CN101364763B - 从动切换电路与交错式从动切换方法 - Google Patents

从动切换电路与交错式从动切换方法 Download PDF

Info

Publication number
CN101364763B
CN101364763B CN2008101666936A CN200810166693A CN101364763B CN 101364763 B CN101364763 B CN 101364763B CN 2008101666936 A CN2008101666936 A CN 2008101666936A CN 200810166693 A CN200810166693 A CN 200810166693A CN 101364763 B CN101364763 B CN 101364763B
Authority
CN
China
Prior art keywords
signal
driven
switching signal
circuit
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101666936A
Other languages
English (en)
Other versions
CN101364763A (zh
Inventor
杨大勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Taiwan Corp
Original Assignee
System General Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System General Corp Taiwan filed Critical System General Corp Taiwan
Publication of CN101364763A publication Critical patent/CN101364763A/zh
Application granted granted Critical
Publication of CN101364763B publication Critical patent/CN101364763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4291Arrangements for improving power factor of AC input by using a Buck converter to switch the input current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

本发明为一种主从式功因修正转换器的从动切换电路。此从动切换电路包含相位检测电路,用以检测主动切换信号和从动电感信号,并据以产生启动信号和锁相信号。此启动信号用以致能从动切换信号。此从动切换信号用以切换从动电感。导通时间调整电路依据上述锁相信号来调整从动切换信号的导通时间。上述从动电感信号与从动电感的去磁有关。上述锁相信号用以将从动电感信号的禁能与启动信号的致能之间的时间减到最小。

Description

从动切换电路与交错式从动切换方法
技术领域
本发明是涉及一种切换式功率转换器(Switching Power Converter),且特别是涉及一种功因修正(Power Factor Correction,底下简称PFC)转换器的控制电路。
背景技术
在功率转换器的领域中,高电流的需求通常会减少功率转换的效率。一般而言,功率转换器的功率损失与电流成指数的比例变化。
PLOSS=I2×R   (1)
其中,I是功率转换器的切换电流;R是切换装置的阻抗,例如是电感和晶体管等的电阻值。
因此,发展并联式技术(Parallel Technologies),就是为了减少功率转换器的电力消耗。功因修正转换器(PFC converter)则用来改善交流电源(AC power source)的功率因子。PFC转换器的详细技术可以在早期的现有技术,例如可参照美国第7,116,090号专利,发明名称为“不连续模式功因修正转换器的切换式控制电路(Switching Control Circuit for DiscontinuousMode PFC Converters)”。
发明内容
本发明的目的在于提出一种交错式从动切换电路(Interleaved SlaveSwitching Circuit),用于与PFC转换器的主动切换电路(Master SwitchingCircuit)并联使用,以改善电源供应器的效率。这种主从式电路(Master-slave Circuit)的技术包含同步(Synchronization)和相位交错(PhaseInterleaving),此将分散切换的噪声,并且减少涟波(Ripples)的产生。
本发明提供一种从动切换电路,用于主从式功因修正转换器。此从动切换电路包含相位检测电路,用以检测主动切换信号和从动电感信号,并据以产生启动信号和锁相信号。此启动信号用以致能一个从动切换信号。而此从动用以切换一个从动电感。一个导通时间调整电路,用以根据此锁相信号调整从动切换信号的导通时间。上述从动电感信号与从动电感的去磁(Demagnetization)有关。上述锁相信号用以将从动电感信号的禁能状态与启动信号的致能状态之间的周期减到最小。在此提出一种电源管理电路,当主动切换信号的导通时间减少且其脉宽(Pulse Width)低于临界值(threshold)时,此电路用来减少从动切换信号的导通时间。
所述的从动切换电路,还包括:一电源管理电路,接收该主动切换信号,当该主动切换信号的导通时间减少且其脉宽低于一临界值时,减少该从动切换信号的导通时间。
其中,该从动切换信号在该启动信号致能前被截止,据以决定该从动切换信号的最大工作周期。
其中,该启动信号是根据该主动切换信号的切换周期所产生。
其中,该导通时间调整电路用以调整该从动切换信号的导通时间,以便将该从动电感信号的禁能到启动信号的致能之间的周期减到最小。
其中,该相位检测电路包含:一相位信号产生器,在该主动切换信号的切换周期,产生该启动信号;以及一锁定信号产生器,依据该从动电感信号和该从动切换信号而产生该锁相信号,该主动切换信号相移之后产生该启动信号,而且在该从动电感信号的禁能与该从动切换信号的致能之间的周期,产生该锁相信号。
其中,该导通时间调整电路包含:一正反器,依据该启动信号而致能该从动切换信号;一斜坡信号产生器,依据该从动切换信号而产生一斜坡信号;一上/下计数器,耦接到该锁相信号,以产生一数字码(DigitalCode);一数字模拟转换器,根据该数字码产生一模拟信号;以及一比较器,依据该模拟信号和该斜坡信号的比较结果,用以对该从动切换信号禁能。
本发明的有益效果:本发明用于与PFC转换器的主动切换电路并联使用,以改善电源供应器的效率。这种主从式电路的技术包含同步和相位交错,此将分散切换的噪声,并且减少涟波的产生。
附图说明
图1绘示为本发明的主从式功因修正转换器电路图。
图2绘示为本发明一实施例的主从式功因修正转换器电路图的从动切换电路。
图3绘示本发明的相位检测电路实施例示意图。
图4绘示本发明另一实施例的相位信号产生器实施例示意图。
图5绘示本发明的信号产生器实施例示意图。
图6绘示一种脉波信号产生器实施例示意图。
图7绘示本发明的信号的关键波形图。
图8绘示本发明另一实施例的锁定信号产生器示意图。
图9绘示本发明另一实施例的导通时间调整电路示意图。
图10绘示本发明的电源管理电路实施例示意图。
【主要元件符号说明】
VIN:系统输入电压
10、30:晶体管
11、17、31、37、51、52:电阻器
15:主动电感
19、39:反相器
35:从动电感
40:电容器
VO:系统输出电压
GND:接地
50:主动切换电路
90:从动切换电路
V1:主动电感信号
VN:从动电感信号
VFB:回馈信号
I1:主动电流信号
IN:从动电流信号
S1:主动切换信号
SN:从动切换信号
I10:切换电流
500:电源管理电路
ICHG:电源管理电路的输出电流
100:相位检测电路
105:相位信号产生器
110:震荡器
112、150:与门
125:计数器
130:反相器
135:缓存器
140:比较器
171、173、175:脉波产生器
180:信号产生器
181、350:正反器
183、185、187、189:反相器
190、310:电流源
191、196、311、371:反相器
193:晶体管
195、315:电容器
197、370:与门
200:锁定信号产生器
210、280、285:比较器
211:与门
215:正反器
220、230:脉波产生器
225:反相器
245、255、257:开关
250、270:电容器
260:禁止电路
300:导通时间调整电路
312:开关
320:加法器
325、360:比较器
330:数字模拟转换器
340:上下计数器
500:电源管理电路
510、550、551、565:电流源
511、516、517:开关
520、530:反相器
525、535:脉波产生器
515、519:电容器
540:比较器
541:电阻器
542、543、544:晶体管
RSTN:重置信号
CLKN:启动信号
UP、DWN:锁相信号
N:计数器的输出数据
M:缓存器的输出数据
LTH:锁存信号
EN:周期信号
VCC:系统操作电压
IN:脉波产生器的输入端
OUT:脉波产生器的输出端
SMP2:取样信号
CLR2:清除信号
VH:比较器差动信号的高临界值
VL:比较器差动信号的低临界值
VTH:临界信号
VR2:临界电压
SLP2:斜坡信号
VW:数字模拟转换器的输出信号
具体实施方式
为让本发明的上述特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
图1显示一种依照本发明实施例的主从式功因修正(Power FactorCorrection,底下简称PFC)转换器电路方块示意图。此主动切换电路50、晶体管10、主动电感15、整流器19形成一个主动功率转换器(Mater PowerConverter)。主动切换信号S1用来控制晶体管10,以切换主动电感15。整流器(Rectifier)19和电容器40用来产生功因修正(PFC)转换器的输出电压VO。从动切换电路90(Slave Switching Circuit)、晶体管30、从动电感35和整流器39形成从动功率转换器(Slave Power Converter)以耦合到上述的输出电压VO。从动切换信号SN控制晶体管30,以切换从动电感35(SlaveInductor)。功率转换器的输出是以并联方式连结。电感15和35连接到输出电压VO。电感15和35进一步地连接输入端VIN。当晶体管10导通(Tumed On)时,切换电流I10据以产生。而产生的方程式如下所示:
I 10 = V IN L 15 × T ON - 1 - - - ( 2 )
其中L15是主动电感15的电感值;TON-1是主动切换信号S1的导通时间;VIN是输入端VIN的电压值。此处或往后提到的“导通时间(On-time)”,表示晶体管导通的时间区间。
一种电流检测(Current-sense)装置,例如电阻11,用来检测切换电流I10,以产生主动电流信号I1。另一电流检测装置如电阻31,则是用来检测电阻30的切换电流,并且产生从动电流信号IN。当晶体管10导通时,电感15会储存能量。一旦晶体管10关闭(Tumed Off)时,此能量会经由整流器19传送到电容器40。主动电感15的辅助绕组产生主动电感信号V1,此主动电感信号V1与主动电感15的去磁有关联。此外,从动电感35的辅助绕组(Auxiliary Winding)产生与从动电感35的去磁有关联的从动电感信号VN.
图2显示从动切换电路90的实施例电路图。从动切换电路90产生从动切换信号SN,其内包含相位检测电路(PHASE DET)100、导通时间调整电路(On-time-adjust)300以及电源管理电路(PM)500。相位检测电路100用于检测主动切换信号S1和从动电感信号VN,据以产生启动信号CLKN和锁相信号UP/DWN。启动信号CLKN和锁相信号UP/DWN耦接到导通时间调整电路300。启动信号CLKN用来致能此从动切换信号SN。而从动切换信号SN用以切换如图1中所示的从动电感35。导通时间调整电路300用于根据锁相信号UP/DWN,调整从动切换信号SN的导通时间。此锁相信号UP/DWN与从动电感信号VN的终止到启动信号CLKN的初始之间的周期有关。因此,从动切换信号SN的导通时间受到调整,以将从动切换信号SN的禁能到从动电感信号VN的致能之间的时间减到最小。如果从动电感35去磁(Demagnetization)后,晶体管30立即导通,则从动电感35的电流会保持连续,以实现高功率因子(PF)和低总谐波失真(TotalHarmonic Distortion,THD)。
当主动切换信号S1的导通时间减小且其脉宽低于一临界值时,电源管理电路500用于接收主动切换信号S1,产生电流信号ICHG以减小从动切换信号SN的导通时间。
图3显示相位检测100的实施例电路图。相位检测100包含相位信号产生器(PHASE SIG)105和锁定信号产生器(LOCK SIG)200。此相位信号产生器105用于根据主动切换信号S1的切换周期,产生启动信号CLKN和重置信号(reset signal)RSTN。锁定信号产生器200用于根据从动电感信号VN、从动切换信号SN与启动信号CLKN,产生锁相信号UP或锁相信号DWN。启动信号CLKN在主动切换信号S1相移(Phase Shift)之后产生。锁相信号UP或锁相信号DWN则是根据从动电感信号VN的终止到从动切换信号SN的初始之间的周期产生。
图4显示相位信号产生器105的实施例示意图。信号产生器(如图所示的“SIG”)180用于接收主动切换信号S1,以产生周期信号(PeriodSignal)EN、锁存信号(Latch Signal)LTH、重置信号RSTN。周期信号EN和主动切换信号S1的切换周期成比例。周期信号EN用以致能计数器(Counter)125。震荡器(Oscillator,如图所示的“OSC”)110产生频率信号(Clock Signal),连结到与门112的一个输入端。与门112的另一个输入端连结到周期信号EN。与门112的输出端连结到计数器125的频率输入(Clock Input)端。锁存信号LTH连结到缓存器(register)135,据以对计数器125的输出数据N移位(Shifting)进缓存器135。缓存器135是向左移位,使计数器125的输出数据N除以二。重置信号RSTN经由反相器(inverter)130反相后,连接到计数器125的重置输入(Reset-Input)端,用以在计数器125的输出数据N移位进缓存器135后,重置计数器125。计数器125的输出数据N和缓存器135的输出数据M,连接到数字比较器(Digital Comparator)140。当计数器125的输出数据N大于缓存器135的输出数据M时(N>M),数字比较器140产生启动信号CLKN。数字比较器140的输出连接到与门150的一个输入端。周期信号EN连接到与门150的另一个输入端。与门150的输出端产生上述的启动信号CLKN。重置信号RSTN在启动信号CLKN之前产生。重置信号RSTN用以关闭从动切换信号SN
图5显示信号产生器180的实施例示意图。主动切换信号S1用以致能正反器(Flip-Flop)181。正反器181的输出端通过反相器183产生周期信号EN。正反器181的输出端进一步地连接到脉波产生器(PulseGenerator)171,以产生锁存信号LTH。锁存信号LTH经由反相器185反相后,连接到另一个脉波产生器173以输出重置信号RSTN。此重置信号RSTN经由反相器187的反相后,再连接到脉波产生器175。脉波产生器175的输出通过反相器189的反相后,用以重置正反器181。
图6显示脉波产生器的实施例示意图。电流源(Current Source)190用以对电容器195充电。晶体管193用来对电容器195放电。电容器195经由反相器196反相后,连接到与门197的一个输入端。脉波产生器的输入端IN连接到与门197的另一个输入端。脉波产生器的输入端IN进一步经由反相器191的反相后控制晶体管193的导通与截止的状态。因此,脉波信号是根据脉波产生器输入端IN信号的致能状态而产生。脉波信号的脉宽由电流源190的电流量和电容器195的电容量来决定。
图7显示信号波形图。周期信号EN、锁存信号LTH、和重置信号RSTN,在主动切换信号S1致能后开始产生。重置信号RSTN在锁存信号LTH输出后产生。主动切换信号S1相位移后产生启动信号CLKN
图8显示锁定信号产生器200的实施例示意图。当从动切换信号SN关闭后,一旦从动电感信号VN低于临界信号(threshold signal)VTH,比较器210将产生一个充电信号。正反器215将产生前述的充电信号。从动电感信号VN和临界信号VTH连接到比较器210的输入端。比较器210的输出端经由与门211用以致能正反器215。与门211的另一个输入端经由禁止电路(Inhabit Circuit,如图所示的“INH”)260连接到从动切换信号SN。启动信号CLKN连接到脉波产生器220,以产生取样信号(sample signal)SMP2。经由反相器225的反相后,通过重置正反器215,此取样信号SMP2进一步地禁能(Disable)充电信号。反相器225的输出端连接到另一个脉波产生器230,用以产生清除信号(Clear Signal)CLR2。
电流信号ICHG、电容器250、开关245和255,对应于充电信号,据以产生差动信号(Differential Signal)。开关257进一步地将差动信号连接到电容器270。充电信号控制开关245用以产生上述的差动信号。取样信号SMP2控制开关257对差动信号进行电压取样并传送到电容器270。清除信号CLR2连接开关255,用以对电容器250放电,并重置上述的差动信号。设置一相位延迟(Phase-delay)用来呈现从动电感信号VN的禁能和从动切换信号SN的致能之间的周期。
当相位延迟增加,差动信号的振幅也相对应地增加。差动信号的电压最大值取样至电容器270,此电容器270更进一步地连接到比较器280和285,用以产生锁相信号UP或是锁相信号DWN。因此,在从动电感信号VN的禁能和从动切换信号SN的致能之间的周期内,产生相对应的锁相信号UP或锁相信号DWN。当差动信号高于临界电压VH时,锁相信号UP或锁相信号DWN处于UP状态,以增加从动切换信号SN的导通时间。当差动信号低于临界电压VL时,锁相信号UP或锁相信号DWN处于DWN状态,以减少从动切换信号SN的导通时间。
图9显示导通时间调整电路300的实施例。导通时间调整电路30包含正反器350,依据启动信号CLKN用以致能上述的从动切换信号SN。开关312、电流源310、电容器315和反相器311形成斜坡信号(Ramp-signal)产生器,根据从动切换信号SN的致能而产生斜坡信号SLP2。加法器(Adder)320接收此斜坡信号SLP2和从动电流信号IN,并据以产生混合信号(Mixed Signal)并连接到比较器325的一个输入端。从动电流信号IN和从动电感35的切换电流有关。比较器325的另一个输入端接收数字模拟转换器(Digital-to-analog converter)330的输出信号VW。数字模拟转换器330依照上/下计数器(Up/down counter)340的输出来产生输出信号VW。从动切换信号SN连接到上/下计数器340的频率输入(Clock Input)。锁相信号UP/DWN也连接到上/下计数器340,以决定上数(Up-count)或下数(Down-count)。锁相信号UP/DWN用以控制上/下计数器340的输出,并且控制从动切换信号SN的导通时间。
通过与门370,对应于依据输出信号VW和混合信号的比较结果,比较器325的输出用来禁能经由连接与门370,对从动切换信号SN禁能。另一个比较器360,通过与门370以对从动切换信号SN加以禁能。比较器360的输入端连接到斜坡信号SLP2和临界电压VR2。一旦斜坡信号SLP2大于临界电压VR2时,从动切换信号SN将被禁能。从动切换信号SN的禁能临界电压VR2限制了从动切换信号SN的最大导通时间的最大值。此外,与门370的另一个输入端经由反相器371的反相后,连接到重置信号RSTN。重置信号RSTN在启动信号CLKN出现前产生,从动切换信号SN从而在启动信号CLKN致能前关闭,启动信号CLKN因而进一步限制了从动切换信号SN的最大工作周期。
图10显示电源管理电路500的实施例。电流源510、电容器515与519、开关511、516与517组成一时间对电压(Time-to-voltage)电路,依据主动切换信号S1的脉宽(导通时间),用以在电容器519上产生电压信号。主动切换信号S1耦接开关511,用以让电流源510向电容器515充电。通过反相器520和脉波产生器525,主动切换信号S1产生一个取样信号(Sample Signal)来导通或截止开关517,以进行对电容器515到电容器519的电压取样。通过反相器530和另一个脉波产生器535,取样信号更进一步地产生一个清除信号连接到开关516,以便在取样后清除电容器515。电容器519的电压信号连接到运算放大器(Operational Amplifier)540的输入端。运算放大器540、晶体管542、电阻器541,形成电压对电流(Voltage-to-current)的电路,根据电容器519的电压信号在晶体管542中产生电流。晶体管542的电流耦接到晶体管543和544。晶体管543和544组成电流镜(Current Mirror),依据晶体管542的电流,输出电流到晶体管544。电流源551建立一临界值,用以在晶体管544产生电流。电流源550决定流经晶体管544的电流最大值。流经晶体管544和晶体管565的电流构成电流信号ICHG。电流源565决定电流信号ICHG的最小值。当主动切换信号S1的导通时间减少时,电容器519的电压信号也随之减小。当电容器519的电压信号减小时,电流信号ICHG也会减小。电流源551决定此临界值。电流信号ICHG减小会造成从动切换信号SN的脉宽减小,以节省电能。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的权利要求所界定的为准。

Claims (6)

1.一种从动切换电路,适用于主从式功因修正转换器,并连接到一主动功率转换器,其特征在于,该从动切换电路包括:
一相位检测电路,检测该主动功率转换器的一主动切换信号和一从动电感的从动电感信号,据以产生一启动信号和一锁相信号,该启动信号用于致能一从动切换信号,且该从动切换信号用以切换该从动电感,其中,该主动切换信号相移之后产生该启动信号,而且在该从动电感信号的禁能与该从动切换信号的致能之间的周期,产生该锁相信号;
一电源管理电路,接收该主动切换信号,当该主动切换信号的导通时间减少且其脉宽低于一临界值时,减少该从动切换信号的导通时间;以及
一导通时间调整电路,用以根据该锁相信号调整该从动切换信号的导通时间,其中该从动电感信号与该从动电感的去磁有关,且该锁相信号用以减少该从动电感信号的禁能与启动信号的致能之间的周期。
2.如权利要求1所述的从动切换电路,其特征在于,该从动切换信号在该启动信号致能前被截止,据以决定该从动切换信号的最大工作周期。
3.如权利要求1所述的从动切换电路,其特征在于,该启动信号是根据该主动切换信号的切换周期所产生。
4.如权利要求1所述的从动切换电路,其特征在于,该导通时间调整电路用以调整该从动切换信号的导通时间,以便将该从动电感信号的禁能到启动信号的致能之间的周期减到最小。
5.如权利要求1所述的从动切换电路,其特征在于,该相位检测电路包含:
一相位信号产生器,在该主动切换信号的切换周期,产生该启动信号;以及
一锁定信号产生器,依据该从动电感信号和该从动切换信号而产生该锁相信号。
6.如权利要求1所述的从动切换电路,其特征在于,该导通时间调整电路包含:
一正反器,依据该启动信号而致能该从动切换信号;
一斜坡信号产生器,依据该从动切换信号而产生一斜坡信号;
一上/下计数器,耦接到该锁相信号,以产生一数字码;
一数字模拟转换器,根据该数字码产生一模拟信号;以及
一比较器,依据该模拟信号和该斜坡信号的比较结果,用以对该从动切换信号禁能。
CN2008101666936A 2008-08-15 2008-10-17 从动切换电路与交错式从动切换方法 Active CN101364763B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/192,144 US20100039088A1 (en) 2008-08-15 2008-08-15 Interleaved slave switching circuit for discontinuous mode pfc converter
US12/192,144 2008-08-15

Publications (2)

Publication Number Publication Date
CN101364763A CN101364763A (zh) 2009-02-11
CN101364763B true CN101364763B (zh) 2010-10-13

Family

ID=40390975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101666936A Active CN101364763B (zh) 2008-08-15 2008-10-17 从动切换电路与交错式从动切换方法

Country Status (3)

Country Link
US (1) US20100039088A1 (zh)
CN (1) CN101364763B (zh)
TW (1) TWI385499B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407666B (zh) * 2010-07-08 2013-09-01 System General Corp 交錯式pfc功率轉換器之控制電路
US8482268B2 (en) * 2010-09-16 2013-07-09 System General Corporation Correction circuit of a switching-current sample for power converters in both CCM and DCM operation
US8912775B2 (en) * 2011-04-12 2014-12-16 Infineon Technologies Ag Power factor correction circuit having multiple switched-mode converter circuits
WO2014018882A1 (en) * 2012-07-26 2014-01-30 Osram Sylvania Inc. Flyback ac-to-dc converter
CN105281591B (zh) * 2015-11-26 2019-07-26 矽力杰半导体技术(杭州)有限公司 功率变换器的控制电路及控制方法
CN106877643B (zh) * 2015-12-11 2019-09-03 华为技术有限公司 功率因数校正pfc电路及pfc电路的电压采样方法
FR3047129A1 (fr) * 2016-01-27 2017-07-28 Zodiac Actuation Systems Convertisseur de courant alternatif en courant continu
KR20210020486A (ko) * 2019-08-14 2021-02-24 삼성전자주식회사 전자 장치 및 그 제어 방법
TWI700894B (zh) * 2019-11-27 2020-08-01 國立中山大學 全數位延遲鎖相迴路及其自動判斷頻率切換器
CN111193391B (zh) * 2019-12-23 2021-07-13 深圳市核达中远通电源技术股份有限公司 一种交错并联图腾柱无桥pfc相位控制方法
TWM618029U (zh) * 2021-03-03 2021-10-11 擎宏電子企業有限公司 直流交流電源供應器多台並聯之台與台同步及錯相系統

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229927A (en) * 1992-05-15 1993-07-20 Vila Masot Oscar Self-symmetrizing and self-oscillating half-bridge power inverter
US5905369A (en) * 1996-10-17 1999-05-18 Matsushita Electric Industrial Co., Ltd. Variable frequency switching of synchronized interleaved switching converters
EP1061629B1 (en) * 1999-06-07 2004-08-25 STMicroelectronics S.r.l. Single wire current sharing control technique for parallel/redundant operation of a plurality of PWM converters
US6760398B2 (en) * 2001-10-05 2004-07-06 Asulab S.A. Switched phase dual-modulus prescaler circuit having means for reducing power consumption
TWI421663B (zh) * 2004-09-07 2014-01-01 Flextronics Ap Llc 主從臨界導電模式功率變換器
US7205752B2 (en) * 2004-09-07 2007-04-17 Flextronics Ap, Llc Master-slave critical conduction mode power converter
US7116090B1 (en) * 2005-10-19 2006-10-03 System General Corp. Switching control circuit for discontinuous mode PFC converters
US7633183B2 (en) * 2007-02-16 2009-12-15 System General Corporation Switching controller for power sharing of parallel power supplies
US7884588B2 (en) * 2008-04-10 2011-02-08 Stmicroelectronics S.R.L. Control method and device for a system of interleaved converters using a designated master converter

Also Published As

Publication number Publication date
US20100039088A1 (en) 2010-02-18
CN101364763A (zh) 2009-02-11
TW201007421A (en) 2010-02-16
TWI385499B (zh) 2013-02-11

Similar Documents

Publication Publication Date Title
CN101364763B (zh) 从动切换电路与交错式从动切换方法
CN101257260B (zh) 同步整流装置
CN103078489B (zh) 用于利用开关频率抖动减少电磁干扰的系统和方法
CN101604913B (zh) 具有功率因子修正的无桥式功率转换器
CN102044972B (zh) 用于谐振转换器的控制设备
JP6682652B2 (ja) ハーフブリッジ共振コンバータ、前記ハーフブリッジ共振コンバータを用いた回路、及び対応する制御方法
CN105634287B (zh) 用于谐振变换器的充电模式控制设备
US8482948B2 (en) Interleave control power supply device and control circuit
CN101291107B (zh) 切换控制电路和其控制方法
US8184456B1 (en) Adaptive power converter and related circuitry
KR100912865B1 (ko) 스위칭 레귤레이터 및 그 스위칭 레귤레이터를 구비하는반도체 장치
CN101534060B (zh) 多通道多相位功率转换器的切换式控制电路
CN107248817A (zh) 一种准谐振控制的开关电路及方法
TW201234748A (en) Jittering frequency control circuit and method for a switching mode power supply
WO1996007960A1 (en) A synchronous switching cascade connected offline pfc-pwm combination power converter controller
US9263941B2 (en) Power factor-corrected resonant converter and parallel power factor-corrected resonant converter
CN102355145A (zh) 功率转换器的控制电路
TWI521837B (zh) 用於電力轉換器的積體電路控制器、切換式電力轉換器及用於控制電力轉換器之方法
Pajnić et al. Zero-voltage switching control of an interleaved bi-directional buck–boost converter with variable coupled inductor
CN102801318A (zh) 谐振式功率转换器的控制电路与控制方法
CN102208870B (zh) 侦测磁性装置的连续电流模式运作的方法及装置
CN1945948B (zh) 功率转换器的同步整流电路
CN101789701A (zh) 柔性切换式功率转换器
US20220209663A1 (en) Systems and methods for controlling operation modes of dc-to-dc voltage converters
KR20100053799A (ko) 대기전력 저감용 스위치모드 전원공급장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant