CN101393945A - All-silicon waveguide photoelectric converter and manufacturing method thereof - Google Patents
All-silicon waveguide photoelectric converter and manufacturing method thereof Download PDFInfo
- Publication number
- CN101393945A CN101393945A CNA2007101219730A CN200710121973A CN101393945A CN 101393945 A CN101393945 A CN 101393945A CN A2007101219730 A CNA2007101219730 A CN A2007101219730A CN 200710121973 A CN200710121973 A CN 200710121973A CN 101393945 A CN101393945 A CN 101393945A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- straight
- straight waveguide
- silicon
- doped region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 34
- 239000010703 silicon Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 230000007547 defect Effects 0.000 claims abstract description 13
- 150000002500 ions Chemical class 0.000 claims abstract description 13
- 239000002344 surface layer Substances 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 22
- -1 silicon ions Chemical class 0.000 claims description 14
- 229910000838 Al alloy Inorganic materials 0.000 claims description 10
- 239000007943 implant Substances 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 5
- 238000005253 cladding Methods 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 5
- 238000001883 metal evaporation Methods 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 230000005516 deep trap Effects 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 1
- 230000031700 light absorption Effects 0.000 abstract description 12
- 230000003287 optical effect Effects 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 7
- 238000004377 microelectronic Methods 0.000 abstract description 5
- 230000005693 optoelectronics Effects 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 4
- 230000000295 complement effect Effects 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明涉及光电转换器技术领域,公开了一种与互补式金属-氧化层-半导体(CMOS)工艺兼容的1.55波段全硅波导型光电转换器件,其中光吸收是通过Si离子注入Si后形成络合物深能级缺陷来进行的,从而突破Si光电子器件所受1.12eV禁带宽度的制约;器件结构是在Si基SOI基片上,以注入了Si离子的直波导为本征区(i),左右各为n型和p型掺杂区(n,p),在表层构成横向p-i-n结构;以弯曲波导作为信号输入部分,以直波导作为光吸收部分,并在直波导两端设置分布式Bragg反射光栅,使光信号在直波导中共振以加强光吸收。本发明同时公开了一种全硅波导型光电转换器件的制造方法,利用该方法可以在Si上实现通信信号接收器件与微电子芯片的集成。
The invention relates to the technical field of photoelectric converters, and discloses a 1.55-band all-silicon waveguide photoelectric conversion device compatible with a complementary metal-oxide layer-semiconductor (CMOS) process, wherein light absorption is achieved by implanting Si ions into Si to form a network The deep energy level defect of compound is carried out, so as to break through the restriction of the 1.12eV bandgap width of Si optoelectronic devices; the device structure is on the Si-based SOI substrate, with the straight waveguide implanted with Si ions as the intrinsic region (i) , with n-type and p-type doping regions (n, p) on the left and right, forming a lateral p-i-n structure on the surface layer; the curved waveguide is used as the signal input part, the straight waveguide is used as the light absorption part, and the two sides of the straight waveguide Distributed Bragg reflection gratings are set at the end to make the optical signal resonate in the straight waveguide to enhance light absorption. The invention also discloses a manufacturing method of an all-silicon waveguide type photoelectric conversion device, which can realize the integration of a communication signal receiving device and a microelectronic chip on Si.
Description
技术领域 technical field
本发明涉及光电转换器技术领域,尤其涉及一种与互补式金属-氧化层-半导体(CMOS)工艺兼容的1.55波段全硅波导型光电转换器及其制造方法。The invention relates to the technical field of photoelectric converters, in particular to a 1.55-band all-silicon waveguide photoelectric converter compatible with a complementary metal-oxide layer-semiconductor (CMOS) process and a manufacturing method thereof.
背景技术 Background technique
随着高密度、大容量数据传输和运算的发展,将光电子与微电子集成在一个芯片上的优势越来越明显、需求越来越迫切,它对我国国民经济的发展、国家安全和科学进步起着重要的支撑作用。为此,人们使用成熟的Si工艺和Si在通信波段的透明特性,在Si基SOI波导上研制出大量的光无源器件。然而,在Si基光有源器件方面的研究进展缓慢,其原因不仅是由于Si的间接带隙导致其光吸收和跃迁率低,对大于1μm波长的光波不吸收,而且在结构上也不易于与Si波导集成。With the development of high-density and large-capacity data transmission and computing, the advantages of integrating optoelectronics and microelectronics on a chip are becoming more and more obvious, and the demand is becoming more and more urgent. It is of great importance to the development of our national economy, national security and scientific progress play an important supporting role. For this reason, a large number of optical passive devices have been developed on Si-based SOI waveguides by using the mature Si process and the transparency of Si in the communication band. However, the research progress on Si-based optical active devices is slow. The reason is not only the low optical absorption and transition rate due to the indirect bandgap of Si, which does not absorb light waves with a wavelength greater than 1 μm, but also the structure is not easy to Integrated with Si waveguides.
Si基光电探测器是Si基光电子集成中接收光信号、并将其转换成电信号的器件,对小于1μm波长的光波,Si基光电探测器具有响应快、探测灵敏度高、暗电流小和频带宽的特点,而且易于同场效应晶体管(FET)和异质结双极晶体管(HBT)一起构成混合集成光电子电路,以共同完成光探测和光信号放大的作用,是单片集成系统中不可缺少的部分。Si-based photodetectors are devices that receive optical signals and convert them into electrical signals in Si-based optoelectronic integration. For light waves with a wavelength of less than 1 μm, Si-based photodetectors have fast response, high detection sensitivity, small dark current and frequency. The characteristics of bandwidth, and it is easy to form a hybrid integrated optoelectronic circuit with a field effect transistor (FET) and a heterojunction bipolar transistor (HBT) to jointly complete the functions of light detection and light signal amplification. It is indispensable in a monolithic integrated system. part.
在通信波段,Si基光电探测器的有源区材料主要采用Ge,这是由于Ge具有良好的光吸收特性、高载流子迁移率、并易于Si工艺兼容的优点。但是Ge与Si的晶格失配高达4%,直接生长有一定的困难;其次,通常的分立器件都是用来探测垂直于薄膜表面光信号的,无法与平面光波导集成;第三,在分立器件中光吸收要求本征层厚与载流子漂移要求本征层薄相矛盾;第四,分立器件所用工艺不与互补式金属-氧化层-半导体(CMOS)工艺兼容,进而无法与微电子集成。针对这些不足,许多研究者开发出与波导连接的横向器件,其大至可分为两类:一类是早期借助外延生长而上下叠放的pn或p-i-n型结构(H.Temkin,et.al.,“GexSi1-x strained-layersuperlattice waveguide photo-detectors operating near 1.3μm”,AppliedPhysics Letters,48:963-65,1986),其优势是可以照搬立式器件中各种材料生长来满足横向器件需要,不足之处是与CMOS兼容性差,其顶部金属电极对光信号吸收强烈而产生损耗;另一类则是近来发展起来的横向p-i-n结构,它是利用离子注入的方式在Si中形成双空位络合物(divacancycomplex)缺陷,价带电子在吸收了光子后跃迁至深能级(缺陷光吸收)(E.V.Monakhov,et.al.,“Divacancy annealing in Si:Influence ofhydrogen”,Physical Review B,69:153202,2006),以及饱和后释放电子,其最大优势是与CMOS兼容、与光电子集成,尽管缺陷光吸收的效率低下,但可以通过延长吸收波导来补偿。加拿大McMaster大学工程物理系的研究小组采用第二类横向p-i-n结构制备出了光电探测器,其波长在1.55μm的响应度为9mA/W(J.D.B.Bradley,et.al.,“Silicon waveguide-integratedoptical power monitor with enhanced sensitivity at 1550nm”,Applied PhysicsLetters,86:241103,2005);美国MIT的Lincoln实验室对前者波导细化,使光生载流子的渡越时间缩短,得到了更好的结果,其器件工作波长在1.27-1.74μm,1.55μm处的响应度为800mA/W,3dB带宽为10-20GHz(M.W.Gleis,etal.,“CMOS-compatible all-Si high-speed waveguidephotodiodes with high responsivity in near-infrared communication band”,IEEE Photonics Technology Letters,19(3):152-54,2007)。In the communication band, Ge is mainly used as the active material of Si-based photodetectors, because Ge has the advantages of good light absorption characteristics, high carrier mobility, and easy compatibility with Si process. However, the lattice mismatch between Ge and Si is as high as 4%, and there are certain difficulties in direct growth; secondly, the usual discrete devices are used to detect optical signals perpendicular to the surface of the film, and cannot be integrated with planar optical waveguides; thirdly, in discrete In the device, light absorption requires intrinsic layer thickness and carrier drift requires intrinsic layer thickness to be contradictory; fourth, the process used in discrete devices is not compatible with complementary metal-oxide-semiconductor (CMOS) processes, and thus cannot be compatible with microelectronics integrated. In response to these shortcomings, many researchers have developed lateral devices connected to waveguides, which can be divided into two categories: one is the pn or pin structure that was stacked up and down by epitaxial growth in the early stage (H.Temkin, et.al ., "G x Si 1-x strained-layer superlattice waveguide photo-detectors operating near 1.3μm", AppliedPhysics Letters, 48:963-65, 1986), its advantage is that it can copy the growth of various materials in vertical devices to meet the lateral The shortcoming is that it is poorly compatible with CMOS, and its top metal electrode absorbs the light signal strongly and causes loss; the other type is the recently developed lateral pin structure, which uses ion implantation to form a double pin structure in Si. Vacancy complex (divacancy complex) defects, valence band electrons jump to deep energy levels after absorbing photons (defect light absorption) (EVMonakhov, et.al., "Divacancy annealing in Si: Influence of hydrogen", Physical Review B, 69 : 153202, 2006), and release electrons after saturation. Its biggest advantage is compatibility with CMOS and integration with optoelectronics. Although the efficiency of defect light absorption is low, it can be compensated by extending the absorption waveguide. The research team of the Department of Engineering Physics, McMaster University in Canada used the second type of lateral pin structure to prepare a photodetector with a responsivity of 9 mA/W at a wavelength of 1.55 μm (JDB Bradley, et.al., "Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm”, Applied Physics Letters, 86: 241103, 2005); the Lincoln Laboratory of MIT in the United States refined the waveguide of the former, which shortened the transit time of photogenerated carriers and obtained better results. The device works The wavelength is 1.27-1.74μm, the responsivity at 1.55μm is 800mA/W, and the 3dB bandwidth is 10-20GHz (MWGleis, et al., "CMOS-compatible all-Si high-speed waveguidephotodiodes with high responsivity in near-infrared communication band ", IEEE Photonics Technology Letters, 19(3):152-54, 2007).
尽管Si基光电探测器有很大的进展,但仍存在着一些问题和有待改进的地方。首先,器件过长(约1mm),对于横截面面积为0.5×0.22平方微米的波导,在Si片上延伸2000倍,是不易于器件制备的;其次,电子输运机理不明,原理上Si波导吸收是由于Si+离子注入后引起的双空位络合物缺陷、价带电子吸收光子后跃迁至缺陷深能级,但电子从深能级如何输运到电极上并不清楚,这使得器件制备具有盲目性。Although Si-based photodetectors have made great progress, there are still some problems and room for improvement. First of all, the device is too long (about 1mm). For a waveguide with a cross-sectional area of 0.5×0.22 square microns, it is not easy to make the device by extending 2000 times on the Si sheet; secondly, the electron transport mechanism is unknown, and the Si waveguide absorbs in principle It is due to the double-vacancy complex defects caused by Si + ion implantation, and the valence band electrons absorb photons and jump to the deep energy level of the defect, but it is not clear how the electrons are transported from the deep energy level to the electrode, which makes the device preparation very interesting. blindness.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的一个目的在于提供一种全硅波导型光电转换器件,尤其是与CMOS工艺兼容的1.55微米波段的全硅波导型光电转换器件,以深能级光吸收的方法突破Si光电探测器所受1.12eV禁带宽度的制约。In view of this, an object of the present invention is to provide an all-silicon waveguide photoelectric conversion device, especially an all-silicon waveguide photoelectric conversion device compatible with CMOS technology in the 1.55 micron band, which breaks through Si photoelectricity by means of deep-level light absorption. The detector is constrained by the 1.12eV forbidden band width.
本发明的另一个目的在于提供一种全硅波导型光电转换器件的制造方法,尤其是与CMOS工艺兼容的1.55微米波段的全硅波导型光电转换器件的制造方法,以便在Si上实现通信信号接收器件与微电子芯片的集成。Another object of the present invention is to provide a method for manufacturing an all-silicon waveguide-type photoelectric conversion device, especially a method for manufacturing an all-silicon waveguide-type photoelectric conversion device compatible with a CMOS process in the 1.55 micron band, so that communication signals can be realized on Si Integration of receiving devices with microelectronic chips.
(二)技术方案(2) Technical solution
为达到上述一个目的,本发明提供了一种制造全硅波导型光电转换器件的方法,该方法包括以下步骤:To achieve the above-mentioned purpose, the present invention provides a method for manufacturing an all-silicon waveguide photoelectric conversion device, the method comprising the following steps:
形成包括Si薄层3的Si基SOI基片;forming a Si-based SOI substrate comprising a Si thin layer 3;
使用干法刻蚀或湿法腐蚀的方法将Si薄层3刻蚀成直波导3和弯曲波导8;Etching the Si thin layer 3 into a straight waveguide 3 and a curved waveguide 8 by dry etching or wet etching;
使用离子注入的方法,在直波导3的表面上注入硅离子(Si+)、银离子(Ag+)或氢离子(H+),并退火,形成具有深能级的络合物缺陷;Implanting silicon ions (Si + ), silver ions (Ag + ) or hydrogen ions (H + ) on the surface of the straight waveguide 3 by ion implantation, and annealing to form complex defects with deep energy levels;
使用刻蚀方法,在直波导3两端制备分布式Bragg反射光栅,使直波导3成为谐振腔;Using an etching method to prepare distributed Bragg reflection gratings at both ends of the straight waveguide 3, so that the straight waveguide 3 becomes a resonant cavity;
使用离子注入或扩散的方法,在直波导3一侧注入或扩散III族离子并退火,形成p型掺杂区4,和在直波导3另一侧注入或扩散V族离子并退火,形成n型掺杂区5,从而在基片表层上构成横向p-i-n结构。Using ion implantation or diffusion, implant or diffuse group III ions on one side of the straight waveguide 3 and anneal to form p-type doped region 4, and implant or diffuse group V ions on the other side of the straight waveguide 3 and anneal to form n Type doped region 5, thus forming a lateral p-i-n structure on the surface layer of the substrate.
上述方案中,所述SOI基片由自下至上依次布置的Si衬底1、SiO2下包层2、和Si薄层3构成。In the above solution, the SOI substrate is composed of Si substrate 1, SiO 2 lower cladding layer 2, and Si thin layer 3 arranged in sequence from bottom to top.
上述方案中,所述p型掺杂区4和所述n型掺杂区5分别在其上设置有采用金属蒸发的方法局部制备的Al或Al合金电极。In the above solution, the p-type doped region 4 and the n-type doped region 5 are respectively provided with Al or Al alloy electrodes locally prepared by metal evaporation.
上述方案中,所述弯曲波导8与直波导相切,弯曲波导8外端口为光波入射端,光波通过弯曲波导8并入直波导谐振腔3。In the above solution, the curved waveguide 8 is tangent to the straight waveguide, and the outer port of the curved waveguide 8 is the light wave incident end, and the light wave is merged into the straight waveguide resonant cavity 3 through the curved waveguide 8 .
上述方案中,所述分布式Bragg反射光栅具有周期条形槽,从而对通信光波形成高反射。In the above solution, the distributed Bragg reflection grating has periodic bar-shaped grooves, thereby forming high reflection for communication light waves.
上述方案中,在两个反射光栅之间的谐振腔3的腔长满足通信波长的整数倍。In the above solution, the cavity length of the resonant cavity 3 between the two reflective gratings satisfies an integer multiple of the communication wavelength.
上述方案中,所述通信光波,其波长为1.55微米波段。In the above solution, the wavelength of the communication light wave is in the 1.55 micron band.
为达到上述另一个目的,本发明提供了一种全硅波导型光电转换器,具有包括Si薄层3的Si基SOI基片,该光电转换器包括:For achieving above-mentioned another purpose, the present invention provides a kind of all-silicon waveguide type photoelectric converter, has the Si base SOI substrate that comprises Si thin layer 3, and this photoelectric converter comprises:
直波导3和弯曲波导8,所述直波导3和弯曲波导8通过干法刻蚀或湿法腐蚀所述Si薄层3形成,其中:在直波导3两端设置有分布式Bragg反射光栅从而直波导3成为谐振腔,且在直波导3的表面上注入Si离子并退火以形成深能级缺陷;A straight waveguide 3 and a curved waveguide 8, the straight waveguide 3 and the curved waveguide 8 are formed by dry etching or wet etching the Si thin layer 3, wherein: a distributed Bragg reflection grating is arranged at both ends of the straight waveguide 3 so that The straight waveguide 3 becomes a resonant cavity, and Si ions are implanted on the surface of the straight waveguide 3 and annealed to form deep level defects;
形成在直波导3的一侧的p型掺杂区4和形成在直波导3的另一侧的n型掺杂区5,从而在Si表层形成横向p-i-n结构。The p-type doped region 4 formed on one side of the straight waveguide 3 and the n-type doped region 5 formed on the other side of the straight waveguide 3 form a lateral p-i-n structure on the Si surface layer.
上述方案中,所述p型掺杂区4通过在直波导3的一侧注入或扩散硼离子B+并退火而形成,所述n型掺杂区5通过在直波导3的另一侧注入或扩散磷离子P+而形成。In the above solution, the p-type doped region 4 is formed by implanting or diffusing boron ions B + on one side of the straight waveguide 3 and annealing, and the n-type doped region 5 is formed by implanting B+ on the other side of the straight waveguide 3 Or diffuse phosphorus ions P + to form.
上述方案中,所述SOI基片由自下至上依次布置的Si衬底1、SiO2下包层2和Si薄层3构成。In the above solution, the SOI substrate is composed of Si substrate 1, SiO 2 lower cladding layer 2 and Si thin layer 3 arranged in sequence from bottom to top.
上述方案中,所述p型掺杂区4和所述n型掺杂区5分别在其上具有局部采用金属蒸发的方法制备的Al或Al合金电极。In the above solution, the p-type doped region 4 and the n-type doped region 5 respectively have Al or Al alloy electrodes locally prepared by metal evaporation.
上述方案中,所述弯曲波导8与直波导相切,弯曲波导8外端口为光波入射端,光波通过弯曲波导8并入直波导谐振腔3。In the above solution, the curved waveguide 8 is tangent to the straight waveguide, and the outer port of the curved waveguide 8 is the light wave incident end, and the light wave is merged into the straight waveguide resonant cavity 3 through the curved waveguide 8 .
上述方案中,所述弯曲波导8的弯曲半径的大小正比于返回的光波的信号的强弱。In the above solution, the bending radius of the curved waveguide 8 is proportional to the signal strength of the returning light wave.
上述方案中,所述分布式Bragg反射光栅具有周期条形槽,从而对通信光波形成高反射。In the above solution, the distributed Bragg reflection grating has periodic bar-shaped grooves, thereby forming high reflection for communication light waves.
上述方案中,在两个反射光栅之间的谐振腔3的腔长满足通信波长的整数倍。In the above solution, the cavity length of the resonant cavity 3 between the two reflective gratings satisfies an integer multiple of the communication wavelength.
上述方案中,所述通信光波的波长在1.55微米波段。In the above solution, the wavelength of the communication light wave is in the 1.55 micron band.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
1、利用本发明,可以将弯曲波导作为光电转换器入射口,弯曲波导与直波导相切,光波通过弯曲波导输入直波导谐振腔,而由直波导谐振腔传播到弯曲波导的光波则很少,其强度与弯曲波导成正比。因此由直波导谐振腔和弯曲波导结合起来的“r”形器件具有近似的单向通光特性。1. Using the present invention, the curved waveguide can be used as the entrance of the photoelectric converter, the curved waveguide is tangent to the straight waveguide, the light wave is input into the straight waveguide resonant cavity through the curved waveguide, and the light wave transmitted from the straight waveguide resonant cavity to the curved waveguide is seldom , whose strength is proportional to the bending waveguide. Therefore, the "r"-shaped device combined by the straight waveguide resonator and the curved waveguide has an approximate one-way light-passing characteristic.
2、利用本发明,可以在直波导两端设置布式布拉格(Bragg)高反射光栅,根据光子晶体高阶禁带和介电质周期场理论,在Si波导上刻蚀或腐蚀微小周期条形槽,从而对1.55微米波段的光波形成高反射;2. Utilizing the present invention, a distributed Bragg (Bragg) high-reflection grating can be arranged at both ends of the straight waveguide, and according to the theory of photonic crystal high-order forbidden band and dielectric periodic field, etch or corrode tiny periodic strips on the Si waveguide Groove, so as to form a high reflection of the light wave in the 1.55 micron band;
3、利用本发明,可以在两个分布式Bragg高反射光栅之间形成谐振腔,谐振腔腔长满足通信波长(如1.55微米)的整数倍,使其形成谐振。3. Using the present invention, a resonant cavity can be formed between two distributed Bragg high-reflection gratings, and the cavity length of the resonant cavity satisfies an integer multiple of the communication wavelength (such as 1.55 microns) to form a resonance.
4、利用本发明,可以将光吸收路径(沿波导方向)与载流子漂移路径(垂直波导方向)分开,在提高量子效率的同时也能加快响应时间。4. With the present invention, the light absorption path (along the waveguide direction) can be separated from the carrier drift path (perpendicular to the waveguide direction), and the response time can be accelerated while improving the quantum efficiency.
5、利用本发明,可以直接探测波导中的光信号,从而与平面光波回路形成无损连接,形成平面集成回路;5. Using the present invention, the optical signal in the waveguide can be directly detected, thereby forming a lossless connection with the planar light wave circuit and forming a planar integrated circuit;
6、利用本发明,光电探测器件的制备可以与CMOS工艺兼容,从而可与微电子芯片集成。6. Utilizing the present invention, the preparation of photodetection devices can be compatible with CMOS technology, so that they can be integrated with microelectronic chips.
附图说明 Description of drawings
图1是本发明的全硅波导型光电转换器件结构垂直波导的横截面图;和1 is a cross-sectional view of a vertical waveguide of an all-silicon waveguide type photoelectric conversion device structure of the present invention; and
图2是是本发明的全硅波导型光电转换器件结构垂直波导的俯视图。Fig. 2 is a top view of the vertical waveguide of the all-silicon waveguide photoelectric conversion device structure of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific examples and with reference to the accompanying drawings.
图1为本发明提供的一种全硅波导型光电转换器件结构的垂直波导的横截面图,优选地,该全硅波导型光电转换器件适于1.55微米波段。整个器件制备在Si基SOI衬底上,从下至上依次为Si衬底1、SiO2下包层2和Si脊形波导3;波导左侧为p型掺杂区4和Al或Al合金电极6,波导右侧为n型掺杂区5和Al或Al合金电极7。FIG. 1 is a cross-sectional view of a vertical waveguide of an all-silicon waveguide photoelectric conversion device structure provided by the present invention. Preferably, the all-silicon waveguide photoelectric conversion device is suitable for a 1.55 micron waveband. The whole device is prepared on Si-based SOI substrate, from bottom to top are Si substrate 1, SiO 2 lower cladding layer 2 and Si ridge waveguide 3; the left side of the waveguide is p-type doped region 4 and Al or
图2是本发明的1.55微米波段全Si波导型光电转换器件结构垂直波导的俯视图,波导由弯曲波导8和直波导3构成,直波导3两端为分布式布拉格光栅(Distributed Bragg Raster,简称DBR)9、10,反射光栅之间为谐振腔,从而直波导3为谐振腔,谐振腔腔长为谐振波长的整数倍,光波在谐振腔中通过谐振来加强缺陷光吸收、并缩短器件尺寸;直波导3两侧则与图1中相同,波导左侧为p型掺杂区4和Al或Al合金电极6,波导右侧为n型掺杂区5和Al或Al合金电极7,从而在Si平面上形成横向p-i-n结构。这种横向p-i-n结构可以将光吸收路径(沿波导方向)与载流子漂移路径(垂直波导方向)分开,在提高量子效率的同时也能加快响应时间。Fig. 2 is the top view of the vertical waveguide of the 1.55 micron band all-Si waveguide photoelectric conversion device structure of the present invention, the waveguide is composed of a curved waveguide 8 and a straight waveguide 3, and the two ends of the straight waveguide 3 are distributed Bragg gratings (Distributed Bragg Raster, DBR for short) ) 9, 10, there is a resonant cavity between the reflective gratings, so that the straight waveguide 3 is a resonant cavity, the length of the resonant cavity is an integer multiple of the resonant wavelength, and the optical wave is resonated in the resonant cavity to strengthen the defect light absorption and shorten the device size; The two sides of the straight waveguide 3 are the same as in Fig. 1, the left side of the waveguide is the p-type doped region 4 and the Al or
采取干法刻蚀或湿法腐蚀的方法将Si薄层3刻蚀成直波导3和弯曲波导8;进一步在Si薄层3两端刻蚀或腐蚀分布式Bragg反射光栅9、10,使直波导3为谐振腔。另外,弯曲波导8与直波导3相切,并与直波导构成“r”形波导,从弯曲波导入射的光波可以全部进入直波导,而从直波导回传的光波只有很少一部分可以进入弯曲波导。因此,可以说“r”形波导具有近似的单向光波传输特性;另一方面,由于信号输入不经过DBR,可以制备高反射率的DBR,使谐振特性更好。Etch the Si thin layer 3 into a straight waveguide 3 and a curved waveguide 8 by dry etching or wet etching; further etch or etch the distributed
使用离子(如硼离子B+)注入或扩散的方法,在波导3一侧注入或扩散III族离子并退火,形成p型掺杂区4;并在其上局部采用金属蒸发的方法制备Al或Al合金电极6;Use ion (such as boron ion B + ) implantation or diffusion method, implant or diffuse Group III ions on one side of the waveguide 3 and anneal to form a p-type doped region 4; and locally adopt the method of metal evaporation to prepare Al or
使用离子(如磷离子P+)注入或扩散的方法,在波导3另一侧注入或扩散V族离子并退火成n型掺杂区5;并在其上局部采用金属蒸发的方法制备Al或Al合金电极7,从而在Si平面上形成横向p-i-n结构;Using ion (such as phosphorus ion P + ) implantation or diffusion method, implant or diffuse group V ions on the other side of the waveguide 3 and anneal to form an n-type doped region 5; and locally adopt the method of metal evaporation to prepare Al or
在直波导3上注入Si+离子、银离子Ag+或氢离子(H + )等,退火后形成双空位络合物(divacancy complex)缺陷、价带电子在光子(如1.55微米波段)激发下跃迁到缺陷深能级(缺陷光吸收),然后,电子在深能级上跳跃迁移;或者,在深能级上的电子受到二次光激发,将其送入导带,从而形成二次光激发的缺陷光电导。Implant Si + ions, silver ions Ag + or hydrogen ions (H + ) into the straight waveguide 3, and form divacancy complex defects after annealing, and the valence band electrons are excited by photons (such as 1.55 micron band) Transition to the defect deep energy level (defect light absorption), and then, electrons jump and migrate on the deep energy level; or, the electrons on the deep energy level are excited by the secondary light and sent into the conduction band, thereby forming a secondary light Excited defect photoconductivity.
需要注意的是,以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。It should be noted that the specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to To limit the present invention, any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101219730A CN101393945A (en) | 2007-09-19 | 2007-09-19 | All-silicon waveguide photoelectric converter and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101219730A CN101393945A (en) | 2007-09-19 | 2007-09-19 | All-silicon waveguide photoelectric converter and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101393945A true CN101393945A (en) | 2009-03-25 |
Family
ID=40494131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101219730A Pending CN101393945A (en) | 2007-09-19 | 2007-09-19 | All-silicon waveguide photoelectric converter and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101393945A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102361034A (en) * | 2011-09-29 | 2012-02-22 | 清华大学 | Vertical selection tube and memory cell formed by vertical selection tube |
CN103210506A (en) * | 2010-06-03 | 2013-07-17 | 桑艾维公司 | Selective Emitter Solar Cell Formed by Mixed Diffusion and Ion Implantation Process |
CN104247046A (en) * | 2012-07-25 | 2014-12-24 | 惠普发展公司,有限责任合伙企业 | Avalanche photodiodes with defect-assisted silicon absorption regions |
CN104282794A (en) * | 2013-07-12 | 2015-01-14 | 新加坡商格罗方德半导体私人有限公司 | Semiconductor devices including photodetectors integrated on waveguides and methods for fabricating the same |
CN105181605A (en) * | 2015-07-14 | 2015-12-23 | 杭州电子科技大学 | Spectrometer based on Bragg reflection effect |
CN105431766A (en) * | 2013-07-30 | 2016-03-23 | 圣安德鲁斯大学董事会 | Optical modulator with plasmon-based coupling device |
CN112201714A (en) * | 2020-09-28 | 2021-01-08 | 三明学院 | A detector and its manufacturing process |
-
2007
- 2007-09-19 CN CNA2007101219730A patent/CN101393945A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103210506A (en) * | 2010-06-03 | 2013-07-17 | 桑艾维公司 | Selective Emitter Solar Cell Formed by Mixed Diffusion and Ion Implantation Process |
CN102361034A (en) * | 2011-09-29 | 2012-02-22 | 清华大学 | Vertical selection tube and memory cell formed by vertical selection tube |
CN102361034B (en) * | 2011-09-29 | 2013-03-06 | 清华大学 | Vertical selection tube and memory cell formed by vertical selection tube |
CN104247046A (en) * | 2012-07-25 | 2014-12-24 | 惠普发展公司,有限责任合伙企业 | Avalanche photodiodes with defect-assisted silicon absorption regions |
CN104282794A (en) * | 2013-07-12 | 2015-01-14 | 新加坡商格罗方德半导体私人有限公司 | Semiconductor devices including photodetectors integrated on waveguides and methods for fabricating the same |
CN104282794B (en) * | 2013-07-12 | 2016-10-05 | 新加坡商格罗方德半导体私人有限公司 | Comprise semiconductor equipment and the manufacture method thereof of the optical detector being integrated in waveguide |
CN105431766A (en) * | 2013-07-30 | 2016-03-23 | 圣安德鲁斯大学董事会 | Optical modulator with plasmon-based coupling device |
CN105431766B (en) * | 2013-07-30 | 2019-04-19 | 圣安德鲁斯大学董事会 | Optical modulator with plasmon-based coupling device |
CN105181605A (en) * | 2015-07-14 | 2015-12-23 | 杭州电子科技大学 | Spectrometer based on Bragg reflection effect |
CN105181605B (en) * | 2015-07-14 | 2018-07-17 | 杭州电子科技大学 | A kind of spectrometer based on Bragg reflection effect |
CN112201714A (en) * | 2020-09-28 | 2021-01-08 | 三明学院 | A detector and its manufacturing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100853067B1 (en) | Photodiode and its manufacturing method | |
JP4835837B2 (en) | Photodiode and manufacturing method thereof | |
EP3349252B1 (en) | Optical waveguide detector and optical module | |
JP5981086B2 (en) | Photodetector | |
JP5282887B2 (en) | Photodiode, optical communication device and optical interconnection module | |
CN108010982B (en) | Waveguide Composite Coupled Single Row Carrier Detector | |
JP2008526003A (en) | Germanium-on-silicon photodetector | |
Brouckaert et al. | Compact InAlAs–InGaAs metal–semiconductor–metal photodetectors integrated on silicon-on-insulator waveguides | |
CN106356419B (en) | A kind of photodetector of the structure containing oxygen buried layer | |
CN100552984C (en) | Germanium/silicon hybrid integrated waveguide photoelectric converter and its manufacturing method | |
CN101393945A (en) | All-silicon waveguide photoelectric converter and manufacturing method thereof | |
CN112018211B (en) | Avalanche photodetector and preparation method thereof | |
CN102023455B (en) | N-InP-based monolithic integrated optical logic gate and manufacturing method thereof | |
CN103489953A (en) | APD with dual-step evanescent field coupling function | |
JP6538969B2 (en) | Optical waveguide integrated light receiving element and method of manufacturing the same | |
CN102569485B (en) | Near-infrared band full silicon-base nanometer photoelectric detector | |
CN101661137B (en) | Method for making silicon waveguide photoelectric converter used in 1.55mu m communication wave band | |
CN202405298U (en) | Near-infrared band full-silicon-based nano photoelectric detector | |
Yan et al. | High-performance Ge photodetectors on silicon photonics platform for optical interconnect | |
CN114335207B (en) | Germanium-silicon photoelectric detector based on double-layer sub-wavelength grating | |
Zhang et al. | First Si-waveguide-integrated InGaAs/InAlAs avalanche photodiodes on SOI platform | |
CN108987530B (en) | Method for manufacturing photoelectric detector | |
JP2004247620A (en) | Semiconductor light receiver element | |
CN112201707B (en) | Silicon-based all-silicon surface absorption detector with grating structure and preparation method thereof | |
Huang et al. | Waveguide-based Photodetector integrated with Semiconductor Optical Amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090325 |