CN101358802A - 用于通过深冷分离空气获得氩的方法和装置 - Google Patents

用于通过深冷分离空气获得氩的方法和装置 Download PDF

Info

Publication number
CN101358802A
CN101358802A CNA2008101311483A CN200810131148A CN101358802A CN 101358802 A CN101358802 A CN 101358802A CN A2008101311483 A CNA2008101311483 A CN A2008101311483A CN 200810131148 A CN200810131148 A CN 200810131148A CN 101358802 A CN101358802 A CN 101358802A
Authority
CN
China
Prior art keywords
condenser
crude argon
argon column
column
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101311483A
Other languages
English (en)
Inventor
H·科尔杜安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of CN101358802A publication Critical patent/CN101358802A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/007Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/46Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及一种用于通过深冷分离空气获得氩的方法和装置。压缩(3)原料空气(1)并且将其导入到一个用于氮氧分离(13,14)的蒸馏塔系统中。从该用于氮氧分离的蒸馏塔系统中取出一含氩的流(72)。将该含氩的流(72)引导至一粗氩塔(25)。粗氩塔(25)具有一塔顶冷凝器(24),在该塔顶冷凝器中,一来自粗氩塔(25)的塔顶气体至少部分地被冷凝。将在此获得的冷凝物的至少一部分作为回流液体输送给粗氩塔(25)。从粗氩塔(25)或者塔顶冷凝器(25)中取出一粗氩流(76,176,276a,276b)。将该粗氩流(76,176,276a,276b)引导至一纯氩塔(20)。从该纯氩塔(20)取出一纯氩产品流(81)。粗氩塔(25)的塔顶冷凝器(24)被构造为回流冷凝器并且该粗氩塔的塔顶气体被导入到该回流冷凝器的回流通道中。

Description

用于通过深冷分离空气获得氩的方法和装置
技术领域
本发明涉及一种用于通过深冷分离空气获得氩的方法,其中,压缩原料空气并且将该原料空气引导到一个用于氮氧分离的蒸馏塔系统中,从该用于氮氧分离的蒸馏塔系统中取出一个含氩的流,将该含氩的流引导至一个粗氩塔,该粗氩塔具有一个塔顶冷凝器,该塔顶冷凝器由至少一个板式换热器块构成,该板式换热器块具有液化通道和蒸发通道,将一塔顶气体从粗氩塔引导至该塔顶冷凝器的液化通道中并且使该塔顶气体在那里至少部分地冷凝,将在此获得的冷凝物的至少一部分作为回流液体输送给所述粗氩塔,该塔顶冷凝器是用于粗氩塔的回流的唯一的源,将一液态的冷却流体引导至所述蒸发通道的一个第一端部上并且使该冷却流体在那里部分地蒸发,从所述蒸发通道的一个第二端部取出一个由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物,从所述粗氩塔或者塔顶冷凝器取出一粗氩流,将该粗氩流引导至一纯氩塔,并且从该纯氩塔取出一纯氩产品流。
本发明还涉及一种用于实施该方法的装置。
背景技术
例如由Hausen/Linde的深冷技术,1985年第二版第四章(第281页至337页)公开了用于深冷分离空气的方法和装置。该发明的用于氮氧分离的蒸馏塔系统可以被构造为用于氮氧分离的单塔系统、被构造为两塔系统(例如构造为传统的林德双塔系统)或者被构造为三塔或多塔系统。除了用于氮氧分离的塔和为了获得氩外,可以在该方法中设置另外的步骤来获得其他空气成分,特别是另外的惰性气体。
在本发明的意义上,“粗氩塔”用于氩氧分离。该粗氩塔可以由一个一件式的塔构成或者由两件式或多件式的塔构成,如在EP 628777 B1中所描述的那样。“纯氩塔”用于氩氮分离。“粗氩流”的氩浓度比“含氩流”的氩浓度高。“纯氩产品流”的氩浓度比粗氩流的氩浓度高并且优选被从纯氩塔的底部区域中、例如由其池底中排出。
用于粗氩塔的回流液体的唯一的源是塔顶冷凝器(Kopfkondensator)。该塔顶冷凝器可以由一个、两个或更多个板式换热器块组成,它们在蒸发侧和液化侧并联连接。制冷流体在一个端部上流入到蒸发通道中并且在另一端部上从蒸发通道流出。在蒸发通道中不进行逆流。相反的是,液态的剩余制冷流体和蒸发了的制冷流体在蒸发通道内部以顺流方式被引导。如果所述塔顶冷凝器被构造为浴蒸发器,那么冷却流体在蒸发通道中从下向上流动。
例如由DE2325422A、EP171711A2、EP377117B2(=US5019045)、DE4030749A1、EP628777B1(=US5426946)、EP669508A1(=US5592833)、EP669509B1(=US5590544)、EP942246A2、EP1103772A1、DE19609490(=US5669237)的图8、EP1243882A1(=US2002178747A1)和EP1243881A1(=US2002189281A1)公开了开头所述类型的、用于获得氩的工艺,在这两种方法中,使用传统的冷凝器作为粗氩塔的塔顶冷凝器,待冷凝的气体和待冷凝的液体中在蒸发通道中以顺流方式被引导。
发明内容
本发明的目的是,提出一种开头所述类型的方法和一种相应的装置,它们可以经济上特别有利地运行,其方式是,其具有增高的产量、更高的产品纯度、更低的运行成本和/或更低的投资成本。
该目的通过以下方式解决,即粗氩塔的塔顶冷凝器被构造为回流冷凝器并且粗氩塔的塔顶气体(Kopfgas)被导入到回流冷凝器的回流通道中。
在此,对于“回流冷凝器”(也称为精馏器)应理解为一种具有回流通道的换热器。这些回流通道被从下部加载蒸汽(在此是粗氩塔的塔顶气体)。它们当在回流通道中上升时至少部分地冷凝。在此这些回流通道被这样设计,使得冷凝的液体不被携带出,而是向下流动。通过蒸汽和液体的逆流,在回流通道中进行蒸馏。在下端部上排出的冷凝物富含难于逃逸的组分,在上部排出的蒸汽富含易于逃逸的组分。
已经公开了不同结构形式的回流冷凝器。换热器块(或者多个换热器块)可例如像在EP 1189000A2中描述的那样被设置在一个压力容器的内部,或者该换热器块在所有的侧上通过总管(Header)封闭,例如参见US6128920。对此替代地,回流冷凝器可被安装在一个分离塔(在此是粗氩塔)的塔顶中,其中,回流通道在其下端部上与该分离塔的上部区域联通,参见德国专利申请102006037058及其相关申请。该回流冷凝器的这个或这些换热器块优选被构造为板式换热器、特别是被构造为焊接的铝板换热器。
空间概念如“上部”、“下部”、“侧向”等在此总是涉及回流冷凝器在符合规定的运行中的定向。
回流冷凝器不仅允许热交换,而且也允许回流通道中上升的气体与在那里向下流动的液体之间的物质交换,就像一个物质交换塔的波纹包装那样。该分离作用可以作为HETP值(理论板当量高度=理论塔板高度)给出。该冷凝器的HETP值在300-600mm的范围内。由此,例如一个1.5m高的回流冷凝器引起大致最高五个理论塔板。然而,该效应在粗氩塔的塔顶上对于氩氧分离不起作用,也就是说,回流换热器的使用不节省粗氩塔中的物质交换元素(实际塔板、整齐的包装或者不整齐的填料)。
因此,迄今为止在获得氩时,只有当在该塔(其与用于氮氧分离的蒸馏塔系统直接连接)中不是获得粗氩,而是获得纯氩时(参见US 513 3790),才使用回流冷凝器作为塔顶冷凝器。在该情况下,在一个单个的氩塔中不仅进行氩氧分离而且进行氩氮分离并且明确指出不设置用于氩氮分离的独立的纯氩塔。US5133790中的氩塔的上部区域不是用于氩氧分离(像在本发明的粗氩塔中那样),而是用于氩氮分离,该氩氮分离在开头所述类型的方法中实际上仅仅在纯氩塔中进行。
因此迄今为止没有这样的背景技术,即在具有一个自己的、用于氩氮分离的纯氩塔的方法中将氩氮分离的一部分挪到粗氩塔或者其塔顶冷凝器中,因为由此不节省塔中的塔板。
但是在本发明的范围内已经证实,这种回流冷凝器在粗氩塔的塔顶上的应用具有另外的优点。这种冷凝器通常被构造为冷凝蒸发器。因此在蒸发侧一冷却流体逆着在液化侧(回流通道)冷凝的塔顶气体蒸发。换热器块通常设置在一个浴中。由于流体静力学的压力,蒸发通道中的温度从上向下上升。
通过粗氩塔塔顶上的回流冷凝器的分离作用,在回流通道中向上流动的气体越来越富含氮并且在冷凝器的塔顶上由于增高的氮含量而最冷(参见图4)。由此,回流通道中的温度曲线适配于蒸发通道中的温度曲线。通过这种方式,在回流换热器的情况下产生一个自然趋势,该自然趋势在整个块高度上导致几乎保持相同的、激励的(treibenden)温度梯度。相反,在传统的粗氩冷凝器的情况下,所述激励的温度梯度在冷凝器的下部区域中总是大大小于在上部区域中。这在整个热交换上减弱了位于冷凝器下部中的加热面积的贡献。相反,在本发明的方法中,蒸发通道和液化通道之间的温度差几乎恒定。由此可以降低交换损失,或者相应地减小交换面积并且从而降低投资成本。
由此增高了产品纯度和/或产品产量。在保持相同的或者稍稍增大的分离作用的情况下,可以降低粗氩塔中的理论塔板的数量。由此降低了设备的投资成本。
特别有利的是,在本发明中,将液态的冷却流体在蒸发通道的下端部上引导至蒸发通道并且从蒸发通道的下端部取出所述由这个蒸发了的冷却流体和液态的剩余冷却流体构成的混合物。该塔顶冷凝器例如可被构造为浴蒸发器,其中蒸发通道在上部和下部上敞开并且该冷却流体借助于温差环流效应被从下向上引导经过蒸发通道。
在本发明的一个实施形式中,塔顶冷凝器由恰好一个板式换热器块构成。
特别有利的是,在本发明的方法中,粗氩流被从回流通道的上部区域中取出。在穿流后保持气态的馏分具有特别高的氩浓度并且其氧含量特别低。虽然该粗氩流也包含相对多的氮,但是它可以在纯氩塔中无需高耗费地被分离。
在本发明的另一构型中,从粗氩塔的上部区域并且从回流通道中不取出剩余气体流。优选从该上部区域以及回流通道中除了粗氩流不取出任何其他的流。例如除了粗氩流之外,从粗氩塔中仅取出另一流,该流被回输到用于氮氧分离的蒸馏塔系统中(例如回输到一个两塔系统的低压塔中,含氩的流也被从该低压塔取出)。
此外,有利的是,粗氩流被以气态形式从粗氩塔或者塔顶冷凝器中取出并且在其导入到纯氩塔的上游在一个附加冷凝器中至少部分地、例如完全冷凝。由此,该粗氩流被至少部分地、例如完全地以液态形式导入到纯氩塔中。
该附加冷凝器以及随后的措施也可以使用在这样的方法中,其中塔顶冷凝器不被构造为回流冷凝器。
优选使该塔顶冷凝器和附加冷凝器构造为冷凝蒸发器,其中,两个蒸发通道被供入相同的冷却流体。该冷却流体在蒸发通道中部分地蒸发,其中,液体通过温差环流效应被携带出并且被回输到液浴中。例如使用富含氧的、来自用于氮氧分离的蒸馏塔系统、例如来自一个双塔系统的高压塔的池底的液体作为冷却流体。
此外,有利的是,将该塔顶冷凝器和附加冷凝器构造为液浴蒸发器并且将它们设置在同一个液浴中。因为附加冷凝器通常具有比塔顶冷凝器低的高度,附加冷凝器仍能够以下端部上的温度运行,该温度低于塔顶冷凝器的下端部上的温度。
如果粗氩流被以液态输送至粗氩塔的塔顶上,那么该粗氩流可用作回流液体并且在除压塔的一个塔顶冷凝器上被压缩。这本身由US 5970743和US6574988公知。但是与回流冷凝器相组合将得到增高的氩产量。
此外,有利的是,由精氩塔的塔顶或者从回流通道的上部区域中取出一个剩余气体流并且特别是在原料空气被压缩之前使该剩余气体流与该原料空气混合。来自纯氩塔或者粗氩塔的塔顶的剩余气体的该回输也可在粗氩塔的塔顶上无回流冷凝器的产氩方法中有利地应用。由此,与剩余气体的抛弃不同地,包含在该剩余气体中的氩被回输到该工艺中。氩产量相应地升高。在此,原则上可使用一个独立的二次压缩机(Rückverdichter),但是,剩余气体在空气压缩机的上游供入到无压力的原料空气中是更有利的,特别是比剩余气体直接回输到用于氮氧分离的蒸馏塔系统中(如在US5133790中建议的那样)更有利。
根据本发明,还提出了一种用于通过深冷分离空气获得氩的装置,其具有:一个用于压缩原料空气的空气压缩机;用于将压缩了的原料空气导入到一个用于氮氧分离的蒸馏塔系统中的装置;用于将一含氩的流从所述用于氮氧分离的蒸馏塔系统中取出的装置;用于将该含氩的流导入到一个粗氩塔中的装置,其中,该粗氩塔具有一个塔顶冷凝器,该塔顶冷凝器由至少一个板式换热器块构成,该板式换热器块具有液化通道和蒸发通道;用于将一塔顶气体从粗氩塔导入到该塔顶冷凝器的液化通道中的装置,用于将在该塔顶冷凝器中获得的冷凝物的至少一部分作为回流液体输送给所述粗氩塔的装置,其中,该塔顶冷凝器是用于粗氩塔的回流的唯一的源;用于将一液态的冷却流体在所述塔顶冷凝器的一个第一端部上导入到所述蒸发通道中的装置;用于将一由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物由所述塔顶冷凝器的一个第二端部从所述蒸发通道中取出的装置;用于将一粗氩流从所述粗氩塔或者塔顶冷凝器中取出的装置;用于将该粗氩流导入到一个纯氩塔中的装置;用于将一纯氩产品流从该纯氩塔中取出的装置。本发明提出,所述粗氩塔的塔顶冷凝器被构造为回流冷凝器,并且具有用于将该粗氩塔的塔顶气体导入到该回流冷凝器的回流通道中的装置。
有利的是,所述用于将一液态的冷却流体导入到蒸发通道中的装置设置在该塔顶冷凝器的下端部上,并且所述用于将一由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物从所述蒸发通道中取出的装置设置在该塔顶冷凝器的下端部上。
有利的是,所述塔顶冷凝器由恰好一个板式换热器块构成。
有利的是,该回流冷凝器具有至少一个换热器块,该换热器块被构造为板式换热器。
附图说明
下面借助于附图中示意性示出的实施例详细描述本发明以及本发明的细节。其中:
图1示出本发明方法的第一实施例,其不具有附加冷凝器,
图2示出具有附加冷凝器的第二实施例,
图3示出第三实施例的粗氩塔和纯氩塔,
图4示出粗氩塔塔顶冷凝器中的温度和浓度曲线,该粗氩塔塔顶冷凝器根据本发明被构造为回流冷凝器,
图5是一个回流冷凝器的特殊结构形式的示意性纵剖视图,
图6是该回流冷凝器的另一特殊结构形式,示出一个回流通道的纵剖视图。
附图中彼此相应的部件和方法步骤以相同的附图标记表示。
具体实施方式
在图1的方法中,大气空气1通过一个过滤器2由一个空气压缩机3吸入并且在那里被压缩到5.0至7.0巴、优选大约5.5巴的绝对压力并且接着在一个直接接触式冷却器4中以直接热交换的方式用冷却水5、6冷却,该冷却水一部分5来自一个蒸发冷却器7,另一部分6由一个外源供入。被压缩和冷却了的空气8在一个净化装置9中进行净化,该净化装置具有一对容器,这些容器填充有吸附材料、优选分子筛。被净化了的空气10在一个主换热器系统11a、11b、11c中被冷却到露点。冷空气12被导入到一个用于氮氧分离的蒸馏塔系统中,该蒸馏塔系统另外还具有一个低压塔14。高压塔13和低压塔14被构造为典型的林德双塔并且通过一个主冷凝器15热交换地连接。在高压塔的塔顶上的工作压力为4.5到6.5巴、优选大约5.0巴并且在低压塔的塔顶上的工作压力为1.2到1.7巴、优选大约1.3巴。
液态的粗氧16被从高压塔13的池底中取出、在一个过冷却逆流换热器17中过冷却并且一部分19在纯氩塔20的浴蒸发器21中进一步冷却。另一部分22可以在池底蒸发器21旁边被引导。接着,一部分23流入到一个粗氩塔25的塔顶冷凝器24的蒸发室中,另一部分流入到纯氩塔20的塔顶冷凝器27的蒸发室中。在塔顶冷凝器24、27中蒸发的粗氧28、29通过管道30在一个第一中间部位上被供给到低压塔14。来自粗氩塔25的塔顶冷凝器24的、液态的剩余部分31同样被引导到低压塔14的所述第一中间部位上。来自纯氩塔20的塔顶冷凝器27的、液态的剩余部分32被输送到低压塔14的一个第二中间部位上,该第二中间部位高于所述第一中间部位。
来自高压塔13的塔顶的气态氮33的第一部分34被引导到主换热器11a的冷端上、在那里被加热到大约环境温度并且接着被分为一个压力产品流36(GAN I)和一个回路流37。回路流37在一个具有再冷却器39的回路压缩机38中被压缩到25至60巴、优选大约35巴的压力并且在主换热器11a中被冷却。高压氮的一部分40在中间温度时被从该主换热器中取出并且在一个减压涡轮41中做功地(arbeitsleistend)减压到大约高压塔压力。被减压了的回路流42又与冷的压力产品流34混合。可能存在的液体事先被分离43并且通过管道44输送到低压塔14的塔顶上。高压氮的另一部分61被一直引导到主换热器11a的冷端上并且接着被输送到高压塔13。
高压塔13的剩余的气态的塔顶氮45在主冷凝器15中至少部分地冷凝。在此产生的液态氮46的一部分47作为回流被输送到高压塔13中。另一部分48、49在过冷却逆流式换热器17中过冷却后被引导到低压塔14的塔顶上。在那里可将一部分50作为液态氮产品(LIN)取出。
气态的氧51在低压塔14的池底的紧上方被取出、在主换热器11a中加热并且通过管道52作为无压力的气态产品(GOX III)被取出。来自低压塔14的池底的液态的氧流53在过冷却逆流式换热器17中被过冷却并且通过管道54被引导到一个液箱(LOX)。所述液态氧的至少一部分通过管道55又被从该箱中取出、在泵56中被置于所需的产品压力(例如6至60巴、优选大约31巴)并且在主换热器11a中逆着高压氮蒸发(或者在过临界的压力下伪蒸发)并且被加热到环境温度并且接着通过管道57被作为气态的高压产品(GOX I)取出。高压液体的一部分58通过一个节流阀59减压到例如6至25巴、优选大约15巴的中间压力并且在该低压下蒸发并且通过管道60被作为气态的中间压力产品(GOX II)取出。
来自低压塔14的塔顶的气态氮62、63、64和来自低压塔14的一个中间部位的气态非纯氮65、66、67分别在过冷却逆流式换热器17中被过冷却、在主换热器块11c或11b中被加热并且通过管道68(必要时在加热69后)被作为用于净化装置9的再生气体使用、通过管道70供入到蒸发冷却器7和/或通过管道71直接排到大气中。
一个含氩的流72在一个设置在所述第一中间部位下方的第三中间部位上被取出并且在所述池底的紧上方被供入到粗氩塔25。在该实施例中,粗氩塔25一件式地构成。粗氩塔的池底液体73通过泵74和管道75被回输到低压塔中。
根据本发明,粗氩塔25的塔顶冷凝器24被构造为回流冷凝器。来自粗氩塔25的塔顶的气体在下面流入到回流通道中并且在那里部分地冷凝。在此产生的冷凝物与在回流通道中上升的气体逆流地向下流动并且在粗氩塔25中用作液态的回流。在蒸发侧,塔顶冷凝器24被构造为浴冷凝器。在此由液态的粗氧23构成的冷却流体在下面通过一个或更多个侧向的开口流入到蒸发通道中并且在那里部分地蒸发。通过温差环流效应,液体被携带出、与蒸发了的部分一起在蒸发通道的上端部上被排出并且被回输到液浴中。即塔顶冷凝器在蒸发侧被构造为浴蒸发器。
一个粗氩流76通过一个侧向的总管从回流通道的上端部被气态地取出并且在一个中间部位上被引导到纯氩塔20。在该实施例中,纯氩塔20的塔顶冷凝器在液化侧传统地构成,也就是说,纯氩塔20的塔顶气体77从上向下流经液化通道。(替代地,纯氩塔20的塔顶冷凝器27和/或主冷凝器15也可被构造为回流冷凝器。)一个剩余气体流78被从该塔顶冷凝器27取出并且在该实施例中被排放到大气中。替代地,该剩余气体流也可以通过一个自己的风机回输到用于氮氧分离的蒸馏塔系统中或者被回输到空气压缩机3前面。
纯氩塔20的池底液体79的一部分80在池底蒸发器21中蒸发并且在此产生的蒸汽81在纯氩塔20中作为上升气体使用。剩余物作为液态的纯氩产品流82取出。
图2的实施例与图1的不同之处主要在于纯氩塔20的构造。在此,纯氩塔20不具有塔顶冷凝器。在此,粗氩流176由从粗氩塔25的塔顶冷凝器24的回流通道中排出的流的一部分构成并且在塔顶上输送给纯氩塔20。纯氩塔20的塔顶气体177被引导到粗氩塔25的塔顶上。剩余气体流178由粗氩塔和纯氩塔的塔顶气体的在塔顶冷凝器24中未冷凝的部分构成。其在这些回流通道的上端部上通过一个侧向的总管被取出并且可以如图1中的剩余气体流78那样被处理。
图3仅示出粗氩塔25和纯氩塔20。在其他方面,该方法与图1和2中的方法相同。与图2中类似地,在此一个第一粗氩流276a被以液态方式导入到纯氩塔20中。与图2的不同之处在于,该导入不是在塔顶上进行,而是如图1中那样在纯氩塔20的一个中间部位上进行。在该部位上,一个在纯氩塔中上升的气体的一部分277也被取出并且被回输到粗氩塔25的塔顶。
来自塔顶冷凝器24的回流通道的塔顶的蒸汽276b构成一个第二粗氩流。该第二粗氩流在一个被构造为冷凝蒸发器的附加冷凝器227中至少部分地冷凝。冷凝物282被作为回流输送到纯氩塔的塔顶。该附加冷凝器227的蒸发侧如塔顶冷凝器24的蒸发侧那样被构造为液浴蒸发器,其中这两者优选设置在相同的、通过液态的粗氩物质23进行供应的液浴中。
在图4中,一方面温度曲线在冷凝器块的高度上被记载(左轴)。在所述在回流通道中冷凝的、温度大致等于蒸发通道中的温度的液体(上曲线“冷凝”)与相对于该液体逆流地上升的、蒸发的气体(下曲线“蒸发”)之间存在一个温度差(MTD),该温度差在回流冷凝器的高度上几乎是恒定的。
另一方面,示出在所述块中上升的气体的氮含量。在该实施例中,该回流冷凝器假定具有五个理论塔板(Boden)的分离作用。在一个粗氩塔的塔顶冷凝器中,一个理论塔板导致氮富集约因数3(氩中的氮的K值)。
所有述及的冷凝器优选被构造为焊接的铝板换热器,其通道包含波形的板,即所谓的翅。在回流通道内部原则上可使用相同类型的翅。然而对于回流冷凝器有利的是,使用不同类型的翅。在图5中示出一个实施例。在此示出的回流通道被分为四段A-D,在其中使用不同类型的翅。在该回流冷凝器的位于下部的入流区域中,气体载荷最大并且因此洪潮倾向(Flutneigung)最大。气体载荷向上总是变小。因此在下部区域A中优选选择具有小的单位压力损失和相对差的热传导的翅。向上在区域B、C和D中使用分别具有大压力损失和改善的热传导的翅。这些翅的波长(翅密度)例如向上增加。
图6示出另一方法,回流冷凝器24的回流通道的运行被这样设计,使得原则上向上降低的气体载荷被补偿。在此,待冷凝的气体的一部分通过管道383在上部被输送至回流通道。这降低了下部区域中的气体载荷。因为向着塔顶流动的气体量仅仅是待冷凝的气体量的一个部分量,所以需要的管道系统占据很少的空间并且节省了结构体积。
在另一构型中,蒸发侧的回流冷凝器被构造为降膜式蒸发器,也就是说,待蒸发的冷却流体在上部被输入并且以膜流(
Figure A20081013114800151
)穿过蒸发通道向下流动。在此,也得到蒸发温度和液化温度在回流冷凝器的高度上的特别有利的温度曲线。

Claims (15)

1.一种用于通过深冷分离空气获得氩的方法,其中,
压缩(3)原料空气(1)并且将该原料空气引导到一个用于氮氧分离(13,14)的蒸馏塔系统中,
从该用于氮氧分离的蒸馏塔系统中取出一含氩的流(72),
将该含氩的流(72)引导至一个粗氩塔(25),
该粗氩塔(25)具有一个塔顶冷凝器(24),该塔顶冷凝器由至少一个板式换热器块构成,该板式换热器块具有液化通道和蒸发通道,
将一塔顶气体从粗氩塔(25)引导至所述塔顶冷凝器的液化通道中并且使该塔顶气体在那里至少部分地冷凝,
将在此获得的冷凝物的至少一部分作为回流液体输送给所述粗氩塔(25),
所述塔顶冷凝器是用于粗氩塔的回流的唯一的源,
将一液态的冷却流体引导至所述蒸发通道的一个第一端部上并且使该冷却流体在那里部分地蒸发,
从所述蒸发通道的一个第二端部取出一个由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物,
从所述粗氩塔(25)或者塔顶冷凝器(25)取出一粗氩流(76,176,276a,276b),
将该粗氩流(76,176,276a,276b)引导至一个纯氩塔(20),并且
从该纯氩塔(20)取出一纯氩产品流(81),
其特征在于:
将所述粗氩塔(25)的塔顶冷凝器(24)构造为回流冷凝器并且将该粗氩塔的塔顶气体导入到该回流冷凝器的回流通道中。
2.如权利要求1所述的方法,其特征在于:将所述液态的冷却流体引导至所述蒸发通道的下端部上并且将所述由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物由蒸发通道的下端部取出。
3.如权利要求1或2所述的方法,其特征在于:该塔顶冷凝器由恰好一个板式换热器块构成。
4.如权利要求1-3中任一项所述的方法,其特征在于:从所述回流通道的上部区域中取出所述粗氩流(76,276b)。
5.如权利要求1-4中任一项所述的方法,其特征在于:从粗氩塔(25)的上部区域并且从所述回流通道中不取出剩余气体流。
6.如权利要求1-5中任一项所述的方法,其特征在于:该粗氩流(276b)被以气态形式从所述粗氩塔或者塔顶冷凝器(24)中取出并且在其向纯氩塔(20)中的导入(282)的上游在一个附加冷凝器(227)中至少部分地被冷凝。
7.如权利要求6所述的方法,其特征在于:该塔顶冷凝器(24)和附加冷凝器(227)被构造为冷凝蒸发器,其中,两个蒸发通道被供给相同的冷却流体(23)。
8.如权利要求7所述的方法,其特征在于:该塔顶冷凝器(24)和附加冷凝器(227)被构造为液浴蒸发器并且被设置在同一个液浴中。
9.如权利要求1-8中任一项所述的方法,其特征在于:所述粗氩流(176,282)被在液态下输送至纯氩塔(20)的塔顶。
10.如权利要求1-9中任一项所述的方法,其特征在于:由纯氩塔(20)的塔顶或者从所述回流通道的上部区域中取出一剩余气体流(78,178,278)并且使该剩余气体流特别是在所述原料空气被压缩(3)之前与该原料空气混合。
11.如权利要求1-10中任一项所述的方法,其特征在于:所述回流冷凝器具有至少一个换热器块,该换热器块被构造为板式换热器。
12.一种用于通过深冷分离空气获得氩的装置,其具有:
一个用于压缩原料空气(1)的空气压缩机(3),
用于将压缩了的原料空气(8,10,12)导入到一个用于氮氧分离(13,14)的蒸馏塔系统中的装置,
用于将一含氩的流(72)从所述用于氮氧分离的蒸馏塔系统中取出的装置,
用于将该含氩的流(72)导入到一个粗氩塔(25)中的装置,
其中,该粗氩塔(25)具有一个塔顶冷凝器(24),该塔顶冷凝器由至少一个板式换热器块构成,该板式换热器块具有液化通道和蒸发通道,
用于将一塔顶气体从粗氩塔(25)导入到该塔顶冷凝器的液化通道中的装置,
用于将在该塔顶冷凝器(24)中获得的冷凝物的至少一部分作为回流液体输送给所述粗氩塔(25)的装置,
其中,该塔顶冷凝器是用于粗氩塔的回流的唯一的源,
用于将一液态的冷却流体在所述塔顶冷凝器的一个第一端部上导入到所述蒸发通道中的装置,
用于将一由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物由所述塔顶冷凝器的一个第二端部从所述蒸发通道中取出的装置,
用于将一粗氩流(76,176,276a,276b)从所述粗氩塔(25)或者塔顶冷凝器(24)中取出的装置,
用于将该粗氩流(76,176,276a,276b)导入到一个纯氩塔(20)中的装置,
用于将一纯氩产品流(81)从该纯氩塔(20)中取出的装置,
其特征在于,
该粗氩塔(25)的塔顶冷凝器(24)被构造为回流冷凝器并且具有用于将该粗氩塔的塔顶气体导入到该回流冷凝器的回流通道中的装置。
13.如权利要求12所述的装置,其特征在于:所述用于将一液态的冷却流体导入到蒸发通道中的装置设置在该塔顶冷凝器的下端部上,并且所述用于将一由蒸发了的冷却流体和液态的剩余冷却流体构成的混合物从所述蒸发通道中取出的装置设置在该塔顶冷凝器的下端部上。
14.如权利要求12或13所述的方法,其特征在于:该塔顶冷凝器由恰好一个板式换热器块构成。
15.如权利要求12-14中任一项所述的方法,其特征在于:该回流冷凝器具有至少一个换热器块,该换热器块被构造为板式换热器。
CNA2008101311483A 2007-07-30 2008-07-30 用于通过深冷分离空气获得氩的方法和装置 Pending CN101358802A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007035619A DE102007035619A1 (de) 2007-07-30 2007-07-30 Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE102007035619.8 2007-07-30

Publications (1)

Publication Number Publication Date
CN101358802A true CN101358802A (zh) 2009-02-04

Family

ID=39217904

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101311483A Pending CN101358802A (zh) 2007-07-30 2008-07-30 用于通过深冷分离空气获得氩的方法和装置

Country Status (3)

Country Link
JP (1) JP2009030966A (zh)
CN (1) CN101358802A (zh)
DE (1) DE102007035619A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758116A (zh) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 氩气制备方法
CN106949708A (zh) * 2016-11-25 2017-07-14 乔治洛德方法研究和开发液化空气有限公司 一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008013444U1 (de) 2007-07-30 2009-02-12 Linde Ag Kondensator-Verdampfer
US9644890B2 (en) 2013-03-01 2017-05-09 Praxair Technology, Inc. Argon production method and apparatus
US10012438B2 (en) 2015-07-31 2018-07-03 Praxair Technology, Inc. Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10066871B2 (en) 2015-07-31 2018-09-04 Praxair Technology, Inc. Method and apparatus for argon rejection and recovery
US10018413B2 (en) 2015-07-31 2018-07-10 Praxair Technology, Inc. Method and apparatus for increasing argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10012437B2 (en) 2015-07-31 2018-07-03 Praxair Technology, Inc. Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US11262125B2 (en) 2018-01-02 2022-03-01 Praxair Technology, Inc. System and method for flexible recovery of argon from a cryogenic air separation unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547177A (en) * 1948-11-02 1951-04-03 Linde Air Prod Co Process of and apparatus for separating ternary gas mixtures
CN1043196A (zh) * 1988-12-01 1990-06-20 林德股份公司 空气分离方法及装置
CN1112999A (zh) * 1994-02-24 1995-12-06 林德股份公司 纯氩的回收方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325422A1 (de) 1973-05-18 1974-12-05 Linde Ag Verfahren und vorrichtung zur zerlegung von rohargon
DE3428968A1 (de) 1984-08-06 1986-02-13 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur zerlegung von rohargon
DE4030749A1 (de) 1990-09-28 1992-04-02 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
US5133790A (en) 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
DE4317916A1 (de) 1993-05-28 1994-12-01 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon
CA2142318A1 (en) 1994-02-24 1995-08-25 Horst Corduan Process and apparatus for recovery of pure argon
US5669237A (en) 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
JPH11244603A (ja) 1998-03-03 1999-09-14 Mitsubishi Chemical Corp デフレグメータ
DE19831830A1 (de) 1998-03-11 1999-09-16 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung
US5970743A (en) 1998-06-10 1999-10-26 Air Products And Chemicals, Inc. Production of argon from a cryogenic air separation process
FR2791762B1 (fr) 1999-03-29 2001-06-15 Air Liquide Procede et installation de production d'argon par distillation cryogenique
DE19957017A1 (de) 1999-11-26 2001-05-31 Linde Ag Vorrichtung zur Gewinnung von Argon
US6349566B1 (en) 2000-09-15 2002-02-26 Air Products And Chemicals, Inc. Dephlegmator system and process
DE10113790A1 (de) 2001-03-21 2002-09-26 Linde Ag Drei-Säulen-System zur Tieftemperatur-Luftzerlegung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547177A (en) * 1948-11-02 1951-04-03 Linde Air Prod Co Process of and apparatus for separating ternary gas mixtures
CN1043196A (zh) * 1988-12-01 1990-06-20 林德股份公司 空气分离方法及装置
CN1112999A (zh) * 1994-02-24 1995-12-06 林德股份公司 纯氩的回收方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758116A (zh) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 氩气制备方法
CN106949708A (zh) * 2016-11-25 2017-07-14 乔治洛德方法研究和开发液化空气有限公司 一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法
CN106949708B (zh) * 2016-11-25 2020-02-11 乔治洛德方法研究和开发液化空气有限公司 一种对原有低温空分装置进行改装用以提高低压纯氮气产量的方法

Also Published As

Publication number Publication date
DE102007035619A1 (de) 2009-02-05
JP2009030966A (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
CN101358802A (zh) 用于通过深冷分离空气获得氩的方法和装置
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
US4843828A (en) Liquid-vapor contact method and apparatus
KR100228590B1 (ko) 적당한 순도를 가진 산소의 제조방법 및 제조장치
CN1050418C (zh) 空气分离
CN101479550A (zh) 低温空气分离系统
JP5489805B2 (ja) 低温空気分離方法及び装置
CN108826831B (zh) 氮循环制冷的深冷分离一氧化碳气体的装置和工艺
CN1121173A (zh) 空气分离
CN1057380C (zh) 低温空气分离方法和设备
US6257019B1 (en) Production of nitrogen
EP1169609B1 (en) Variable capacity fluid mixture separation apparatus and process
CN102047057A (zh) 分离空气的方法和设备
CN101351680A (zh) 低温空气分离法
TWI628401B (zh) 透過以可變能耗低溫分離空氣來提取氧之方法與裝置
CN101424478A (zh) 用于低温空气分馏的方法
CN101285640B (zh) 氮气生产方法及装置
CN107076512B (zh) 通过低温分离可变地获得氩气的方法和装置
CN101424477A (zh) 用于低温空气分馏的方法和设备
CN102901322B (zh) 通过低温空气分离获得压力氮和压力氧的方法和装置
CN103080677A (zh) 用于蒸馏分离含有二氧化碳的混合物的设备和方法
CN101595356B (zh) 通过低温蒸馏分离气体混合物的方法和装置
EP0479486A1 (en) Separation of gas mixtures
US8549878B2 (en) Method of generating nitrogen and apparatus for use in the same
CN113874669A (zh) 用于低温分离空气的方法和设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090204