CN101407892A - 一种屈服强度大于550MPa级超低碳热轧耐候钢 - Google Patents

一种屈服强度大于550MPa级超低碳热轧耐候钢 Download PDF

Info

Publication number
CN101407892A
CN101407892A CNA2008101978463A CN200810197846A CN101407892A CN 101407892 A CN101407892 A CN 101407892A CN A2008101978463 A CNA2008101978463 A CN A2008101978463A CN 200810197846 A CN200810197846 A CN 200810197846A CN 101407892 A CN101407892 A CN 101407892A
Authority
CN
China
Prior art keywords
steel
percent
yield strength
550mpa
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101978463A
Other languages
English (en)
Other versions
CN101407892B (zh
Inventor
刘志勇
陈吉清
陈邦文
胡敏
宋育来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Group Corp
Original Assignee
Wuhan Iron and Steel Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Group Corp filed Critical Wuhan Iron and Steel Group Corp
Priority to CN2008101978463A priority Critical patent/CN101407892B/zh
Publication of CN101407892A publication Critical patent/CN101407892A/zh
Application granted granted Critical
Publication of CN101407892B publication Critical patent/CN101407892B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种屈服强度大于550MPa级超低碳热轧耐候钢,属于低合金钢制造领域。本钢由下述重量百分比的成分组成:C 0.01~0.05%,Si0.10~0.40%,Mn 1.20~ 1.70%,P≤0.02%,S≤0.010%,Cu 0.15~0.80%,Cr 0.40~1.25%,Ni 0.10~0.50%,Mo≤0.40%、Nb 0.03~0.06%、 Ti≤0.050%、Ca 0.0010~0.0020%,余量为Fe及不可避免的杂质。本发明钢的力学性能优良,屈服强度≥550MPa,抗拉强度≥650MPa,均高于传统耐候钢,并且钢的成分中含有Ti。

Description

一种屈服强度大于550MPa级超低碳热轧耐候钢
技术领域
本发明属于低碳低合金钢制造领域,具体的说是一种屈服强度大于550MPa级超低碳热轧耐候钢。
背景技术
耐候钢属于低碳低合金钢,广泛应用于铁路车辆、输电铁塔、海洋平台及长期户外使用的工程构件制造。本世纪初我国铁路车辆制造、输电铁塔、海洋平台及长期户外使用的工程构件等的发展对耐候钢提出了高强度的要求,具有优良耐大气腐蚀性的高强度耐候钢是我国耐候钢的主要发展趋势。
国内外传统耐候钢主要以Cu-P-Cr-Ni系为基础,含有较高的P和C,钢的C当量较高,焊接性能差;同时,较高的P含量使钢抗冷脆性能力差、低温韧性低、易产生热脆,并且传统耐候钢的屈服强度以295MPa和345MPa级为主,强度级别均较低,这些都限制了耐候钢的使用,不能满足耐候钢的市场发展需求。
中国专利号200510019116.0的专利,介绍了一种低温高韧性耐大气腐蚀钢,具有较好的低温冲击韧性,由于该钢以Cu-Cr-Ni系为基础,同时C含量较高,为0.05~0.09%,合金元素Mn含量达到了2.10~3.0%,致使C当量过高,不利于钢的焊接性能,该钢的屈服强度为500MPa级。
中国专利号200810046963.X的专利,介绍了一种屈服强度大于450MPa级超低碳热轧耐候钢,具有优良的低温冲击韧性、焊接性和耐大气腐蚀性,并且采用了超低碳设计。但本发明钢的屈服强度级别为450MPa级,强度级别低,仅以Nb微合金化,通过控制轧制和控制冷却,细化晶粒和析出碳氮化铌来提高钢的强韧性。
发明内容
本发明针对现有耐候钢力学性能尤其是屈服强度和抗拉强度较差,通过Nb、Ti复合微合金化,提供了一种屈服强度大于550MPa级超低碳热轧耐候钢。本发明钢的力学性能优良,屈服强度≥550MPa,抗拉强度≥650Mpa,均高于传统耐候钢。
所述目的是通过如下方案实现的:
一种屈服强度大于550MPa级超低碳热轧耐候钢,由下述重量百分比的成分组成:C 0.01~0.05%,Si 0.10~0.40%,Mn 1.20~1.70%,P≤0.02%,S≤0.010%,Cu 0.15~0.80%,Cr 0.40~1.25%,Ni 0.10~0.50%,Mo≤0.40%,Nb 0.03~0.06%,Ti≤0.050%,Ca 0.0010~0.0020%,余量为Fe及不可避免的杂质。
本发明的主要合金元素含量基于以下原理:
C是提高钢强度最经济有效的合金元素,但C含量过高会显著恶化钢的焊接性能,并且会促进珠光体转变,降低钢的耐大气腐蚀性能。本发明采用超低C设计,提高钢的焊接性能,减少碳化物组织形成,以获得均匀单一组织,提高钢的耐腐蚀性能及低温冲击韧性,C含量为0.01~0.05%。
合金元素Si既可通过固溶强化提高钢的强度,也可提高钢的耐大气腐蚀性能,本发明钢中的Si含量设计为0.10~0.40%。
钢中添加Mn,不仅可以通过Mn的固溶强化提高钢的强度,而且可降低钢的相变温度,细化晶粒,提高钢的低温韧性,本发明钢Mn含量为1.20~1.70%。
P是传统耐候钢中主要的合金元素,但当焊接金属凝固时,P促进低熔点夹杂物的生成,既易产生高温裂纹,又增加低温裂纹敏感性,使焊缝的延展性和韧性变坏,含P量高,使钢具有较明显的冷脆倾向。本发明钢中的P含量控制较低水平,P含量≤0.02%;
S是钢中的有害元素,生成的硫化物夹杂不仅严重影响钢的力学性能,而且对钢的耐腐蚀性能产生严重的恶化作用,因此应尽是降低钢中的S含量,使其含量在0.010%以下。
Cu是提高钢耐大气腐蚀性能最主要的合金元素,同时也能提高强度,钢中的Cu含量达到0.25%时,能有效的提高钢的耐大气腐蚀性能,同时通过固溶强化提高钢的强度,本发明钢中的Cu含量设计为0.15~0.80%。
Cr、Ni都是提高钢耐大气腐蚀性能的合金元素。钢中同时加入的Cu、Cr、Ni等元素,使钢的耐大气腐蚀性能提高。Ni能显著改善钢的低温韧性,有效阻止Cu的热脆引起的网裂。本发明钢中的Ni含量设计为0.10~0.50%;Cr含量设计为0.40~1.25%。
Mo能提高钢的淬透性,明显推迟铁素体转变,使钢在较宽的温度范围内发生中温组织转变,同时适量的Mo有利于耐候性的提高,本发明钢中Mo含量设计为Mo≤0.40%。
Nb是强碳氮化物形成元素,通过析出强化提高钢强度;同时Nb强烈抑制奥氏体再结晶,使钢在较高温度下轧制,细化晶粒,提高钢的强度及低温韧性,本发明钢中Nb含量设计为0.03~0.06%。
Ti形成高熔点碳氮化钛,一方面通过析出强化提高钢强度,另一方面高温下钉扎奥氏体晶界,阻止奥氏体粗化,有利于轧后获得细小、均匀组织,提高钢强度和低温韧性,同时有利于焊接性能提高,本发明钢中Ti含量设计为≤0.050%。
微量Ca可以形成CaO和CaS溶解于钢表面薄电解液膜中,使腐蚀界面的碱性增大,降低其侵蚀性,促进锈层转化为致密、保护性好的α-FeOOH,显著改善钢的耐大气腐蚀性能,本发明钢中Ca含量设计为0.0010~0.0020%。
本发明具有以下优点:
1)本发明钢的力学性能优良,屈服强度≥550MPa,抗拉强度≥650Mpa,延伸率≥20%,-40℃夏比冲击功≥80J。
2)本发明钢的化学成分简单,采用超低碳设计,提高钢的焊接性能,减少碳化物组织形成,以获得单一均匀组织,提高钢的耐腐蚀性能及低温冲击韧性;成分中添加微合金元素Ti,一方面通过析出强化提高钢强度,另一方面高温下钉扎奥氏体晶界,阻止奥氏体粗化,有利于轧后获得细小、均匀组织,提高钢强度和低温韧性,同时有利于焊接性能提高。
3)本发明钢的生产工艺采用两阶段轧制,I阶段奥氏体再结晶区轧制,采用大变形量轧制,细化奥氏体;II阶段未再结晶区轧制,进一步细化组织,产生形变带,增加相变形核点,有利于得到细小组织,提高钢强度和低温韧性,容易控制,易于工业生产。
具体实施方式
本发明是一种屈服强度大于550MPa级超低碳热轧耐候钢,该钢的生产工艺采用控制轧制控制冷却技术,具体工艺流程为:
首先对钢坯进行加热,充分奥氏体化,使微合金元素充分固溶。加热温度为1180~1280℃。
接着分两个阶段进行轧制,由于微合金元素Nb明显抑制奥氏体再结晶,提高奥氏体再结晶温度,所以控制I阶段轧制开轧温度控制在1120~1250℃,终轧1020~1180℃,累计压下率≥65%,细化奥氏体晶粒;II阶段轧制为未再结晶区控制轧制,开轧温度≤940℃,终轧温度720~880℃,后三道次累计压下率≥45%。通过热连轧细化组织,产生大量位错,形变带及胞状亚结构,增加相变形核点及析出相的形核位置,促进组织细化和析出相析出。轧制结束后进行层流冷却,其卷取温度为520~700℃。
实施例1
根据上述生产工艺,生产出钢1,其中钢1的化学成分见表1中的1,钢1的力学性能见表2中的1,钢1的耐大气腐蚀结果见表3中的1。
实施例2
根据上述生产工艺,生产出钢2,其中钢2的化学成分见表1中的2,钢2的力学性能见表2中的2,钢2的耐大气腐蚀结果见表3中的2。
实施例3
根据上述生产工艺,生产出钢3,其中钢3的化学成分见表1中的3,钢3的力学性能见表2中的3,钢3的耐大气腐蚀结果见表3中的3。
实施例4
根据上述生产工艺,生产出钢4,其中钢4的化学成分见表1中的4,钢4的力学性能见表2中的4,钢4的耐大气腐蚀结果见表3中的4。
实施例5
根据上述生产工艺,生产出钢5,其中钢5的化学成分见表1中的5,钢5的力学性能见表2中的5,钢5的耐大气腐蚀结果见表3中的5。
上述五个实施例均在50kg真空感应炉冶炼。
为了能更好的反映出本发明钢耐大气腐蚀性的优点,本实施方式中提供了1组比较钢的耐大气腐蚀性结果,见表3中的Q345。
表1本发明实施例钢的化学成分(wt%)
Figure A20081019784600071
表2本发明实施例钢的力学性能
Figure A20081019784600072
表3本发明实施例钢与比较钢的耐大气腐蚀结果(g/m2·h)
Figure A20081019784600073
表1为本发明实施例钢的化学成分。表2为本发明实施例钢的力学性能,由表2可以看出本发明实施例钢的屈服强度均大于550MPa,抗拉强度均大于650MPa,延伸率均大于20%,冷弯性能均合格,-40℃夏比冲击吸收功均大于80J。表2能整体表现出本发明钢的力学能力优良。表3为本发明实施例钢与比较钢的耐大气腐蚀结果,其中比较钢为Q345。为正确的测出实施例钢与比较钢的耐大气腐蚀结果,本实验对实施例钢与比较钢进行了耐大气腐蚀率的测量,表3能整体表现出实施例钢的腐蚀率均优于比较钢Q345。
上述是对于本发明最佳实施例工艺步骤的详细描述,本发明技术领域的研究人员可以根据上述的步骤作形式和内容方面非实质性的改变而不偏离本发明所实质保护的范围,因此,本发明不局限于上述具体的实施实例。

Claims (3)

1.一种屈服强度大于550MPa级超低碳热轧耐候钢,其特征在于由下述重量百分比的成分组成:C 0.01~0.05%,Si 0.10~0.40%,Mn 1.20~1.70%,P≤0.02%,S≤0.010%,Cu 0.15~0.80%,Cr 0.40~1.25%,Ni 0.10~0.50%,Mo≤0.40,Nb 0.03~0.06,Ti≤0.050%,Ca 0.0010~0.0020,余量为Fe及不可避免的杂质。
2.根据权利要求1所述的一种屈服强度大于550MPa级超低碳热轧耐候钢,其特征在于一种或多种成分按下述重量百分比组成:C 0.018~0.034%,Si 0.30~0.38%,Mn 1.21~1.32%,P≤0.02%,S≤0.010%,Cu 0.50~0.78%,Cr 0.45~0.65%,Ni 0.39~0.48%,Mo 0~0.30%,Nb 0.048~0.059%,Ti0.015~0.035%,Ca 0.0016~0.0019%,余量为Fe及不可避免的杂质。
3.根据权利要求1所述的一种屈服强度大于550MPa级超低碳热轧耐候钢,其特征在于一种或多种成分按下述重量百分比组成:C 0.045~0.050%,Si 0.15~0.30%,Mn 1.44~1.66%,P≤0.02%,S≤0.010%,Cu 0.20~0.50%,Cr 0.97~1.22%,Ni 0.12~0.31%,Mo 0.30~0.38%,Nb 0.032~0.048,Ti0.020~0.025%,Ca 0.0012~0.0014,余量为Fe及不可避免的杂质。
CN2008101978463A 2008-11-25 2008-11-25 一种屈服强度大于550MPa级超低碳热轧耐候钢 Expired - Fee Related CN101407892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101978463A CN101407892B (zh) 2008-11-25 2008-11-25 一种屈服强度大于550MPa级超低碳热轧耐候钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101978463A CN101407892B (zh) 2008-11-25 2008-11-25 一种屈服强度大于550MPa级超低碳热轧耐候钢

Publications (2)

Publication Number Publication Date
CN101407892A true CN101407892A (zh) 2009-04-15
CN101407892B CN101407892B (zh) 2011-08-17

Family

ID=40571098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101978463A Expired - Fee Related CN101407892B (zh) 2008-11-25 2008-11-25 一种屈服强度大于550MPa级超低碳热轧耐候钢

Country Status (1)

Country Link
CN (1) CN101407892B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838770A (zh) * 2010-06-13 2010-09-22 攀钢集团钢铁钒钛股份有限公司 输电铁塔用高强度钢及生产方法
CN103103458A (zh) * 2013-02-17 2013-05-15 武汉钢铁(集团)公司 高强度耐候钢及其制备方法
CN105132832A (zh) * 2015-09-29 2015-12-09 钢铁研究总院 一种耐高湿热海洋大气腐蚀钢板及其制造方法
CN106222559A (zh) * 2016-08-30 2016-12-14 南阳汉冶特钢有限公司 一种新型海洋平台用钢钢板及其生产方法
CN107460413A (zh) * 2017-08-16 2017-12-12 北京科技大学 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN107557678A (zh) * 2016-06-30 2018-01-09 鞍钢股份有限公司 低成本550MPa级热轧集装箱用耐候钢及其制造方法
CN109649367A (zh) * 2018-12-05 2019-04-19 中车长江车辆有限公司 一种制动管、制动管的制备方法以及车辆
CN109852889A (zh) * 2019-04-02 2019-06-07 鞍钢股份有限公司 经济型460MPa级耐候栓钉用盘条、生产方法及栓钉
CN111118401A (zh) * 2020-02-28 2020-05-08 五矿营口中板有限责任公司 一种高性能大厚度易焊接桥梁结构钢及其制造方法
CN111748734A (zh) * 2020-06-17 2020-10-09 武汉钢铁有限公司 一种具有稳定锈层的550MPa级热轧集装箱用耐候钢及生产方法
CN111926261A (zh) * 2020-08-31 2020-11-13 日照钢铁控股集团有限公司 一种屈服强度550MPa级高强耐候钢及其生产方法
CN112029987A (zh) * 2020-07-13 2020-12-04 首钢集团有限公司 一种普通碳素结构钢的板坯低温出钢的方法
CN113846895A (zh) * 2021-10-15 2021-12-28 峻江建设有限公司 一种高强度铁塔主杆及其制备方法
CN114410875A (zh) * 2022-03-10 2022-04-29 马鞍山钢铁股份有限公司 一种具有良好低温韧性的易镀锌输电铁塔用钢及其制造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838770A (zh) * 2010-06-13 2010-09-22 攀钢集团钢铁钒钛股份有限公司 输电铁塔用高强度钢及生产方法
CN103103458A (zh) * 2013-02-17 2013-05-15 武汉钢铁(集团)公司 高强度耐候钢及其制备方法
CN103103458B (zh) * 2013-02-17 2015-07-01 武汉钢铁(集团)公司 高强度耐候钢及其制备方法
CN105132832A (zh) * 2015-09-29 2015-12-09 钢铁研究总院 一种耐高湿热海洋大气腐蚀钢板及其制造方法
CN107557678A (zh) * 2016-06-30 2018-01-09 鞍钢股份有限公司 低成本550MPa级热轧集装箱用耐候钢及其制造方法
CN106222559A (zh) * 2016-08-30 2016-12-14 南阳汉冶特钢有限公司 一种新型海洋平台用钢钢板及其生产方法
CN106222559B (zh) * 2016-08-30 2018-02-13 南阳汉冶特钢有限公司 一种海洋平台用钢钢板及其生产方法
CN107460413B (zh) * 2017-08-16 2019-05-17 北京科技大学 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN107460413A (zh) * 2017-08-16 2017-12-12 北京科技大学 一种550MPa级超细晶高强耐候钢的制备方法及应用
CN109649367A (zh) * 2018-12-05 2019-04-19 中车长江车辆有限公司 一种制动管、制动管的制备方法以及车辆
CN109852889A (zh) * 2019-04-02 2019-06-07 鞍钢股份有限公司 经济型460MPa级耐候栓钉用盘条、生产方法及栓钉
CN109852889B (zh) * 2019-04-02 2021-01-08 鞍钢股份有限公司 经济型460MPa级耐候栓钉用盘条、生产方法及栓钉
CN111118401A (zh) * 2020-02-28 2020-05-08 五矿营口中板有限责任公司 一种高性能大厚度易焊接桥梁结构钢及其制造方法
CN111748734A (zh) * 2020-06-17 2020-10-09 武汉钢铁有限公司 一种具有稳定锈层的550MPa级热轧集装箱用耐候钢及生产方法
CN112029987A (zh) * 2020-07-13 2020-12-04 首钢集团有限公司 一种普通碳素结构钢的板坯低温出钢的方法
CN111926261A (zh) * 2020-08-31 2020-11-13 日照钢铁控股集团有限公司 一种屈服强度550MPa级高强耐候钢及其生产方法
CN113846895A (zh) * 2021-10-15 2021-12-28 峻江建设有限公司 一种高强度铁塔主杆及其制备方法
CN114410875A (zh) * 2022-03-10 2022-04-29 马鞍山钢铁股份有限公司 一种具有良好低温韧性的易镀锌输电铁塔用钢及其制造方法

Also Published As

Publication number Publication date
CN101407892B (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
CN101407892B (zh) 一种屈服强度大于550MPa级超低碳热轧耐候钢
CN103436811B (zh) 一种500MPa级工程结构用高性能特厚钢板及其制造方法
CN101660099B (zh) 高强度低合金热轧铁素体贝氏体耐候钢及其生产方法
CN103352167B (zh) 一种低屈强比高强度桥梁用钢及其制造方法
CN102168229B (zh) 耐候钢板及其制造方法
CN100455692C (zh) 一种高强度耐候钢的生产方法
CN102534417B (zh) 一种含Mo的高性能桥梁耐候钢的制备方法
CN101168826B (zh) 高性能低碳贝氏体结构钢及其生产方法
CN101497972B (zh) 一种高强度低屈强比焊接结构钢及其生产方法
CN102851600B (zh) 一种低温韧性优异的x65管线钢及其制造方法
CN101857945B (zh) 一种无Mo低Nb X80管线钢热轧钢板的制造方法
CN101619423A (zh) 一种高强韧低屈强比易焊接结构钢板及其制造方法
CN102409253A (zh) 一种高耐蚀高强度铁道车辆用耐候钢及其制造方法
CN100368582C (zh) 一种超低碳贝氏体钢的生产方法
CN101082108A (zh) 一种用于制作海底管线的钢板及其轧制方法
CN105586529B (zh) 一种890MPa级高强度钢、钢管及其制造方法
CN101928885A (zh) 抗硫化氢腐蚀管线用钢及其生产方法
CN102400054A (zh) 直缝电阻焊管用x80管线钢及其热轧板卷的制造方法
CN102851615A (zh) 抗拉强度800MPa级别低屈强比结构钢板及其制造方法
CN106521352B (zh) 含铌厚规格耐候钢及其轧制方法
CN103469098A (zh) 一种具有良好抗hic性能的x80管线钢及其生产方法
CN103993245B (zh) 一种低碳当量高强度热轧无缝管线管及其制造方法
CN101235468A (zh) 一种屈服强度大于400MPa级的耐大气腐蚀钢
CN102400062B (zh) 低屈强比超高强度x130管线钢
JP4379085B2 (ja) 高強度高靭性厚鋼板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110817

Termination date: 20151125