诱导合成启动子来实现,其中最小启动子包括序列基序
a)dbrmwa或者
b)twcccmt
其位于TATA区的下游并在最小启动子的转录点前,待调控的核酸的转录在所述转录点开始。其中序列基序dbrmwa主要适于双子叶植物,而序列基序twcccmt主要适于单子叶植物。
本文中使用的序列基序的符号具有下列含义:
d=核苷酸a或者g或者t/u
b=核苷酸c或者g或者t/u
r=核苷酸g或者a
m=核苷酸a或者c
w=核苷酸a或者t/u
a=核苷酸a
t=核苷酸t
c=核苷酸c
就本发明来说,“最小启动子”是启动子功能必需的启动子的DNA序列。常规转录因子例如TFII-D、TFII-A、TFII-B、TFII-E和TFII-F能够结合该DNA序列,并形成用于RNA-聚合酶11/TFII-F复合物结合的平台。因为DNA向mRNA的转录在该区域开始,转录起始位点(TS)位于最小启动子内并被标为位置+1。所述最小启动子包括TS,并且可以延伸例如从位置-50到位置+15。所谓的TATA盒经常在位置-30,但它不是在所有的启动子中均存在。TATA盒是胸腺嘧啶和腺嘌呤碱基序列区域。TATA盒是TATA盒结合蛋白(TBP)的结合部位。
表征为“合成启动子”的是那些在自然界不存在的启动子,由多个元件组装并包含最小启动子以及最小启动子的上游,至少一种顺式调控元件,其作为特定转录因子的结合部位。合成启动子根据要求进行设计,并被不同的因子诱导或者抑制。
启动子的“衍生物”是该启动子的缩短或者延长或者部分相同的形式,或者是具有相同、修饰或者单独特性的同系物。本文的表述“同源性”表示基于DNA的至少70%的同源性,这可以通过已知的方法例如电脑支持的序列比对来确定(Altschul,S.F.等,1990)。
在瞬时生物转化后,本发明的病原体诱导合成启动子导致相应植物的叶组织中基底活性相对于通常使用的启动子降低,所述启动子具有最小启动子例如双子叶植物中的35S-最小启动子和单子叶植物中的玉米-ubil-最小启动子。除此之外发现在本发明病原体诱导合成启动子中诱导率更高。
本发明的病原体诱导合成启动子因此可用于产生转基因植物,所述转基因植物具有广泛抗多种病原体例如真菌、卵菌、细菌、病毒、昆虫和线虫的抗性。
序列基序dbrmwa和twcccmt按照正义方向位于TATA盒和转录起始位点之间的编码链上,并且可能存在两次或者更多次。最小启动子的优选序列如SEQ ID NOS:1到9所示。
用于产生病原体诱导合成启动子的顺式调控元件主要是那些存在于天然病原体诱导启动子中并且引起病原体诱导的元件。Rushton等(2002)描述了它们的鉴定。
利用本发明最小启动子产生合成启动子的优选顺式调控元件在WO00/29592中也有描述。根据WO00/29592提及的顺式调控元件,D盒(SEQ ID NO:10)是尤其合适的,特别是在组合2xS/2xD(SEQ ID NO:11)以及Gst1-元件中,优选在组合4xGst1(SEQ ID NO:12)中。
优选的顺式元件组合一般包括D盒(SEQ ID NO:10)与S盒或者视情况而定Gst1-元件的组合。除了上面提及的组合2xS/2xD(SEQ ID NO:11),尤其优选的是组合2xS/4xD(SEQ ID NO:13);4xS/2xD(SEQ ID NO:14)和2xGst1/2xD(SEQ ID NO:15)。在用致病疫霉(Phytophthora infestans)感染后的转基因马铃薯中,2xS/4xD元件(SEQ ID NO:13)与SEQ ID NO:2所示最小启动子的组合与非感染对照相比显示报告基因活性平均提高253,000倍。
如果元件4xS/2xD(SEQ ID NO:14)被克隆到最小启动子(SEQ ID NO:2)前,可以检测到报告基因活性平均增加2,892倍。利用元件2xGst1/2xD(SEQ ID NO:15),与对照相比平均增加2,967倍。
利用本发明的启动子可以产生转基因植物细胞,其可以再生成具有对病原体具有改良防御特性的完整植物。本发明的启动子同样也可以被包含在这类转基因植物的种子中。本发明不限于特定的植物类型。
本发明因此涉及产生具有抗病原体抗性的植物的方法,其中适于产生病原体抗性的基因被导入植物细胞,所述基因在病原体诱导合成启动子的控制下,随后该植物细胞再生成植物,所述方法特征在于所述病原体诱导合成启动子是如上所述的病原体诱导合成启动子。
实施例
图1显示具有保守的TATA区和dbrmwa-基序以及用于克隆到质粒pMS23luc+的切割位点PstI和XhoI的双子叶植物优选最小启动子(SEQ IDNO:1到7)之间的序列比较。
图2显示优选用于单子叶植物的最小启动子(SEQ ID NO:8和9)之间的序列比较,所述最小启动子用于小麦叶子的瞬时转化。除TATA区之外,序列基序twcccmt也被证明是保守区。
可以示出最小启动子StGst(SEQ ID NO:6),NtTGAA(SEQ ID NO:5),StPSBR(SEQ ID NO:7),NpCABE(SEQ ID NO:2),NtRBS(SEQ ID NO:3),NpATP2(SEQ ID NO:1)和Nt5EAS(SEQ ID NO:4)显示比35S-最小启动子明显降低的活性(<70%)。
图5显示未感染转基因马铃薯植物平均报告基因活性的概述,所述马铃薯植物具有克隆到作为报告基因的北美萤火虫(Photinus pyralis)荧光素酶基因前的包含4xGst1元件(SEQ ID NO:12)和指定最小启动子组成的合成启动子(RLU=相对光单位)。具有最小启动子(其具有序列基序dbrmwa)的稳定转基因株与35S-最小启动子相比显示在受控条件下报告基因的表达明显降低。利用NpATP2基因(SEQ ID NO:1)的最小启动子获得最低的平均活性。在这些植物中,只测量到35S-最小启动子平均活性的9.7%。利用最小启动子StPSBR(SEQ ID NO:7)、NtTGAA(SEQ ID NO:5)或者StGst(SEQ ID NO:6)测量到35S-最小启动子活性的18%,利用NtRBS-最小启动子(SEQ ID NO:3)是26%,利用NpCABE-最小启动子(SEQ ID NO:2)是39%和利用Nt5EAS-最小启动子(SEQ ID NO:4)是41%。
对于普通技术人员来说,用本发明启动子制备转化植物的合适构建体是毫无问题的。因此例如可以产生双元载体p4xGst1-luc-kan(图8),它被用于马铃薯植物品种“Baltica”的稳定转化。该载体是双元载体pGPTV的衍生物(Becker等,1992)。双元载体p4xGst1 luc-kan载有在合成启动子4xGst1:35S最小启动子控制下的北美萤火虫荧光素酶基因(Rushton等,2002)。使用根癌农杆菌(Agrobacterium tumefaciens)nopalinsynthase基因的终止子作为质粒的终止序列。上述表达盒与用作选择标记的新霉素磷酸转移酶基因(nptll)的功能表达盒均位于T-DNA上。新霉素磷酸转移酶赋予转基因植物抗卡那霉素或者巴龙霉素的抗性。为了将35S-最小启动子与上述最小启动子交换,利用XhoI/SalI消化双元载体p4xGstl luc-kan,从而去除35S-最小启动子,但是Gstl元件的四聚体仍保持完整。借助Klenow聚合酶和dNTP填充SalI切割位点以获得平端。克隆入质粒pMS23luc+的最小启动子利用PdiI/XhoI消化切割并连接入所述双元载体,随后转化大肠杆菌(E.coli)。具有所述新序列的双元载体被转化入农杆菌(Agrobacterium)型GV3101::pMP90(Koncz和Schell,1986)(An,1987),并利用抗生素卡那霉素(50mg/l)进行选择。使用转基因农杆菌转化“Baltica”型马铃薯(Dietze等,1995)。
图4显示具有包含4xGstl元件(SEQ ID NO:12)和指定最小启动子的合成启动子的稳定转基因马铃薯植物体外感染后各种诱导概述。在体外用致病疫霉的游动孢子悬液感染植物。
在接种后的不同时间取出体外植物的叶样品,测定样品重量并添加10倍体积的1xCCLR缓冲液(Promega,Mannheim)。借助于RIA/90匀浆器(IKALabortechnik,Staufen)将所述材料在冰上于缓冲液中匀浆。通过>10,000×g离心10分钟澄清所述匀浆,在光度计管中用50pl底物LAR(Promega,Mannheim)悬浮10pl上清,并在光度计(Sirius,Berthold Detection SystemGmbH,Pforzheim)上测定光发射,表示为荧光素酶活性值。为了对照或者比较,在相同条件下培养的体外植物代替游动孢子使用水进行假处理。在5个独立株中被感染株的荧光素酶活性除以假处理变体的商的平均值指示感染诱导合成启动子。由图7可以看出,使用35S-最小启动子,在感染72小时后荧光素酶活性的最大诱导只有10倍。相反所有新的最小启动子显示明显提高的诱导。利用StPSBR最小启动子(SEQ ID NO:7)感染72小时后达到395倍的感染后最强诱导。通常,与35S-最小启动子相比,在诱导后72小时通过使用具有StGst最小启动子(SEQ ID NO:6)的新的最小启动子的诱导可以提高3.5倍,具用StPSBR最小启动子(SEQ ID NO:7)的是39.5倍。有趣的是,在病原体诱导后的诱导动力学中最小启动子之间存在明显差异。尽管使用35S-最小启动子在诱导后72小时测得最显著的诱导,但这也适用于StPSBR,NtTGAA,StGst,NtRBS以及NpATP2最小启动子。对于NpCABE和Nt5EAS启动子比较起来在时间间隔9已经检测到强活化,并且在剩余的试验期间诱导大致保留在已获得的水平。
新的最小启动子优选与顺式元件组合2xS/2xD融合。因此,用双元载体p2xS/2xDluc-kan、p2xS/2xDNpCABEluc-kan和p2xS/2xDNtTGAAluc-kan稳定转化马铃薯植物。如下产生所述双元载体,来自上述具有新的最小启动子和4xGstl-元件的双元载体的4xGstl-元件通过BcuI/Eco1471-消化被去除,然后将元件2xS/2xD(SEQ IDNO:11)作为Bcul/Eco321-片段导入。具有所述新序列的双元载体被转化入农杆菌GV3101::pMP90(Koncz和Schell,1986)(An,1987),并利用抗生素卡那霉素(50mg/l)进行选择。使用转基因农杆菌转化“Baltica”型马铃薯(Dietze等,1995)。增殖转基因萌芽,并在体外条件下接种致病疫霉的游动孢子悬液(50,000孢子/ml)。发现利用顺式调控元件2xS/2xD(SEQ ID NO:11),也可以用本发明的最小启动子实现比35S-最小启动子降低的本底活性(图5)。同时在用致病疫霉接种转基因马铃薯后可以观察到合成启动子的更强诱导(图6)。在稍后的时间(感染后3天=3dpi)诱导的增加不像使用4xGstl-元件后观察到的那么显著。但是在感染后两天利用新的最小启动子可以在病原体攻击后观察到明显更强的诱导。因此这些最小启动子的使用具有提高合成启动子动力学的作用,所以与利用35S-最小启动子的合成启动子相比,对病原体攻击的反应发生的更早。
图7显示生物转化“Taifun”型小麦的初生叶后,病原体诱导合成启动子归一化活性的比较,所述启动子包含元件2xS/2xD(SEQ ID NO:11)以及最小启动子ubi1(比较启动子)、TaPAL(SEQ ID NO:9)和TaACS(SEQ ID NO:8)。可以看出,与ubi1-最小启动子相比,新的最小启动子TaPAL和TaACS在小麦中具有降低的基本活性。当使用ubi1-最小启动子测得的归一化活性为0.17时,使用TaPAL-最小启动子测得的归一化活性可以降低到0.072,使用TaACS-最小启动子测得的归一化活性可以降低到0.13。
图9显示质粒pubiTATARucll,其含有具有海肾(Renilla reniformis)荧光素酶基因的cDNA,它存在于商业可获得的质粒pRL-Null中。所述cDNA在ubi1-最小启动子的控制下。ubi1-最小启动子包括相对于转录起始位点范围从-45到+76的序列。为了提高表达强度,ubi1-基因的第一个内含子维持其天然状态,位于质粒的报告基因前。所述质粒用于克隆顺式调控元件2xS/2xD(SEQ ID NO:11),从而产生病原体诱导合成启动子。ubi1-最小启动子与新的最小启动子交换以便提供合成启动子的特性。
参考文献
An,G.(1987).Binary Ti vectors for plant transformation and promoter analysis.Methods Enzymol.153:292-305
Altschul,S.F.等(1990),Basic Local Alignment search tool,J.Mol.Biol.215:403-410
Becker,D.等(1992).New plant binary vectors with selectable markers locatedproximal to the left T-DNA border.Plant Mol Biol.29:1195-1197
Belbahri,L等(2001).A local accumulation of the Ralstonia solanacearumPopA protein in transgenic tobacco renders a compatible plant-pathogeninteraction incompatible.Plant J.28:419-430
Bendahmane,A.等(2002).Constitutive gain-of-function mutants in anucleotide binding site-leucine rieh repeat protein encoded at the Rx locus ofpotato.Plant J.32:195-204
Bhullar,S.(2003).Strategies for the development of functionally equivalentPromoters with minimum sequence homology for transgenic expression inplants:cis-elements in a novel DNA context versus domain swapping.PlantPhysiol.132:988-998
Dietze,J.等(1995).Agrobacterium-mediated transformation of potato(Solanum tuberosum).In:Gene Transfer to Plants XXII(Potrykus,I.andSpangenberg,G.,eds.).Berlin:Springer Verlag,pp24-29
Howles,P.等(2005).Autoactive alleles of the flax L6 rust resistance geneinduce non-race-speeifie rust resistance associated with the hypersensitiveresponse.Mol.Plant-Microbe Interact.18:570-582
Keller,H.等(1999).Pathogen-induced elicitin production in transgenictobacco generates a hypersensitive response and non-specific disease resistance.Plant Cell11.223-235
Koncz,C.and Schell,J.(1986).The promoter of TL-DNA gene 5 controls thetissue specific expression of chimeric genes carried by a novel type ofAgrobacterium vector.Mol.Gen.Genet.,204:383-396
Lü,H.等(2000).Construction of chimeric inducible Promoters by elicitors ofrice fungal blast pathogen and their expression in transgenic rice.ChineseScience Bulletin45:242-246
Oldroyd,G.E.D.and Staskawicz,BJ.(1998).Genetically engineered broadspectrum disease resistance in tomato.Proc.Natl.Acad.Sci.U.S.A.95:10300-10350
Maas,C.等(1991).The combination of a novel stimulatoryelement in thefirstexon of the maize Shrunken-1gene with the following introni enhances reportergene expression up to1000-fold.Plant Mol Biol.16:199-207
Perl-Treves,R.等(2004).Early induction of the Arabidopsis GSTF8 Promoterby specific strains of the fungal pathogen Rhizactonia solani.Mol.Plant-Microbe Interact.17:70-80
Rushton,PJ.等(2002).Synthetic plant promoters containing defined regulatoryelements provide novel insights into pathogen-and wound-induced signalling.Plant Cell14,749-762
Singh,K.B.(1998).Transcriptional regulation in plants:the importance ofcombinatorial control.Plant Physiol.118:1111-1120Stuiver,M.H.andGüsters,J.H.H.V.(2001).Engineering disease resistance in plants.Nature411:865-868
Stuiver,M.H.等(1998).Infection-induced expression of the avirulence geneavr9in transgenic Cf9 tomato plants confers resistance to fungal pathogenattack.7thInternational congress of plant pathology,9-16August,Edinburgh,Scotland
Tang,X.等(1999).Overexpression of Pto activates defense responses andconfers broad resistance.Plant Cell11:15-29
Tao,Y.等(2000).Mutational analysis of the Arabidopsis nucleotide bindingsite-leucine-rich repeat resistance gene RPS2.Plant Cell12:2541-2554
序列表
<110>KWS种子股份有限公司
<120>病原体诱导合成启动子
<130>KWS 0111 PCT
<160>15
<170>PatentIn version 3.3
<210>1
<211>69
<212>DNA
<213>Nicotiana plumbaginifolia
<220>
<221>misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(19)..(24)
<220>
<221>misc_feature
<222>(32)..(37)
<223>dbrmwa
<220>
<221>misc_feature
<222>(62)..(69)
<223>XhoI Erkennungssequenz
<400>1
aactgcagtg ggctcttgat atatcagctc ttcacaaacc ctagcagtct ctttctctcc     60
tctcgagtt                                                             69
<210>2
<211>67
<212>DNA
<213>Nicotiana plumbaginifolia
<220>
<221>misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(19)..(24)
<220>
<221> misc_feature
<222>(31)..(36)
<223>dbrmwa
<220>
<221>misc_feature
<222>(60)..(67)
<223>XhoI Erkennungssequenz
<400>2
aactgcagta aagccattta tatacactta gtgcaaagcc catgaaactc aagcctcaac     60
tcgagtt                                                               67
<210>3
<211>67
<212>DNA
<213>Nicotiana tabacum
<220>
<221>Misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(18)..(25)
<220>
<221>Misc_feature
<222>(33)..(38)
<223>dbrmwa
<220>
<221>Misc_feature
<222>(60)..(67)
<223>XhoI Erkennungssequenz
<400>3
aactgcagcc ttatcattat atatagggtg gtgggcaact atgcaatgac catattggac     60
tcgagtt                                                               67
<210>4
<211>69
<212>DNA
<213>Nicotiana tabacum
<220>
<221>misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(24)..(31)
<220>
<221>misc_feature
<222>(38)..(43)
<223>dbrmwa
<220>
<221>misc_feature
<222>(62)..(69)
<223>XhoI Erkennungssequenz
<400>4
aactgcagca gtttaatgta cattacatat aggttgcgga aaagtatata tatgctcaag     60
actcgagtt                                                             69
<210>5
<211>67
<212>DNA
<213>Nicotiana tabacum
<220>
<221>misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(19)..(24)
<220>
<221>misc_feature
<222>(31)..(36)
<223>dbrmwa
<220>
<221>misc_feature
<222>(60)..(67)
<223>XhoI Erkennungssequenz
<400>5
aactgcagta aagccattta tatacactta gtgcaaagcc catgaaactc aagcctcaac     60
tcgagtt                                                               67
<210>6
<211>67
<212>DNA
<213>Solanum tuberosum
<220>
<221>misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(24)..(30)
<220>
<221>misc_feature
<222>(38)..(43)
<223>dbrmwa
<400>6
aactgcagag tcaaatataa ttttatatta gaataattga atagtcaaac aagaaacttt     60
aacgagt                                                               67
<210>7
<211>75
<212>DNA
<213>Solanum tuberosum
<220>
<221>misc_feature
<222>(1)..(8)
<223>PstI Erkennungssequenz
<220>
<221>TATA_signal
<222>(26)..(34)
<220>
<221>misc_feature
<222>(36)..(41)
<223>dbrmwa
<220>
<221>misc_feature
<222>(68)..(75)
<223>XhoI Restriktionsschnittstelle
<400>7
aactgcagac catgcaaagt gaaaataaat aattcatact aagtagtgag agcaaagaag     60
aaaaaagctc gagtt                                                      75
<210>8
<211>69
<212>DNA
<213>Triticum aestivum
<220>
<221>promoter
<222>(1)..(69)
<223>Minimalpromotor
<220>
<221>TATA_signal
<222>(13)..(20)
<220>
<221>misc_feature
<222>(38)..(44)
<223>twcccmt
<400>8
gcgccacgaa tctataaata ggcaccaacg agcagcttac ccattcatct ccctccctcc     60
ctccgccag                                                             69
<210> 9
<211>149
<212>DNA
<213>Triticum aestivum
<220>
<221>TATA_signal
<222>(17)..(23)
<220>
<221>misc_feature
<222>(42)..(48)
<223>twcccmt
<220>
<221>5’UTR
<222>(51)..(149)
<400>9
atctgcaggc gctgcctatt taatcccttc ccctccctcc attcccctcc aagaagagcc     60
acagcttcat ctgcagctac agctcctctt cgtcttcgac acacaagtat tttttcagga    120
caaagatcaa tccagataca catacacct                                      149
<210>10
<211>31
<212>DNA
<213>Petroselinum crispum
<220>
<221>enhancer
<222>(1)..(31)
<223>BoxD
<400>10
tacaattcaa acattgttca aacaaggaac c                                      31
<210>11
<211>128
<212>DNA
<213>Petroselinum crispum
<220>
<221>enhancer
<222>(1)..(128)
<223>synthetisches Enhancerelement bestehend aus Dimer der BoxS undBoxD
<220>
<221>enhancer
<222>(1)..(25)
<223>BoxS
<220>
<221>enhancer
<222>(31)..(55)
<223>BoxS
<220>
<221>enhancer
<222>(61)..(91)
<223>BoxD
<220>
<221>enhancer
<222>(98)..(128)
<223>BoxD
<400>11
cagccaccaa acaggaccca gaattctagt cagccaccaa agaggaccca gaattctagt     60
tacaattcaa acattgttca aacaaggaac ctctagttac aattcaaaca ttgttcaaac    120
aaggaacc                                                             128
<210>12
<211>118
<212>DNA
<213>Solanum tuberosum
<220>
<221>enhancer
<222>(1)..(118)
<223>synthetisches Enhancerelement aus einem Tetramer des GstlElementes
<220>
<221>enhancer
<222>(1).. (25)
<223>BoxGstl
<220>
<221>enhancer
<222>(32)..(56)
<223>BoxGstl
<220>
<221>enhancer
<222>(63)..(87)
<223>BoxGstl
<220>
<221>enhancer
<222>(94)..(118)
<223>BoxGstl
<400>12
ttctagccac cagatttgac caaactctag tttctagcca ccagatttga ccaaactcta     60
gtttctagcc accagatttg accaaactct agtttctagc caccagattt gaccaaac      118
<210>13
<211>202
<212>DNA
<213>synthetic
<220>
<221>enhancer
<222>(1)..(202)
<223>synthetisches Enhancerelement bestehend aus Dimer der BoxS unddem Tetramer der BoxD
<220>
<221>enhancer
<222>(1)..(25)
<223>Box S
<220>
<221>enhancer
<222>(31)..(55)
<223>Box S
<220>
<221>enhancer
<222>(61)..(91)
<223>Box D
<220>
<221>enhancer
<222>(98)..(128)
<223>Box D
<220>
<221>enhancer
<222>(135)..(165)
<223>Box D
<220>
<221>enhancer
<222>(172)..(202)
<223>Box D
<400>13
cagccaccaa agaggaccca gaattctagt cagccaccaa agaggaccca gaattctagt     60
tacaattcaa acattgttca aacaaggaac ctctagttac aattcaaaca ttgttcaaac    120
aaggaacctc tagttacaat tcaaacattg ttcaaacaag gaacctctag ttacaattca    180
aacattgttc aaacaaggaa cc                                             202
<210>14
<211>188
<212>DNA
<213>synthetic
<220>
<221>enhancer
<222>(1)..(188)
<220>
<221>enhancer
<222>(1)..(25)
<223>BoxS
<220>
<221>enhancer
<222>(31)..(55)
<223>BoxS
<220>
<221>enhancer
<222>(61)..(85)
<223>BoxS
<220>
<221>enhancer
<222>(91)..(115)
<223>BoxS
<220>
<221>enhancer
<222>(121)..(151)
<223>BoxD
<220>
<221>enhancer
<222>(158)..(188)
<223>BoxD
<400>14
cagccaccaa agaggaccca gaattctagt cagccaccaa agaggaccca gaattctagt     60
cagccaccaa agaggaccca gaattctagt cagccaccaa agaggaccca gaattctagt    120
tacaattcaa acattgttca aacaaggaac ctctagttac aattcaaaca ttgttcaaac    180
aaggaacc                                                             188
<210>15
<211>130
<212>DNA
<213>synthetic
<220>
<221>enhancer
<222>(1)..(130)
<223>synthetisches Enhancerelement bestehend aus dem Dimer derGstl-Box und dem Dimer der BoxD
<220>
<221>enhancer
<222>(1)..(25)
<223>Box Gstl
<220>
<221>enhancer
<222>(32).. (56)
<223>Box Gstl
<220>
<221>enhancer
<222>(63)..(93)
<223>Box D
<220>
<221>enhancer
<222>(100)..(130)
<223>Box D
<400>15
ttctagccac cagatttgac caaactctag tttctagcca ccagatttga ccaaactcta     60
gttacaattc aaacattgtt caaacaagga acctctagtt acaattcaaa cattgttcaa    120
acaaggaacc                                                           130

Claims (5)

1.最小启动子,其由SEQ ID NO:1-9之一所示的核苷酸序列组成。
2.最小启动子,其由SEQ ID NO:1-7之一所示的不包含末端限制位点的核苷酸序列组成。
3.病原体诱导合成启动子,其适于调控核酸的转录并且组成为:
i.最小启动子,其由SEQ ID NO:1-9之一所示的核苷酸序列组成或者由SEQ ID NO:1-7之一所示的不包含末端限制位点的核苷酸序列组成,以及
ii.至少一种顺式调控元件,所述顺式调控元件由SEQ ID NO:10-15之一的核苷酸序列组成。
4.重组基因,其具有权利要求1或2的最小启动子或者权利要求3的病原体诱导合成启动子。
5.产生病原体抗性植物的方法,其中在植物细胞中导入产生病原体抗性的核酸,所述核酸在病原体诱导合成启动子的控制下,随后从该植物细胞再生为植物,其特征在于所述病原体诱导合成启动子是权利要求3的病原体诱导合成启动子。
CN200780014280XA 2006-06-22 2007-06-16 病原体诱导合成启动子 Expired - Fee Related CN101426920B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006029129.8 2006-06-22
DE102006029129A DE102006029129A1 (de) 2006-06-22 2006-06-22 Pathogen induzierbarer synthetischer Promotor
PCT/DE2007/001075 WO2007147395A2 (de) 2006-06-22 2007-06-16 Pathogen induzierbarer synthetischer promotor

Publications (2)

Publication Number Publication Date
CN101426920A CN101426920A (zh) 2009-05-06
CN101426920B true CN101426920B (zh) 2013-08-21

Family

ID=38721188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780014280XA Expired - Fee Related CN101426920B (zh) 2006-06-22 2007-06-16 病原体诱导合成启动子

Country Status (14)

Country Link
US (2) US8946399B2 (zh)
EP (2) EP2354233B1 (zh)
CN (1) CN101426920B (zh)
AU (1) AU2007262518B2 (zh)
BR (1) BRPI0713503B1 (zh)
CA (2) CA2805052C (zh)
DE (1) DE102006029129A1 (zh)
DK (2) DK2035563T3 (zh)
ES (2) ES2530437T3 (zh)
PL (2) PL2354233T3 (zh)
RU (1) RU2406761C2 (zh)
UA (2) UA108474C2 (zh)
WO (1) WO2007147395A2 (zh)
ZA (1) ZA200810626B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013022331B1 (pt) * 2011-03-02 2021-01-26 Futuragene Israel Ltd. vetor de expressão de ácido nucleico, e, método para gerar uma planta que compreende resistência intensificada a um patógeno bacteriano
DE102011122267A1 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus Pflanzen stammende cis-regulatorische Elemente für die Entwicklung Pathogen-responsiver chimärer Promotoren
DE102012003848A1 (de) 2012-02-29 2013-08-29 Kws Saat Ag Pathogenresistente transgene Pflanze
US9157087B2 (en) 2012-06-28 2015-10-13 University Of Tennessee Research Foundation Inducible plant promoters and the use thereof
DE102013010026A1 (de) 2013-06-17 2014-12-18 Kws Saat Ag Resistenzgen gegen Rizomania
EA036362B1 (ru) 2013-09-04 2020-10-30 Квс Заат Се Растение, устойчивое к гельминтоспориозу
DE102013014637A1 (de) 2013-09-04 2015-03-05 Kws Saat Ag HELMlNTHOSPORlUM TURClCUM-RESlSTENTE PFLANZE
CN105861508B (zh) * 2016-06-21 2019-04-19 南京农业大学 一种疫霉诱导性人工合成启动子pmp2及其重组表达载体和应用
CN105861509B (zh) * 2016-06-21 2019-04-19 南京农业大学 一种疫霉诱导性人工合成启动子pmp3及其重组表达载体和应用
EP3269816A1 (en) 2016-07-11 2018-01-17 Kws Saat Se Development of fungal resistant crops by higs (host-induced gene silencing) mediated inhibition of gpi-anchored cell wall protein synthesis
EP3282016A1 (de) 2016-08-10 2018-02-14 Kws Saat Se Resistenzgen gegen wurzelbärtigkeit
EP3447134B1 (en) 2017-08-22 2023-10-11 KWS SAAT SE & Co. KGaA Increased fungal resistance in crop plants
CA3077067A1 (en) * 2017-10-17 2019-04-25 The Regents Of The University Of California Controlling fungal pathogens using rnai-based strategy
EP3567111A1 (en) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
EP3584253A1 (en) 2018-06-18 2019-12-25 KWS SAAT SE & Co. KGaA Balanced resistance and avirulence gene expression
EP3623379A1 (en) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
EP3696188A1 (en) 2019-02-18 2020-08-19 KWS SAAT SE & Co. KGaA Gene for resistance to plant disease
EP3927724A1 (en) 2019-02-18 2021-12-29 KWS SAAT SE & Co. KGaA Gene for resistance to plant disease
BR112022009067A2 (pt) 2019-11-12 2022-08-09 Kws Saat Se & Co Kgaa Gene para resistência a um patógeno do gênero heterodera
EP3957168A1 (en) 2020-08-17 2022-02-23 KWS SAAT SE & Co. KGaA Plant resistance gene and means for its identification
CN117417934B (zh) * 2023-10-27 2024-09-13 江南大学 跨菌种启动子、多菌种穿梭质粒及其应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614395A (en) * 1988-03-08 1997-03-25 Ciba-Geigy Corporation Chemically regulatable and anti-pathogenic DNA sequences and uses thereof
AU676471B2 (en) * 1992-03-20 1997-03-13 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Fungus-responsive chimaeric gene
US5981843A (en) * 1995-05-18 1999-11-09 Board Of Trustee Of The University Of Kentucky Elicitin-mediated plant resistance
US6072050A (en) * 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
WO1998003536A1 (en) * 1996-07-23 1998-01-29 Novartis Ag Chemically-inducible arabidopsis pr-1 promoter
US6262343B1 (en) * 1998-07-23 2001-07-17 The Regents Of The University Of California BS2 resistance gene
US8013138B1 (en) * 1998-11-12 2011-09-06 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Chimeric promoters capable of mediating gene expression in plants upon pathogen infection and uses thereof
EP1368484A2 (en) * 2000-09-15 2003-12-10 Syngenta Participations AG Plant genes, the expression of which are altered by pathogen infection
WO2002034927A2 (en) * 2000-10-20 2002-05-02 Wisconsin Alumni Research Foundation Plant genes that confer resistance to strains of magnaporthe grisea having avr1 co39 cultivar specificity gene
WO2003083042A2 (en) * 2001-10-24 2003-10-09 Dna Plant Technology Corporation Pathogen-induced promoters
DE10346611B4 (de) * 2003-10-07 2006-04-27 IPK-Institut für Pflanzengenetik und Kulturpflanzenforschung Promotor zur epidermisspezifischen Transgenexpression in Pflanzen
FR2864547A1 (fr) * 2003-12-24 2005-07-01 Agronomique Inst Nat Rech Promoteur inductible de puroindoline-a.
US7718789B2 (en) * 2004-06-15 2010-05-18 Elton Clare K Compositions and methods for the modification of gene expression
DE102005026045A1 (de) * 2005-06-03 2007-06-14 Kws Saat Ag Nukleinsäure, die für ein autoaktiviertes Resistenzprotein zur Erzeugung einer Resistenz gegenüber Pathogenen bei Pflanzen codiert

Also Published As

Publication number Publication date
CA2805052C (en) 2015-12-08
UA99439C2 (ru) 2012-08-27
ZA200810626B (en) 2009-12-30
US8946399B2 (en) 2015-02-03
AU2007262518A1 (en) 2007-12-27
WO2007147395A2 (de) 2007-12-27
CA2647264A1 (en) 2007-12-27
EP2035563B1 (de) 2012-06-27
ES2530437T3 (es) 2015-03-02
EP2354233A1 (de) 2011-08-10
PL2035563T3 (pl) 2012-11-30
DK2035563T3 (da) 2012-09-03
EP2035563A2 (de) 2009-03-18
BRPI0713503A2 (pt) 2012-03-13
AU2007262518B2 (en) 2013-05-16
CA2647264C (en) 2013-04-23
DK2354233T3 (da) 2015-02-16
ES2390180T3 (es) 2012-11-07
CN101426920A (zh) 2009-05-06
US20150143582A1 (en) 2015-05-21
US9631200B2 (en) 2017-04-25
PL2354233T3 (pl) 2015-05-29
RU2406761C2 (ru) 2010-12-20
UA108474C2 (en) 2015-05-12
WO2007147395A3 (de) 2008-06-05
US20090188006A1 (en) 2009-07-23
CA2805052A1 (en) 2007-12-27
DK2354233T5 (da) 2015-07-20
EP2354233B1 (de) 2014-11-19
DE102006029129A1 (de) 2007-12-27
RU2008137102A (ru) 2010-07-27
BRPI0713503B1 (pt) 2020-01-07

Similar Documents

Publication Publication Date Title
CN101426920B (zh) 病原体诱导合成启动子
CA2325344C (en) Methods and means for obtaining modified phenotypes
US20170114354A1 (en) Methods and Means for Obtaining Modified Phenotypes
AU783799B2 (en) Means and methods for modifying gene expression using unpolyadenylated RNA
US20080104732A1 (en) Methods and means for obtaining modified phenotypes
Gadaleta et al. A transgenic durum wheat line that is free of marker genes and expresses 1Dy10
US7267979B2 (en) Method of controlling gene silencing using site specific recombination
AU2013202837B2 (en) Pathogen-inducible synthetic promoter
Reim et al. Investigation on stability of transgenes and their expression in transgenic apple plants (Malus x domestica Borkh.)
CN106084022B (zh) 蛋白质lmm5.1在调控植物抗病性与超敏反应性中的应用
Rashid et al. AGROBACTERIUM-MEDIATED TOBACCO TRANSFORMATION WITH WHEAT DREB2 GENE.
CN114645064A (zh) 抗旱相关蛋白ZmSHH2c在提高玉米抗旱性中的应用
Muhammad Rashid et al. Agrobacterium-mediated tobacco transformation with wheat DREB 2 gene.
JP2006246744A (ja) 遺伝子導入方法、ジーンターゲッティング方法及びトランスジェニック植物の製造方法
Matousek et al. New antisense RNA systems targeted against plant pathogens
AU2003227291A1 (en) Methods and Means for Obtaining Modified Phenotypes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: German Pavilion

Patentee after: KWS SAAT AG

Address before: German Express

Patentee before: KWS SAAT AG

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20210616