CN101403103B - 在蒸汽相中对涡轮机械的中空金属部件进行铝化的方法 - Google Patents

在蒸汽相中对涡轮机械的中空金属部件进行铝化的方法 Download PDF

Info

Publication number
CN101403103B
CN101403103B CN2008101682500A CN200810168250A CN101403103B CN 101403103 B CN101403103 B CN 101403103B CN 2008101682500 A CN2008101682500 A CN 2008101682500A CN 200810168250 A CN200810168250 A CN 200810168250A CN 101403103 B CN101403103 B CN 101403103B
Authority
CN
China
Prior art keywords
metal
hole
parts
spherolite
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101682500A
Other languages
English (en)
Other versions
CN101403103A (zh
Inventor
马克西姆·卡林
卢西·兰西奥克斯
菲利普·勒埃纳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of CN101403103A publication Critical patent/CN101403103A/zh
Application granted granted Critical
Publication of CN101403103B publication Critical patent/CN101403103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electrochemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明涉及通过在蒸汽相中沉积而保护涡轮机械金属部件不受高温氧化的铝化方法,所述部件包括空穴,该空穴带有可以由外部进入的开口。根据该方法,通过在卤素和含有铝的金属供体之间反应形成卤化物,然后,载运气体运输该卤化物接触所述金属部件,所述金属供体至少部分地放置于所述空穴内,其中金属供体是球粒形式,该球粒是通过在金属粉末混合物的压力下热烧结而获得。

