CN101408118A - 内燃发动机全功能可变配气控制机构 - Google Patents

内燃发动机全功能可变配气控制机构 Download PDF

Info

Publication number
CN101408118A
CN101408118A CNA2008100464570A CN200810046457A CN101408118A CN 101408118 A CN101408118 A CN 101408118A CN A2008100464570 A CNA2008100464570 A CN A2008100464570A CN 200810046457 A CN200810046457 A CN 200810046457A CN 101408118 A CN101408118 A CN 101408118A
Authority
CN
China
Prior art keywords
cam
arm
variable
head
cam head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100464570A
Other languages
English (en)
Other versions
CN101408118B (zh
Inventor
刘若丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2008100464570A priority Critical patent/CN101408118B/zh
Publication of CN101408118A publication Critical patent/CN101408118A/zh
Application granted granted Critical
Publication of CN101408118B publication Critical patent/CN101408118B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种内燃发动机全功能可变配气控制机构,包括电机,蜗杆蜗轮传动机构,凸轮头斜面扩张的凸轮由一圆锥体部分组合在一圆柱体上而成,二者轴线平行;其可变摇臂轴向平移机构为:丝杆安装固定在蜗轮上,推动臂旋接在丝杆上,可变摇臂以及联合从动摇臂均可转动地安装在摇臂轴上,且可变摇臂位于从动摇臂的双臂之间、其上凹槽与推动臂上的凸半圆相接触;可变摇臂上的滚子轮与凸轮的凸轮头组成转动副。它具有连续可变气门正时和气门升程,使气门具有半开功能、歇缸功能以及可变气门叠加量的操纵性,并可取代节气门。将高端改变配气技术和歇缸技术运用于经济型发动机,具有增加功率、节约油耗、减少排放的优点。

Description

内燃发动机全功能可变配气控制机构
技术领域
本发明涉及内燃发动机可变配气机构,特别是具有连续可变气门正时和气门升程,使气门具有半开功能,歇缸功能,增加了对可变气门叠加量操作性的内燃发动机配气机构。
背景技术
可变气门正时和气门行程的配气技术已是现代发动机领域必不可少的技术要求,无论从发动机的动力特性,经济油耗特性,还是排放特性的控制和优化方面都能起到很重要的作用,另外,歇缸技术实际上也是一种可变气门技术,歇缸技术的应用对节约油耗和减少排放也有同样很重大的意义。
可变配气技术技术领域最领先或具有代表性的有本田的VTEC,I-VTEC,丰田的VVT-I,VVTL-I,以及BMW的Valvetronic技术等。
本田的VTEC具有三段式的可变气门正时和气门行程,即在一组气门上有三个不同长短尺寸的凸轮,对应三只由液压控制的摇臂,切换锁止不同摇臂组合分别实际参与工作,达到近似满足发动机在不同转速工况阶段所需要的气门正时和气门行程,以及此阶段所需的进,排气叠加量,其中,由于最短一只凸轮的作用,还具在低慢速时气门半开能力。正因为VTEC只具备三段式气门正时和气门行程,在这三段转速附近的气门正时会过迟或过早,以及产生的叠加量过小或过大,其动力跃迁和油耗问题依然很突出。所以,本田又装备了I-VTEC,实际是VTEC与VTC配合(VTC也是一种连续的VVT-可变气门正时技术,即:在凸轮轴末端设置的控制机构,能根据需要由电子控制动态的连续改变凸轮轴转角相位)。VTC也存在只能使凸轮轴向单一方向偏转,这就意谓着使气门提前打开,当然也提前关闭,反之也一样。因此,如果根据转速需要增加排,进气叠加角度,要么通过调节进气凸轮轴相位来增加叠加量,但结果是进气门关闭就必然提前,同样的,调节排气凸轮轴相位,排气门打开就相应推迟。因此,可以说VTC等单向偏转方式在控制可变叠加量这一重要指标上是打折扣的。
VTEC与连续型的VTC结合在一定程度上弥补了VTEC不连续性,但这种弥补也带来了凸轮轴偏转方式的缺点,是一种更近似的折衷方案。尽管如此,I-VTEC作为本田的专有技术,己在优化动力特性,油耗特性,排放特性以及促进消费诸多方面发挥了巨大作用。需要指出的是,VTEC不仅是VVT气门正时技术,同时也是VVL气门行程技术,所以,它可以用于DOHC双凸轮轴顶置式,也可以用于SOHC单凸轮轴顶置式配气发动机上,而VTC以及其它型式靠凸轮轴偏转调节气门正时的这一类VVT都不能用于SOHC上,因为那样的话,凸轮轴向单一方向偏转,进,排气凸轮的相位同步向同样的方向移动了同样的角度,那叠加角度还是没有改变。这也是DOHC对SOHC的优势所在。
丰田的VVTL-I与本田的I-VTEC大同小异。
宝马的可变气门正时也采用了类似VTC的凸轮轴偏转方式,称为Double VANOS,目前几乎所有的BMW发动机上都能够看到Double VANOS的应用,连续式VTC属于目前VVT技术的主流。但BMW确有连续可变气门行程技术Valvetronic,它是在气门摇臂上端,垂直的设置一只可变摇臂,凸轮驱动可变摇臂,可变摇臂下端以搓动方式驱动气门摇臂,其上端被偏心轮控制,通过偏心轮改变垂直可变摇臂对气门摇臂的搓动角度发生变化,达到连续控制气门升程变化。由于BMW有了细腻的连续气门升程技术,Valvetronic是世界上第一个在汽油机上取消了有一定负作用的节气门(因为,在中、低负荷下,乃至怠速时,由于节气门开度小,发动机的吸气量较小,然而,进气岐管内的真空度反而较大,活塞吸气时也会相应的耗费更多的力,节气门开度越小,浪费的能量也越多,发动机在这方面浪费的能量比例是相当高的。这也是汽车在走走停停的城市工况下油耗偏高的重要原因),以进气门本身具有的连续可变气门升程来取代节气门,就不会由于双门(进气门和节气门)作用,使进气岐管内产生真空负压效应。
连续的可变气门升程能在高转速时大幅提升发动机功率,并对发动机油耗特性和排放特性可以大为改善。
我们知道气门升程变化只能改变进,排气量大小,不能改变气门正时和气门开启持续时间,按照发动机动态可变配气时间图(见图25:发动机配气参考图),理想的可变配气正时,应该在动态周期中气门的开闭既需要提前,也需要推迟,在气门正时限度范围内,以叠加量的多少达到气门开启持续时间的改变,因为VVT气门正时技术最主要的目标就是要能调节进,排气门重叠角度。同时,气门升程也应随发动机转速变而连续变化。
事实上,气门的可变叠加量才是所谓能改善发动机的动力特性,油耗特性和排放特性的最重要的问题。
现实中歇缸技术的应用远不如VVT技术广泛,有技术难度的问题,也有成本的问题。使发动机具备歇缸功能,实时的对发动机进行变容管理减小工作排量,达到节油减少排放目的;歇缸技术的广泛应用,特别是在经济型发动机上的应用对节能减排的社会意义十分巨大。因此要使歇缸技术得到广泛应用,技术不宜复杂,成本不能过高。歇缸技术实际上也是可变配气技术,实现发动机歇缸,不只是断开部分歇缸气缸的供油那么简单,如果让歇缸气缸自由呼吸,便会产生泵压效果,活塞仍然对气缸做无用功,增加发动机负担,反而增加油耗,达不到歇缸目的。
发动机歇缸时应满足几点要求:1、歇缸气缸的进排气门同时进入始终关闭状态;2、断开供油;3、使歇缸气缸保持足够的温度,以便随时能迅速从歇缸状态恢复到工作状态;4、恢复响应速度,从歇缸状态恢复到工作状态,能迅速达到当前转速时的气门正时和气门行程,即立刻进入配气同步;5、配气系统尽可能进行至单气缸歇缸管理,即有从单气缸到多气缸歇缸管理能力,使歇缸过程中不仅能满足低负荷状况,也能满足中低负荷状况,确保发动机运行可靠性。
发明内容
本发明的目的是提供一种内燃发动机全功能可变配气控制机构,以设计一种具有轮廓扩张性的斜面凸轮头的凸轮,以及可变摇臂的控制驱动机构,最终实现连续可变气门正时和气门升程,使气门具有半开功能、歇缸功能,可变气门叠加量操纵性能,并可取代节气门。
本发明的目的是这样实现的:一种内燃发动机全功能可变配气控制机构,包括电机,蜗杆蜗轮传动机构,联合从动摇臂,还具有凸轮头斜面扩张的凸轮:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂轴向平移机构:丝杆安装固定在所述蜗轮上,推动臂旋接在丝杆上,可变摇臂以及所述联合从动摇臂均可转动地安装在摇臂轴上,且可变摇臂位于从动摇臂的双臂之间、其上凹槽与推动臂上的凸半圆相接触;可变摇臂上的滚子轮与凸轮的凸轮头组成转动副。
本发明的又一目的是提供又一种内燃发动机全功能可变配气控制机构。
本发明的又一目的是这样实现的:一种内燃发动机全功能可变配气控制机构,包括电机,蜗杆蜗轮传动机构,联合从动摇臂,还具有凸轮头斜面扩张的凸轮:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂轴向平移机构:丝杆安装固定在所述蜗轮上,推动臂旋接在丝杆上,可变摇臂以及所述联合从动摇臂均可转动地安装在摇臂轴上,且可变摇臂位于从动摇臂的双臂之间、其上凹槽与推动臂上的凸半圆相接触;滚子轮固定在球头轴上、靠近球头一端,该球头插入可变摇臂上的侧向和顶面垂直开孔的圆柱形开孔中、并与该开孔内底凹圆相吻合,且可变摇臂上侧向竖直开孔的宽度大于球头轴直径、小于球头直径,球头轴另一端安放在固定滑动支架上,起限位作用的卡簧套在球头轴上、并卡固在该支架上,球头轴与凸轮轴平行,滚子轮与凸轮的凸头组成转动副。
本发明的另一目的是提供具有同样功能另一种内燃发动机全功能可变配气控制机构。
本发明的另一目的是这样实现的:一种内燃发动机全功能可变配气控制机构,包括电机,蜗杆蜗轮传动机构,联合从动摇臂,还具有凸轮头斜面扩张的凸轮:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂轴向平移机构:摇臂轴安装固定在所述蜗轮上,推动环旋接在摇臂轴的丝杆上、可变摇臂以及所述联合从动摇臂均可转动地安装在摇臂轴上、推动环旋接在摇臂轴的丝杆上,且推动环左、右两面贴合于可变摇臂的双臂之间、可变摇臂又位于从动摇臂的双臂之间;推动环上有用于插入气缸盖条形凹槽中的限位柄;可变摇臂上的滚子轮位于凸轮凸轮头的作用范围内。
本发明的再一目的是提供一种内燃发动机全功能可变配气控制机构,除歇缸功能外相同功能的内燃发动机单凸轮轴顶置式配气机构。
本发明的再一目的是这样实现的:一种内燃发动机单凸轮轴顶置式配气机构,包括电机,蜗杆蜗轮传动机构,排气门联合从动摇臂、进气门联合从动摇臂,还具有组合式凸轮轴,该轴上设置有一个斜面凸轮头和两个盘状凸轮头,斜面凸轮头为:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;排气门联合从动摇臂双臂上的两个滚子轮与两个盘状凸轮头组成转动副;还具有可变摇臂轴线平移机构:丝杆安装固定在所述蜗轮上,推动臂旋接在丝杆上,推动臂上的凹半圆槽与可变摇臂的凸半圆相卡套接触,可变摇臂以及进气门联合从动摇臂均可转动地安装在摇臂轴上,且可变摇臂上的滚子轮位于从动摇臂的双臂之间、并与组合式凸轮轴上的斜面凸轮头构成转动副。
从上面背景技术的大致情况看,凸轮偏转也好,切换凸轮长短变化也好,几乎所有发动机配气技术都是围绕着,如何改变凸轮工作面来驱动气门的正时和行程,换句话说:问题是如何利用凸轮轮廓来发挥扩张作用展开的。反过来说,当凸轮轮廓具有扩张性时,问题就变得异常简单。因此,我们设计出具有轮廓扩张性的斜面凸轮头的凸轮,配以发挥凸轮轮廓扩张变化的控制机构,以简单的结构、低成本的投入、完成更多更全面的功能,本发明的有益效果是:1、连续可变气门正时和气门升程;2、使气门具有半开功能;3、歇缸功能;4、增加对可变气门叠加量操控性;5、可以将具连续可变气门升程的进气门取代节气门。使高端可变配气技术,和歇缸技术能普遍运用于经济型发动机上成为可能,当增加功率、节约油耗、减少排放具广泛性时,就能发挥出巨大的社会和经济效益。
将结合具体实施方式进一步阐述本发明的特点和优点。
附图说明
图1是本发明双凸轮轴顶置式配气机构(以推动臂推动可变摇臂)的组装示意图;
图1-1是图1所示滚子轮的主视图;
图2-1、图2-2、图2-3、图2-4分别是图1所示配气机构中可变摇臂轴向移动与凸轮相对的四个位置的立体图;
图3是图1所示配气机构与四缸四冲程内燃机歇缸与非歇缸分组控制的立体图;
图4-1、图4-2、图4-3、图4-4分别是图2所示凸轮与滚子轮推程作用产生的凸轮正时变化的示意图(图中粗线为凸轮与滚子轮实际工作线);
图4-5、图4-6、图4-7、图4-8分别是图2所示凸轮与滚子轮回程作用产生的凸轮正时变化的示意图;
图5-1、图5-2、图5-3、图5-4是图4所示凸轮与滚子轮作用时气门升程变化及歇缸位置变化示意图;
图6是本发明双凸轮轴顶置式配气机构(以推动环推动可变摇臂)的组装示意图;
图7是图6所示配气机构的各气缸分组控制和推动环柄在气缸盖被限制转动的示意图;
图8-1、图8-2、图8-3、图8-4分别是图7所示配气机构中可变摇臂轴向移动与凸轮相对的四个位置的立体图;
图9是本发明单凸轮轴顶置式配气机构的组装示意图;
图9-1、图9-2分别是图9所示普通滚子轮的主视图;
图9-3是图9所示推动臂的立体图;
图10-1、图10-2、图10-3分别是图9所示配气机构中可变摇臂轴向移动三个位置的立体图;
图11是图10所示配气机构整体控制的立体图;
图12是本发明双凸轮轴顶置式配气机构(推动臂方式III)的组装示意图;
图13是图12所示推动臂、可变摇臂、滚子轮、滑动支架以及卡簧组装后的立体图;
图14-1、图14-2、图14-3分别是图12所示各部件组装后的滚子轮轴向位置变动后与斜面凸轮的作用示意图;
图15是图12所示所示4个配气机构中每个气缸的从动摇臂受一套蜗杆蜗轮整体控制的立体图;
图16、图17、图18、图19分别是斜面凸轮处于不同转动位置的轴向视图;
图16-1、图16-2、图16-3是对应于图16凸轮位置时滚子轮随斜面凸轮逐渐倾斜的示意图;
图17-1、图17-2、图17-3是对应于图17凸轮位置时滚子轮随斜面凸轮逐渐倾斜的示意图;
图18-1、图18-2、图18-3是对应于图17凸轮位置时滚子轮随斜面凸轮逐渐倾斜的示意图;
图19-1、图19-2、图19-3是对应于图19凸轮位置时滚子轮随斜面凸轮逐渐倾斜的示意图;
图20是斜面凸轮的空心凸轮轴和半空心凸轮头的示意图;
图21是斜面凸轮具有扩张性轮廓的轴向视图(图中箭头为旋转方向);
图22图23分别是斜面凸轮按箭头方向转动时(即正配置时)推程压力角a<回程压力角a’的示意图;
图24是斜面凸轮的凸轮基圆半径(R或r)与凸头偏距比(h)的示意图;
图25是发动机配气参考图。
具体实施方式
采用不等形状的斜面凸轮头的凸轮(图3、图5),使凸轮轮廓具有扩张性:
1、根据需要通过微电脑ECU控制分组的步进电机同步驱动蜗杆蜗轮带动丝杆上的推动臂(图1)或推动环(图6),使带有滚子轮的可变摇臂(图1、图6)在从动摇臂上平移,并由于凸轮斜面的径向长短变化和凸轮与滚子轮之间的转角变化,达到调节发动机不同转速状况下所需要匹配的气门正时和气门升程;
2、将此方法同时运用于DOHC双凸轮轴顶置式(图1、图6)和SOHC单凸轮轴顶置式(图9)这两种制式发动机配气上。
3、对于DOHC双凸轮轴顶置式由电机对进气可变摇臂和排气可变摇臂分别控制,使进、排气的可变摇臂在从动摇臂上平移量同步或不同步:微电脑ECU可基于各传感器信号经处理来控制,以满足发动机各种工况需要的进、排气门可变叠加量。
各传感器包括:气缸压力传感器、转速传感器、燃烧值传感器、水温传感器、电压传感器、脚踏板深度传感器等。
4、实时的对发动机进行变容歇缸管理减小工作排量:在需要时单独调节歇缸摇臂上的进、排气门可变摇臂平移同步离开斜面凸轮驱动面,凸轮无法驱动摇臂,使部分气缸的进气门和排气门同时处于始终关闭状态,并关闭歇缸气缸的供油,使发动机容量处于低排量运行;当需要恢复歇缸至工作状态时,由微电脑依据在运行中的可变摇臂当前所处气门正时及叠加量位置数据和其它传感器信号经判别处理,来控制分组步进电机使歇缸的可变摇臂迅速平移至与运行中的可变摇臂同步位置,同时开启供油使歇缸恢复至工作状态。
5、将具连续可变气门升程功能的进气门取代节气门,以脚踏板深度传感器,取代原有的节气门控制连线机构(后面叙述)。
本配气机构的结构、功能和控制过程:
(1).DOHC双凸轮轴顶置式的配气结构、功能和控制过程:
单缸四气门的DOHC双凸轮轴顶置式的配气结构组成(进、排气门两侧对称相同,以一侧进气门为例):
有(图1和图6)两种驱动工作方式:
即:以推动臂推动可变摇臂(图1)和以推动环推动可变摇臂(图6)的两种驱动工作方。
(一)以推动臂推动可变摇臂的结构组成和工作方式以及功能:
结构组成:(图1)
联合从动摇臂1、可变摇臂2、滚子轮2a、可变摇臂凹槽2b、摇臂轴3、推动臂4、推动臂凸半圆4a、丝杆5、蜗轮6、蜗杆6a、电机7、凸轮头斜面扩张的凸轮8(凸轮头低端高度低于正常高度,两侧起凸部位≥怠速正时)。
本发明包括电机7,蜗杆6a蜗轮6传动机构,联合从动摇臂1,还具有凸轮头斜面扩张的凸轮8:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂2轴向平移机构:丝杆5安装固定在所述蜗轮6上,推动臂4旋接在丝杆5上,可变摇臂2以及所述联合从动摇臂1均可转动地安装在摇臂轴3上,且可变摇臂2位于从动摇臂1的双臂之间、其上凹槽2b与推动臂4上的凸半圆4a相接触;可变摇臂2上的滚子轮2a与凸轮8的凸轮头组成转动副。可变摇臂2上滚子轮2a与凸轮头接触的工作面为弧形斜面、且该弧形斜面与凸轮8的凸轮头斜面的倾斜方向相反;凸轮8上凸轮头的起凸部位大于等于怠速正时。凸轮8由空心凸轮轴和半空心凸轮头组成。
工作方式:如(图2,图2指图2-1、图2-2、图2-3、图2-4等以2字开头的所有图,下同)
由微电脑ECU控制带丝杆电机7,由带丝杆电机7驱动蜗轮6带动丝杆5,在丝杆5转动作用下,由推动臂4,并由推动臂凸半圆4a在可变摇臂凹槽2b中,带动可变摇臂2在摇臂轴3上平移,改变可变摇臂2在凸轮8下的相对位置。
图2-1和图5-1为可变摇臂处在凸轮外端歇缸位置,凸轮无法驱动摇臂;当可变摇臂需要从凸轮外端歇缸位置进入到凸轮头内工作位置时,由于可变摇臂2上的滚子轮2a为外圆为半圆弧状,加上凸轮是不断转动的,因此很容易进入。
图2-3和图5-3为可变摇臂处在凸轮低端,使气门(升程量)半开状态位置;气门半开状态时的气门正时(参见图4)由图4-1和图4-5所示,图中粗线为凸轮与滚子轮实际正实工作线。
图2-3和图5-3、以及图2-4和图5-4为可变摇臂在不时期的升程变化位置;图4-2和图4-6、图4-3和图4-7、图4-4和图4-8分别为不时期凸轮与滚子轮作用产生的凸轮正时变化。
(二)以推动环推动可变摇臂的结构组成和工作方式以及功能:
结构组成:(图6)
联合从动摇臂1、摇臂环9、可变摇臂10、带丝杆摇臂轴11、推动环12、推动环限制柄12a、蜗轮6、蜗杆6a、电机7、凸轮头斜面扩张的凸轮8。
图6示出,一种内燃发动机双凸轮顶置式配气机构,包括电机7,蜗杆6a蜗轮6传动机构,联合从动摇臂1,还具有凸轮头斜面扩张的凸轮8:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂10轴向平移机构:摇臂轴11安装固定在所述蜗轮6上,推动环12旋接在摇臂轴11的丝杆上、可变摇臂10以及所述联合从动摇臂1均可转动地安装在摇臂轴11上、推动环12旋接在摇臂轴11的丝杆上,且推动环左、右两面贴合于可变摇臂10的双环臂之间、可变摇臂10又位于从动摇臂1的双臂之间;推动环12上有用于插入(图7)气缸盖条形凹槽22中的限位柄12a;可变摇臂10上的滚子轮(和图1中2a形状一样)位于凸轮8凸轮头的作用范围内。还具有两个摇臂环9,两个摇臂环设置在摇臂轴11上与联合从动摇臂1的双臂之间。可变摇臂10上滚子轮(和图1中2a形状一样)与凸轮头接触的工作面为弧形斜面、且该弧形斜面与凸轮8的凸轮头斜面的倾斜方向相反;凸轮8上凸轮头的起凸部位大于等于怠速正时。凸轮8由空心凸轮轴和半空心凸轮头组成。
工作方式:(图7)、(图8)
由微电脑ECU控制带丝杆电机7通过蜗轮6驱动带丝杆摇臂轴11转动,带丝杆摇臂轴11具有双重功能,既作可变摇臂10的转动轴,又作推动环12的推动丝杆,可变摇臂10上的圆孔是在其丝杆表面转动的,有内丝的推动环12能随带丝杆摇臂轴11的转动而轴向移动,推动环上的限制柄12a作用是限制推动环12随丝杆转动,使其只能在丝杆上轴向移动,推动环上的限制柄12a是限定在气缸盖上与丝杆平行的条形凹槽22中,因此,可变摇臂10在联合从动摇臂1上平移是由推动环11带动的。
其工作方式产生的歇缸、气门(升程量)半开状态、变化的气门正时和气门升程与上面所述以推动臂推动可变摇臂方式相同。
(这两种推动臂推动方式结构方法不同,原理一样,而后一种以推动环推动可变摇臂方式更为简洁,它还要少一根轴)。
上述两种可变摇臂控制机构由微电脑ECU控制的简单机械过程,均能准确完成如下功能:
①连续可变气门正时和连续可变气门升程:
由于调节可变摇臂,可变摇臂上的滚子轮2a与凸轮8相互作用,凸轮8斜面的径向长短变化和凸轮与滚子轮2a之间的转角变化,达到连续调节发动机不同转速状况下所需要匹配的各种连续变化的气门正时和气门升程;
②使气门半开状态:
将可变摇臂调节到凸轮8低端,凸轮设计时,具有扩张性的凸轮头斜面低端,凸轮头高度低于正常凸轮头高度,凸轮头低端两侧起凸部位不小于怠速正时,便可使气门处于半开状态。从气流量调节作用上起到了,使四气门气缸可发挥两气门气缸在低慢速时的优势(两气门气缸发动机低慢速时,其动力油耗特性优于四气门气缸发动机)。
③歇缸过程:
歇缸时只能在部分气缸上进行,因此,控制机构必须分组控制,见(图3)、(图7):分组控制图,微电脑ECU指令分组电机工作,将歇缸组的可变摇臂平移离开斜面凸轮的驱动面(见图2-1和图5-1),使凸轮无法驱动摇臂即可;电脑ECU指令同时断开供油;
当需要歇缸恢复至工作时,由电脑ECU根据当前气缸压力传感器信号便可判别负荷变化(如:转速变化与负荷比、坡道与负荷比等等),并根据当前在运行气缸的气门正时和气门行程数据,主动恢复歇缸至工作,并指令分组电机工作,迅速将歇缸组的可变摇臂平移达到与在运行气缸同步的气门正时和气门行程相同位置;同时恢复供油。
④可变气门叠加量:
在通常状态下进气门机构配合另一侧具有相同结构的排气门机构,由于气门正时变化就会产生气门叠加量变化,微电脑ECU通过基于各传感器信号控制电机,也可以使进、排气的可变摇臂在各自从动摇臂上平移量相互同步或不同步,便可进一步完成各种更复杂需求的气门叠加量。
⑤可以将具连续可变气门升程的进气门取代节气门:
由于本机构具有灵活细腻的连续可变气门升程控制能力,因此,完全可以取消节气门,以进气门取代节气门;具体方法是:以脚踏板深度传感器,取代原有的节气门控制连线机构,即:电脑ECU根据脚踏板深度传感器输出信号,经过判别处理来控制电机7,电机驱动进气门可变摇臂2移动在凸轮下适宜位置,来调节所需进气门开度,控制气体流速和流量;同时,电脑ECU自动根据其它传感器信号(如:转速传感器、气缸压力传感器、燃烧值传感器、水温传感器、电压传感器等)经过综合处理来控制排气门的可变摇臂,相应改变排气门正时,以调校当前排气门正时与进气门正时的叠加和叠加偏移量,例如:当加速时,转速传感器信号为转速增加,此时的排气门正时的开、闭,应随转速的增加而相应的增加打开提前量和增加关闭滞后量,排气门正时的增加结果是与进气门正时的叠加量相应增大(由于排气门关闭滞后,排气岐管中高密度废气越是远离气缸,缸内相应的平均压强也就越低,需要填充的体积就越大),使气缸充气效率增加。同时,排气门升程量也随转速的增加而相应增加,排气门升程增加能跟随转速的排气速率。
在低慢速时,由于没有了节气门在进气岐管前端对气流的限制(即:有节气门时,进气门与节气门之间的进气岐管内由于双门作用引起的真空负压,会形成活塞吸气时的阻力),而只有进气门开度调节流速和流量的限制,油耗和动力对气缸来说是取多用多,使发动机能在走走停停的城市工况下发挥最佳油耗动力比。
(2).SOHC单凸轮轴顶置式的配气结构、功能和控制过程:
结构组成:(图9)
排气门联合从动摇臂13、普通滚子轮13a、进气门联合从动摇臂14、可变摇臂15、滚子轮15a、推动臂16、丝杆5、蜗轮6、蜗杆6a、摇臂轴3、电机7、斜面凸轮头17a和盘状凸轮头17b的组合式凸轮轴17。
图9示出,一种内燃发动机单凸轮顶置式配气机构,包括电机7,蜗杆6a蜗轮6传动机构,排气门联合从动摇臂13、进气门联合从动摇臂14,还具有组合式凸轮轴17,该轴上设置有一个斜面凸轮头17a和两个盘状凸轮头17b,斜面凸轮头17a为:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;排气门联合从动摇臂13双臂上的两个滚子轮13a与两个盘状凸轮头17b组成转动副;还具有可变摇臂15轴线平移机构:丝杆5安装固定在所述蜗轮6上,推动臂16旋接在丝杆5上,推动臂16上的凹半圆槽与可变摇臂15的凸半圆相卡套接触,可变摇臂15以及进气门联合从动摇臂14均可转动地安装在摇臂轴3上,且可变摇臂15上的滚子轮15a位于从动摇臂14的双臂之间、并与组合式凸轮轴17上的斜面凸轮头17a构成转动副。可变摇臂15的滚子轮15a与斜面凸轮头17a接触的工作面为一弧形面;排气门联合从动摇臂13的滚子轮13a与盘状凸轮头17b接触的工作面为一平面。
其工作方式:如(图10),此方法的单凸轮轴顶置式的配气结构,只在进气门一侧设置了可变摇臂及其控制机构,排气门一侧为普通(现有)排气门联合从动摇臂13。
进气门一侧可变摇臂的工作过程与上(一)所述进气门一侧的工作方式基本相同,不同的只是推动臂16是从上端向下控制带有滚子轮的可变摇臂15轴向平移,并由推动臂16凹半圆槽在可变摇臂15凸半圆上,带动可变摇臂15在进气门联合从动摇臂14上平移且可变摇臂15是以杠杆方式工作。
因此,SOHC单凸轮轴顶置式进气门可变配气结构也具备如下功能:
①进气门连续可变气门正时和连续可变气门升程。
②进气门半开状态。
③以控制调节进气门连续可变气门正时与固定的排气门正时的相对量,达到调节进、排气门的可变气门叠加量(由于,斜面凸轮头具有两侧扩张性,较其它以偏转方式改变气正时不同,它可以使气门正时既提前,也推迟,因此,调节可变气门叠加量的范围更大)。
④可以将具连续可变气门升程的进气门取代节气门。
但此方法的SOHC单凸轮轴顶置式进气门可变配气结构不具备歇缸功能。
(3).图12示出双凸轮轴顶置式配气机构(以推动臂方式推动可变摇臂:滚子轮的球头轴随斜面凸轮摆动线接触方式),双凸轮轴顶置式配气机构进、排气门两侧对称相同,以一侧进气门为例:
内燃发动机全功能可变配气控制机构,包括电机7,蜗杆6a蜗轮6传动机构,联合从动摇臂1,还具有凸轮头斜面扩张的凸轮8:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂18轴向平移机构:丝杆5安装固定在所述蜗轮6上,推动臂4旋接在丝杆5上,可变摇臂18以及所述联合从动摇臂1均可转动地安装在摇臂轴3上,且可变摇臂18位于从动摇臂1的双臂之间、其上凹槽18b与推动臂4上的凸半圆4a相接触;滚子轮19固定在球头轴上、靠近球头一端,该球头插入可变摇臂18上的侧向和顶面垂直开孔的圆柱形开孔18a中、并与该开孔内底凹圆相吻合,且可变摇臂18上侧向竖直开孔的宽度大于球头轴直径、小于球头直径,球头轴另一端安放在固定滑动支架20上,起限位作用的卡簧21套在球头轴上、并卡固在该支架上,球头轴与凸轮8轴平行,滚子轮19与凸轮8的凸头组成转动副,滚子轮19外圆形状与普通滚子轮外圆相同;凸轮8由空心凸轮轴和半空心凸轮头组成。
上述所有技术方案中均可优先采用这种凸轮的结构设计。
6、同样运用推动臂推动可变摇臂和推动环推动可变摇臂的两种驱动工作方法,驱动具有使滚子轮始终保持与扩张性轮廓的斜面凸轮以线接触工作方式:
如图12图13,所有驱动可变摇臂方式相同,只是滚子轮19安装在一只较长的球头轴上,且滚子轮靠近该轴球头一端,滚子轴另一端安放在位于摇臂外侧气缸盖上的固定滑动支架20上,固定滑动支架在斜面凸轮头低端方向;滚子轮球头轴与凸轮轴轴向平行,平行距离为滚子轮半径减去滚子轴半径;滚子轮球头轴的球头端插入可变从动摇臂上的侧向和顶面垂直开孔的圆柱形孔18a中,该圆柱孔内底凹圆与轴球头圆相吻合,可变从动摇臂18侧向开孔宽度大于等于滚子轴直径,小于球头直径,使可变从动摇臂轴向移动时可来回移动滚子轴,同时轴球头可以使滚子轴能随斜面凸轮从水平到逐渐倾斜间往复运动,始终保持滚子轮外圆与斜面凸轮最大面积的线接触,如图16到图19,为斜面凸轮转过不同角度时滚子轮随斜面凸轮逐渐倾斜过程示图。
具有扩张性轮廓的斜面凸轮的运动特征是由凸轮轮廓决定的,由于所说的从动件滚子轮是可以在凸轮转动时轴向移动,因此,斜面凸轮对于定点参照物的有效作用面是一条线,由于凸轮是间歇作功和凸轮头是逐渐凸起的,凸轮的斜面线也是由水平绕轴线逐渐倾斜的,所以凸轮作功时该有效作用线是由轴向水平线开始,随转动方向的改变,作用线轴向逐渐倾斜,绕过最大斜面,又逐渐回到水平,如此往复运动。
运用滚子轮球头轴随斜面凸轮摆动方式能完成连续可变气门正时与图4-1到图4-8所示情况一样,具有气门半开和连续可变气门升程能力如图16-1、图16-2、图16-3、图17-1、图17-2图17-3、图18-1、图18-2、图18-3、图19-1、图19-2、图19-3所示。
由于滚子轮球头轴随斜面凸轮摆动方式不具备歇缸功能,所以,每个气缸的可变从动摇臂是受一套蜗杆蜗轮整体控制的,如图15所示。
7、具有扩张性轮廓的凸轮与凸轮从动机构在约束条件下的优化:
对内燃发动机气门的同一种驱动要求往往可以通过多种凸轮机构来实现,即便是在凸轮机构类型确定的情况下,其机构实现运动要求的基本参数和结构参数的可取范围有很大差异。要根据内燃发动机类型和工作要求,确定有关参数,同时需要配合合理的从动机构,才能实现凸轮轮廓类型对内燃发动机机型的适用性。
如图22、图23,凸轮作用于从动件的驱动力F是沿法线方向传递的,此力可分解为沿从动件运动方向的有用分力f1和从动件紧压凸轮的有害分力f2,驱动力F与有用分力f1之间的夹角a为凸轮与从动机构作用时的压力角。显然压力角a愈大,有害分力f2愈大,由f2引起的运动中的摩擦阻力也愈大,故凸轮推动从动件所需的驱动力也就愈大。
凸轮机构又分为正配置和负配置,正配置可减小推程压力角,但同时使回程压力角增大;负配置可减小回程压力角,但却使推程压力角增大。内燃发动机气门回程时不是由凸轮驱动的,而只有弹簧力作用,回程压力较小,所以采用正配置,以减小推程压力角,增大回程压力角;如图22,图23,图中推程压力角a<回程压力角a′,按键头方向转动时为正配置。
本发明根据内燃发动机凸轮与凸轮从动机构工作的约束条件从以下几方面对凸轮机构进行优化:
①.在凸轮与滚子轮接触面方面:凸轮轮廓与从动件之间理论上是点接触和线接触。凸轮机构的优化和约束条件,应是最大接触应力的极小化,使凸轮有足够的强度和寿命(这里不谈材料硬度问题),但如果要求机构在一定条件下具有最高的强度和最长的寿命,则应使最大接触应力极小化,达到最大接触应力极小化可以从增大接触面和减小推程压力角两方面优化。所以在本发明中将同一方法控制机构,给出了点接触和线接触两种不同功能的配气机构,运用在不同要求的内燃发动机机型中。
②.在压力角方面:如图21,为凸轮扩张性轮廓的轴向视图。凸轮与滚子轮接触,当润滑良好和从动机构支撑有较好刚性时,压力角的许可值对从动件滚子轮来说,具有扩张性轮廓的凸轮:其凸头(即凸轮头)高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐向凸头低端轮廓过渡,凸头低端轮廓为推程压力角等于回程压力角(即低端两侧轮廓对称)。
③.凸轮基圆半径与凸头偏距比:如图24,当凸头偏距高度一定时,基圆半径R越大,压力角a越小,对于具有扩张性轮廓的凸轮来说,由于凸轮头最长端凸出长短受定型的气门升程量制约,要求凸轮头有较大的径向高度,为了保证凸轮头的绝对径向高度h不变,可以采用较大的凸轮基圆半径和保持较小的凸头偏距比(凸头的表面曲线的曲率较小),来减小压力角,因为,圆半径增大不会改变角速度,不会引起既定的气门正时的改变。
④.使凸轮重量的极小化:如图20,为了减小凸轮和凸轮轴的体积重量,减小惯性,凸轮头与滚子轮相互作用时存在加速度突变,会引起柔性冲击,凸轮重量愈大,惯性力愈大。对于内燃发动机高速凸轮,为了减小惯性力的危害,在保证凸轮和凸轮轴的工作强度条件下,运用了空心凸轮轴和半空心凸轮头,达到凸轮重量极小化。

Claims (9)

1、一种内燃发动机全功能可变配气控制机构,包括电机(7),蜗杆(6a)蜗轮(6)传动机构,联合从动摇臂(1),其特征是:还具有凸轮头斜面扩张的凸轮(8):其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂(2)轴向平移机构:丝杆(5)安装固定在所述蜗轮(6)上,推动臂(4)旋接在丝杆(5)上,可变摇臂(2)以及所述联合从动摇臂(1)均可转动地安装在摇臂轴(3)上,且可变摇臂(2)位于从动摇臂(1)的双臂之间、其上凹槽(2b)与推动臂(4)上的凸半圆相接触;可变摇臂(2)上的滚子轮(2a)与凸轮(8)的凸轮头组成转动副。
2、根据权利要求1所述内燃发动机全功能可变配气控制机构,其特征是:所述可变摇臂(2)上滚子轮(2a)与凸轮头接触的工作面为弧形斜面、且该弧形斜面与凸轮(8)的凸轮头斜面的倾斜方向相反;凸轮(8)上凸轮头的起凸部位大于等于怠速正时;所述凸轮(8)由空心凸轮轴和半空心凸轮头组成。
3、一种内燃发动机全功能可变配气控制机构,包括电机(7),蜗杆(6a)蜗轮(6)传动机构,联合从动摇臂(1),其特征是:还具有凸轮头斜面扩张的凸轮(8):其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂(18)轴向平移机构:丝杆(5)安装固定在所述蜗轮(6)上,推动臂(4)旋接在丝杆(5)上,可变摇臂(18)以及所述联合从动摇臂(1)均可转动地安装在摇臂轴(3)上,且可变摇臂(18)位于从动摇臂(1)的双臂之间、其上凹槽(18b)与推动臂(4)上的凸半圆(4a)相接触;滚子轮(19)固定在球头轴上、靠近球头一端,该球头插入可变摇臂(18)上的侧向和顶面垂直开孔的圆柱形开孔(18a)中、并与该开孔内底凹圆相吻合,且可变摇臂(18)上侧向竖直开孔的宽度大于球头轴直径、小于球头直径,球头轴另一端安放在固定滑动支架(20)上,起限位作用的卡簧(21)套在球头轴上、并卡固在该支架上,球头轴与凸轮(8)轴平行,滚子轮(19)与凸轮(8)的凸头组成转动副,滚子轮(19)与凸轮头(8)接触的工作面为一平面。
4、根据权利要求3所述内燃发动机全功能可变配气控制机构,其特征是:所述凸轮(8)由空心凸轮轴和半空心凸轮头组成。
5、一种内燃发动机全功能可变配气控制机构,包括电机(7),蜗杆(6a)蜗轮(6)传动机构,联合从动摇臂(1),其特征是:还具有凸轮头斜面扩张的凸轮(8):其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;还具有可变摇臂(10)轴向平移机构:摇臂轴(11)安装固定在所述蜗轮(6)上,推动环(12)旋接在摇臂轴(11)的丝杆上、可变摇臂(10)以及所述联合从动摇臂(1)均可转动地安装在摇臂轴(11)上、推动环(12)旋接在摇臂轴(11)的丝杆上,且推动环左、右两面贴合于可变摇臂(10)的双臂之间、可变摇臂(10)又位于从动摇臂(1)的双臂之间;推动环(12)上有用于插入气缸盖条形凹槽(22)中的限位柄(12a);可变摇臂(10)上的滚子轮位于凸轮(8)凸轮头的作用范围内。
6、根据权利要求5所述内燃发动机全功能可变配气控制机构,其特征是:还具有两个摇臂环(9),两个摇臂环设置在摇臂轴(11)与联合从动摇臂(1)的双臂之间;所述凸轮(8)由空心凸轮轴和半空心凸轮头组成。
7、根据权利要求5或6所述内燃发动机全功能可变配气控制机构,其特征是:所述可变摇臂(10)上滚子轮与凸轮头接触的工作面为弧形斜面、且该弧形斜面与凸轮(8)的凸轮头斜面的倾斜方向相反;凸轮(8)上凸轮头的低端起凸部位大于等于怠速正时。
8、一种内燃发动机全功能可变配气控制机构,包括电机(7),蜗杆(6a)蜗轮(6)传动机构,排气门联合从动摇臂(13)、进气门联合从动摇臂(14),其特征是:还具有组合式凸轮轴(17),该轴上设置有一个斜面凸轮头(17a)和两个盘状凸轮头(17b),斜面凸轮头(17a)为:其凸轮头高端轮廓的推程压力角大于凸轮轮廓的回程压力角,并逐渐平滑地从凸轮头高端向凸轮头低端轮廓过渡,凸轮头低端轮廓为推程压力角等于回程压力角;所述排气门联合从动摇臂(13)双臂上的两个滚子轮(13a)与两个盘状凸轮头(17b)组成转动副;还具有可变摇臂(15)轴线平移机构:丝杆(5)安装固定在所述蜗轮(6)上,推动臂(16)旋接在丝杆(5)上,推动臂(16)上的凹半圆槽与可变摇臂(15)的凸半圆相卡套接触,可变摇臂(15)以及进气门联合从动摇臂(14)均可转动地安装在摇臂轴(3)上,且可变摇臂(15)上的滚子轮(15a)位于从动摇臂(14)的双臂之间、并与组合式凸轮轴(17)上的斜面凸轮头(17a)构成转动副。
9、根据权利要求8所述内燃发动机全功能可变配气控制机构,其特征是:所述凸轮(8)内空心凸轮轴和半空心凸轮头组成;可变摇臂(15)的滚子轮(15a)与斜面凸轮头(17a)接触的工作面为一弧形面;排气门联合从动摇臂(13)的滚子轮(13a)与盘状凸轮头(17b)接触的工作面为一平面。
CN2008100464570A 2008-11-05 2008-11-05 内燃发动机全功能可变配气控制机构 Expired - Fee Related CN101408118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100464570A CN101408118B (zh) 2008-11-05 2008-11-05 内燃发动机全功能可变配气控制机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100464570A CN101408118B (zh) 2008-11-05 2008-11-05 内燃发动机全功能可变配气控制机构

Publications (2)

Publication Number Publication Date
CN101408118A true CN101408118A (zh) 2009-04-15
CN101408118B CN101408118B (zh) 2011-09-21

Family

ID=40571298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100464570A Expired - Fee Related CN101408118B (zh) 2008-11-05 2008-11-05 内燃发动机全功能可变配气控制机构

Country Status (1)

Country Link
CN (1) CN101408118B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140944A (zh) * 2011-03-16 2011-08-03 奇瑞汽车股份有限公司 一种全可变气门升程机构的偏心轴控制系统
CN102733882A (zh) * 2011-04-07 2012-10-17 朱譞晟 支撑杆型全可变气门正时和升程机构
CN103323254A (zh) * 2013-06-28 2013-09-25 中国人民解放军军事交通学院 发动机可变进气门相异升程相异角调整实验装置
CN103835802A (zh) * 2014-03-31 2014-06-04 长城汽车股份有限公司 发动机及具有该发动机的车辆
CN103953414A (zh) * 2014-05-12 2014-07-30 重庆交通大学 发动机气门可变正时系统
CN104976314A (zh) * 2014-04-02 2015-10-14 株式会社瑞进凸轮轴 滑动凸轮组件的制造方法以及凸轮轴组件装配方法
CN109969762A (zh) * 2019-03-28 2019-07-05 刘哲森 一种单轨分离式凸轮滑台
CN112219016A (zh) * 2018-05-22 2021-01-12 Avl李斯特有限公司 内燃机的气门传动装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140944A (zh) * 2011-03-16 2011-08-03 奇瑞汽车股份有限公司 一种全可变气门升程机构的偏心轴控制系统
CN102140944B (zh) * 2011-03-16 2012-09-05 奇瑞汽车股份有限公司 一种全可变气门升程机构的偏心轴控制系统
CN102733882A (zh) * 2011-04-07 2012-10-17 朱譞晟 支撑杆型全可变气门正时和升程机构
CN102733882B (zh) * 2011-04-07 2016-01-20 朱譞晟 支撑杆型全可变气门正时和升程机构
CN103323254A (zh) * 2013-06-28 2013-09-25 中国人民解放军军事交通学院 发动机可变进气门相异升程相异角调整实验装置
CN103323254B (zh) * 2013-06-28 2016-01-20 中国人民解放军军事交通学院 发动机可变进气门相异升程相异角调整实验装置
CN103835802A (zh) * 2014-03-31 2014-06-04 长城汽车股份有限公司 发动机及具有该发动机的车辆
CN104976314A (zh) * 2014-04-02 2015-10-14 株式会社瑞进凸轮轴 滑动凸轮组件的制造方法以及凸轮轴组件装配方法
CN103953414A (zh) * 2014-05-12 2014-07-30 重庆交通大学 发动机气门可变正时系统
CN112219016A (zh) * 2018-05-22 2021-01-12 Avl李斯特有限公司 内燃机的气门传动装置
CN112219016B (zh) * 2018-05-22 2022-05-10 Avl李斯特有限公司 内燃机的气门传动装置
CN109969762A (zh) * 2019-03-28 2019-07-05 刘哲森 一种单轨分离式凸轮滑台

Also Published As

Publication number Publication date
CN101408118B (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
CN101408118B (zh) 内燃发动机全功能可变配气控制机构
JP4423136B2 (ja) 内燃機関の気筒停止制御装置
US20080087240A1 (en) Variable mechanical valve control for an internal combustion engine
US20120132159A1 (en) Continuous variable valve lift apparatus
US20030127063A1 (en) Continually variable valve timing, lift, and duration for internal combustion engine
CN101457661B (zh) 可变气门升程装置
CN107035450A (zh) 可变气门打开持续时间/可变气门升程系统及发动机
JP4024121B2 (ja) 内燃機関の動弁装置
US8485149B2 (en) Continuous variable valve lift apparatus
CN105697156A (zh) 连续可变气门持续时间装置和使用其的控制方法
US8079334B2 (en) Continuously variable valve actuation system
US7789053B2 (en) Continuous variable valve lift apparatus
JP2006097647A (ja) エンジンの可変動弁装置
CN101713310B (zh) 连续可变气门升程装置及其运行方法
JP2002295274A (ja) 内燃機関の可変動弁装置
JP4157649B2 (ja) 内燃機関の可変動弁装置
CN213510771U (zh) 基于配气凸轮的电液式全可变气门机构
CN204716322U (zh) 一种连续可变正时装置
US7836863B2 (en) Variable valve lift apparatus of engine for vehicles
JP5035576B2 (ja) 内燃機関の可変動弁装置
KR101241595B1 (ko) 가변 밸브타이밍 장치
JP2004340106A (ja) 内燃機関の可変動弁装置
JP2010112248A (ja) 内燃機関のトルクショック抑制装置
JP2003148118A (ja) 内燃機関のバルブタイミング可変装置
CN104847430A (zh) 双动滑壁式独立可调全可变气门正时和升程机构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110921

Termination date: 20131105