Description

在蒸汽相中对涡轮机械的中空金属部件进行铝化的方法
技术领域
本发明涉及金属部件上,尤其是包括空穴的中空金属部件上铝涂层的沉积,该空穴带有允许进入该空穴的开口。更特别地,它的目的是这种涂层在包括冷却液分布套的涡轮机械的中空叶片上的应用。 
背景技术
燃气涡轮发动机,如用于航天领域中推进的燃气涡轮发动机,包括与一个或多个压缩机连通的大气进气口,通常包括绕着同一轴线旋转的风扇。已经被压缩的该空气的主流供应给绕着该轴线环状地放置的燃烧室,并且与燃料混合,以向下游的一个或多个涡轮机提供热气,热气通过涡轮机时,涡轮机膨胀,涡轮机转子驱动压缩转子。发动机在涡轮机入口运行,驱动所设法达到的尽可能高的气体温度,因为性能与此相关。为此目的,要选择材料以承受住这些运行条件,并且被热气所扫描的部件诸如,上游导流叶片或动涡轮机肋片的壁提供有冷却装置。而且,因为,由基于镍或基于钴的超耐热合金所制造的它们的金属构造,保护前者免受在这些温度下由于驱动气体的成分所引起的侵蚀和腐蚀,也是必需的。 
保护这些部件的已知方法是在易于受到气体攻击的表面上沉积基于铝的涂层。铝通过金属相互扩散接合基底,并且在表面上形成氧化物保护层。保护层的厚度具有几十微米的等级。 
本发明涉及在蒸汽相中沉积铝,或者通过在蒸汽相中沉积的称为铝化的本身已知的技术。根据该方法,待要处理的部件放置于封闭装置中,该封闭装置中的大气由惰性或还原气体,例如,氩或氢,和包含卤化铝的活性气体的混合物组成。在900℃和1150℃之间的反应温度,部件表面上的卤化物分解成扩散到金属中的气态卤素和铝。 
在形成活化剂的卤素,氯或氟化合物的微粒存在的情况下,通过在装有待处理的部件的封闭装置中放置形成供体的铝金属块或铝合金金属块产生卤化物。使惰性气体在允许卤素升华的温度越过活性剂,卤素被带给供体,并且与其反应以产生金属卤化物,在该温度,该金属卤化物是蒸汽形势。然后,卤化物一旦与待涂层的金 属基底接触就分解,允许铝被沉积;重新形成气态卤素。 
尽管定子部件可动,但是当定子部件也设有被冷却液,从压缩机所抽出的空气扫描的内部空穴时,已经注意到这些空穴的壁也受到腐蚀。在一些环境下工作的发动机上所用部件的返回已经表明了这些表面的侵袭。例如,已经注意到了上游导流叶片的内部腐蚀,上游导流叶片的空穴中成片腐蚀的脱落,后缘排气孔的堵塞等。因此,部件的这些部位的保护也是必需的。 
通过蒸汽相中沉积的铝化方法大体上适合应用于保护层,因为载运气体和活性成分可能进入冷却液循环的狭窄通道,因为这些狭窄通道是开放的。现实表明不是这种情况。保护层的厚度不均匀,它明显地减少了提供进入空穴的孔径。而且,在空穴排气孔的累积形式减少了通道截面和部件的冷却特性。 
以申请人名义的专利申请FR2830874描述了通过在金属涡轮机械部件的蒸汽相中沉积的铝化方法,该金属涡轮机械部件提供有与外部连通的孔洞和空穴,通过该孔洞和空穴,包含铝化合物的待要获得的气态沉积前体在载运气体的帮助下开始与封闭装置中所放置的部件表面进行接触,载运气体是氦或氩,并且选择封闭装置中的压力以使载运气体分子的平均自由行程是大气压下氩分子的平均自由行程的2倍高。分子的平均自由行程通常定义为比率1/P*D2,其中P是封闭装置中的压力,D是分子直径。 
发明内容
通过载运气体分子的平均自由行程的延长,内部通道中卤化物的扩散增加,增加了通过常规方法在不可到达的区域中沉积的厚度;因此,改善了所有的保护。自由行程的增加或者是由载运气体,这里是氦的选择而引起,或者是由压力减少而引起,如同从上面公式可以推断出来的一样。 
本发明的主题是方法的变化形式,该方法的变化形式可以在整个表面上获得具有充足厚度的内部空穴的壁的涂层。 
本发明涉及带有空穴和开口的中空部件,至少通过该开口,该空穴与外部连通,并且可以由外部进入。本发明更特别地涉及这样的部件,其设有内套,该内套在空穴内部,通过开口安装,并且与部件装配在一起。 
这样的部件如图1所示。它是旁路燃气涡轮发动机中低压阶段的上游导流叶片的截面。上游导流叶片的叶片1包括在壳型铸模中通过铸造金属制造的部分。该部分,在图中交叉画线的阴影部分由两个平台3和4之间的中空翼型2形成。翼型2的空穴通过其两端而连通,分别地,在一侧与用于供应冷却液的开口5连通,在另一侧与液体出口6连通。在翼型2的空穴内部,放置基本上圆柱形的套9。该套焊接或铜焊在开口5侧,以通过周围的焊接或铜焊,沿着空穴开口的边缘供应冷气。套的另一端接合在与出口6连通的圆柱形凹部中,没有焊接于其上,以允许过渡操作步骤期间,套相对于翼型的相对膨胀。套在其长度上被穿孔,并且设置带有翼型壁的空间,这样来源于空气供应开口5的冷却空气部分地穿过套的穿孔,并且形成大量的空气喷射,通过碰撞和对流冷却翼型的壁。然后,该空气通过设置在翼型后缘附近的排气孔流出。还没有流过套的壁的空气被导向开口6,而被导向机器的其它部分。 
在制造中,与翼型分开制造的套9通过滑过孔径5,然后铜焊到如上所述的嘴部附近而安装到翼型中。图中的底部分保持自由膨胀,并且在开口6所形成的凹部中滑动。 
根据本发明,使用下面方法,铝化沉积明显地改善了空穴内部,该方法可应用于包括空穴的任何部件,该空穴可以由外部进入。 
通过在蒸汽相中沉积而保护涡轮机械金属部件不受高温氧化的铝化方法。 
所述部件包括空穴和可以由外部进入的开口。 
根据该方法,通过在卤素和含有铝的金属供体之间反应形成卤化物,然后,载运气体运输该卤化物接触所述金属部件。 
所述金属供体至少部分地放置于所述空穴内。明显地特征是金属供体是球粒形式,该球粒是通过下述技术获得:制备金属粉末形式的金属成分的混合物,通过在压力下热烧结而固结所述混合物。 
所述混合物的金属成分包含铝,优选地联合Cr、Ni、Co或Fe之一。球粒中所包含铝的原子百分数是30和80%之间,更特别地所包含的铝的原子百分数是45和70%之间。 
通过在空穴内提供由球粒组成的供体,允许有效的沉积。明显地解决了由外部进入部件的问题,同时例如,通过球粒的长度控制内部供体的数量。 
更特别地,球粒也包含用于改善对氧化抗性的至少一种元素,,所述元素包含在下列组中:Hf、Y、Zr、Si、Ti、Ta、Pt、Pd、Ir。 
该方法应用于由基于镍或基于钴的超耐热合金制造的部件,诸如,带有内部冷 却液分布套的上游导流叶片的叶片。在这种情况下,球粒通过冷却液入口被插入。 
文献EP 1577415是已知的,其涉及在涡轮机械部件诸如,涡轮机的中空动叶片的蒸汽相中铝化的方法,根据该方法,由85%重量基于铝粉末组成的条带放置在部件内部,其余部分由可能带有活化剂的有机粘合剂形成。在处理期间,有机粘合剂被碳化,并且还没有被消耗掉的条带部分可以容易地从空穴取出。这种条带本身是已知的,并且在文献US5334417中描述过该条带。本发明的方案允许容易的球粒操作,由于纯金属材料的使用,具有不存在有机残余物的优点,因此没有污染。而且,球粒可以加工成期望的形状,这允许使用者的简化使用。 
最后,球粒不要求任何特定的移除操作,在通常的清洁操作中排除了残余物。 
现在,参考附图描述本发明的非限制实施方式。 
附图说明
图1表示带有内部空穴和安装在该空穴中冷却空气分布套的上游导流叶片的叶片,球粒安装在所述套中。 
图2表示适合于应用本发明方法的铝化装置。 
图3是图表,表示根据现有技术和本发明技术,内部安装的翼片空穴的壁上沉积的层厚度变化。 
具体实施方式
图2非常详细地示意了通过在蒸汽相中沉积而铝化的传统装置,本发明的方法应用于该装置。 
封闭装置12安装在熔炉4内部,该熔炉4能够加热部件达到1200℃。在该封闭装置中放置的是盒子16,在这种情况下,是3个叠置的盒子,带有盖子16’。这些盒子包括待处理的部件P,例如,涡轮机上游导流叶片,以及粉末或块状形式的金属供体D和活化剂A,例如,NH4F或NH4Cl。在这种情况下,封闭装置12包括清洗载运气体的供给18,冲洗载运气体的供给19和由阀门21控制的排放装置20。然而,在目前装置中,这种冲洗功能是可选的。 
在盒子16中放置部件、供体和活化剂后,通过管道18引入载运气体,例如氩,来冲洗封闭装置12,使用者开始操作。当封闭装置的空气被氩取代后,中断供给。然后,开动熔炉的加热,同时通过管道19向封闭装置供应氩。多余的气体通过管道 20排放。在活化剂A的活化温度,释放卤素,氯或氟。卤素一旦接触供体,就与金属反应,形成卤化物。由此形成的卤化物蒸汽在盒子16内部循环,并且接触金属部件P。这时,卤化物分解,并且释放金属,金属沉积在部件上。 
氩一直通过管道19插入到封闭装置12中,并且通过管道20排放。处理的持续时间是2和6小时之间。 
根据本发明,利用供体球粒10,使供体更接近空穴。 
在开始处理前,供体球粒10通过开口5插入。 
根据粉末冶金学技术制造了球粒。 
该技术包括混合金属粉末形式的成分,然后,通过在压力下烧结而固结由此制备的混合物。如已知的,烧结是通过在所述压力作用下的热处理,引起单独颗粒的聚集混合物改变的方法。该方法可以引起成分整个或部分地进行反应,以形成要作为供体的金属间化合的元素。在该方法中,获得了固体块,其比最初的孔隙率有更少的孔。该方法的特征也在于通过热处理的至少一种固体金属间化合相的维持,诸如铬铝化,以及形状和维度的一些稳定性的保持。 
烧结操作后,可以加工球粒以使它的形式适合它插入到空穴中可用的空间。如图1所示,它是插入到空穴中的棒10。 
这种方案相对于另一种方案的优点在于在空穴内放置供体篮子,允许已经装配的部件的处理。在中间步骤中使用篮子对于处理无套的部件是必需的,然后将套安装在部件上,该部件的壁覆盖有铝层,该铝层要求铜焊装置的特别适应。 
而且,根据具体的方法,不需要清洁供体残余物的空穴内部。通过已经提供的常规清洁操作排除该残余物。 
图3表示在图表中,叶片内壁表面上形成的铝层的厚度。注意到,根据现有技术,沿着压力面和吸力面的一部分的任一侧上的前缘侧面上,该厚度A实际上是零。根据该方法,在叶片的周边上及叶片的叶根和叶尖之间获得了更均匀的厚度B,例如50和70μm之间。 
内层的厚度与部件外表面上处理后所发现的厚度比较,如图3中C处所示。 

Claims (7)

1.一种通过在蒸汽相中沉积而保护涡轮机械金属部件不受高温氧化的铝化方法,
所述部件包括空穴,该空穴带有由外部进入的开口,
根据该方法,通过在卤素和含有铝的金属供体之间反应形成卤化物,然后,
通过载运气体运输该卤化物接触所述金属部件,
所述金属供体至少部分地放置于所述空穴内,
其中金属供体是球粒形式,该球粒是通过下述技术获得:制备金属粉末形式的金属成分的混合物,通过在压力下热烧结而固结所述混合物。
2.如权利要求1所述的方法,所述混合物的金属成分包含铝及金属Cr、Ni、Co或Fe之一。
3.如权利要求2所述的方法,所述球粒中所包含的铝的原子百分数是30和80%之间。
4.如权利要求3所述的方法,所述球粒中所包含铝的原子百分数是45和70%之间。
5.如权利要求1所述的方法,其中球粒也包含用于改善对氧化抗性的至少一种元素,所述元素包含在下列组中:Hf、Y、Zr、Si、Ti、Ta、Pt、Pd、Ir。
6.如权利要求1所述的方法,其中部件是由基于镍或基于钴的超耐热合金制造。
7.如权利要求6所述的方法,部件是在空穴中带有内部冷却液分布套的上游导流叶片的叶片,球粒通过冷却液入口插入。
CN2008101682500A 2007-10-03 2008-10-06 在蒸汽相中对涡轮机械的中空金属部件进行铝化的方法 Active CN101403103B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706935A FR2921939B1 (fr) 2007-10-03 2007-10-03 Procede d'aluminisation en phase vapeur sur pieces metalliques creuses de turbomachine
FR0706935 2007-10-03

Publications (2)

Publication Number Publication Date
CN101403103A CN101403103A (zh) 2009-04-08
CN101403103B true CN101403103B (zh) 2012-05-02

Family

ID=39365627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101682500A Active CN101403103B (zh) 2007-10-03 2008-10-06 在蒸汽相中对涡轮机械的中空金属部件进行铝化的方法

Country Status (8)

Country Link
US (1) US8137749B2 (zh)
EP (1) EP2045354B1 (zh)
JP (1) JP5483854B2 (zh)
CN (1) CN101403103B (zh)
CA (1) CA2640209C (zh)
DE (1) DE602008005080D1 (zh)
FR (1) FR2921939B1 (zh)
RU (1) RU2489513C2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921937B1 (fr) 2007-10-03 2009-12-04 Snecma Procede d'aluminisation en phase vapeur d'une piece metallique de turbomachine
DE102008056411A1 (de) * 2008-11-07 2010-05-20 Dürr Systems GmbH Beschichtungsanlagenbauteil, insbesondere Glockenteller, und entsprechendes Herstellungsverfahren
EP2432912B1 (en) * 2009-05-18 2018-08-15 Sifco Industries, Inc. Forming reactive element modified aluminide coatings with low reactive element content using vapor phase diffusion techniques
FR2950364B1 (fr) 2009-09-18 2014-03-28 Snecma Procede pour former sur la surface d'une piece metallique un revetement protecteur contenant de l'aluminium
US20130017071A1 (en) * 2011-07-13 2013-01-17 General Electric Company Foam structure, a process of fabricating a foam structure and a turbine including a foam structure
US9587492B2 (en) * 2012-05-04 2017-03-07 General Electric Company Turbomachine component having an internal cavity reactivity neutralizer and method of forming the same
FR3009842B1 (fr) * 2013-08-20 2015-08-28 Snecma Procede d'assemblage de deux pales d'un distributeur de turbomachine
US9771644B2 (en) * 2013-11-08 2017-09-26 Praxair S.T. Technology, Inc. Method and apparatus for producing diffusion aluminide coatings
MD856Z (ro) * 2014-08-11 2015-07-31 Институт Прикладной Физики Академии Наук Молдовы Procedeu de aluminizare a produselor din oţel din material nemagnetic şi metale colorate
FR3081027B1 (fr) * 2018-05-09 2020-10-02 Safran Aircraft Engines Turbomachine comportant un circuit de prelevement d'air
CN111850439B (zh) * 2020-07-30 2021-11-05 西安热工研究院有限公司 一种Nimonic 80A合金材质的螺栓热处理工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693530A (zh) * 2004-04-29 2005-11-09 通用电气公司 渗铝组合物和将其在内部通道内应用的方法
CN1721570A (zh) * 2004-03-16 2006-01-18 通用电气公司 用铝化物对空心物体涂层的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633641B1 (fr) * 1988-06-30 1993-02-05 Snecma Procede et dispositif de protection simultanee des surfaces internes et externes, notamment par aluminisation de pieces en alliages resistant a chaud, a base de ni, co ou fe
SU1687375A1 (ru) * 1989-02-23 1991-10-30 Институт Физики Прочности И Материаловедения Со Ан Ссср Способ получени порошкового сплава на основе алюмини
US5071678A (en) * 1990-10-09 1991-12-10 United Technologies Corporation Process for applying gas phase diffusion aluminide coatings
US5221354A (en) * 1991-11-04 1993-06-22 General Electric Company Apparatus and method for gas phase coating of hollow articles
RU2017846C1 (ru) * 1992-06-25 1994-08-15 Научно-производственное объединение "Металл" Способ изготовления изделий из композиционных материалов
US5334417A (en) * 1992-11-04 1994-08-02 Kevin Rafferty Method for forming a pack cementation coating on a metal surface by a coating tape
FR2706171B1 (fr) * 1993-06-07 1995-07-13 Europ Gas Turbines Sa Procédé d'aluminisation notamment pour cavités métalliques allongées.
RU2085339C1 (ru) * 1995-08-31 1997-07-27 Акционерное общество открытого типа "Всероссийский институт легких сплавов" Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов
RU2121904C1 (ru) * 1997-11-13 1998-11-20 Общество с ограниченной ответственностью "Алюминиевые спеченные порошковые сплавы" Способ производства пористых полуфабрикатов из порошковых алюминиевых сплавов
US5997604A (en) * 1998-06-26 1999-12-07 C. A. Patents, L.L.C. Coating tape
US6224941B1 (en) * 1998-12-22 2001-05-01 General Electric Company Pulsed-vapor phase aluminide process for high temperature oxidation-resistant coating applications
US6521294B2 (en) * 1999-08-11 2003-02-18 General Electric Co. Aluminiding of a metallic surface using an aluminum-modified maskant, and aluminum-modified maskant
US6326057B1 (en) * 1999-12-29 2001-12-04 General Electric Company Vapor phase diffusion aluminide process
US6533875B1 (en) * 2000-10-20 2003-03-18 General Electric Co. Protecting a surface of a nickel-based article with a corrosion-resistant aluminum-alloy layer
FR2830874B1 (fr) * 2001-10-16 2004-01-16 Snecma Moteurs Procede de protection par aluminisation de pieces metalliques de turbomachines munies de trous et cavites
US7026011B2 (en) * 2003-02-04 2006-04-11 General Electric Company Aluminide coating of gas turbine engine blade
US7927656B2 (en) * 2006-08-31 2011-04-19 General Electric Company Method and apparatus for controlling diffusion coating of internal passages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721570A (zh) * 2004-03-16 2006-01-18 通用电气公司 用铝化物对空心物体涂层的方法
CN1693530A (zh) * 2004-04-29 2005-11-09 通用电气公司 渗铝组合物和将其在内部通道内应用的方法

Also Published As

Publication number Publication date
DE602008005080D1 (de) 2011-04-07
EP2045354A1 (fr) 2009-04-08
US20090092753A1 (en) 2009-04-09
RU2489513C2 (ru) 2013-08-10
FR2921939A1 (fr) 2009-04-10
CA2640209A1 (fr) 2009-04-03
CN101403103A (zh) 2009-04-08
RU2008139344A (ru) 2010-04-10
JP2009091658A (ja) 2009-04-30
EP2045354B1 (fr) 2011-02-23
CA2640209C (fr) 2016-03-15
JP5483854B2 (ja) 2014-05-07
FR2921939B1 (fr) 2009-12-04
US8137749B2 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
CN101403103B (zh) 在蒸汽相中对涡轮机械的中空金属部件进行铝化的方法
JP5801932B2 (ja) ターボ機械の金属部品およびドナーライナーの気相アルミ被覆プロセスならびにそのようなライナーを含むターボ機械翼
US6616969B2 (en) Apparatus and method for selectively coating internal and external surfaces of an airfoil
CA2500505C (en) Method for aluminide coating a hollow article
CN102554564B (zh) 具有冷却装置的涡轮机部件与制造该种涡轮机部件的方法
US6533875B1 (en) Protecting a surface of a nickel-based article with a corrosion-resistant aluminum-alloy layer
US6273678B1 (en) Modified diffusion aluminide coating for internal surfaces of gas turbine components
JP2004116529A (ja) マスキング用囲いで部分的にマスクされたガスタービン翼を気相アルミナイド処理する方法
JP2007218261A (ja) ガスタービン構成要素のコーティング方法
US7700154B2 (en) Selective aluminide coating process
CN101133173A (zh) 合金,防止构件高温腐蚀和/或氧化的保护层及构件
US7094445B2 (en) Dimensionally controlled pack aluminiding of internal surfaces of a hollow article
US6896488B2 (en) Bond coat process for thermal barrier coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant