CN101356719A - 对电压切换调节器中在控制回路间切换时的转换行为的改进 - Google Patents
对电压切换调节器中在控制回路间切换时的转换行为的改进 Download PDFInfo
- Publication number
- CN101356719A CN101356719A CNA2006800308482A CN200680030848A CN101356719A CN 101356719 A CN101356719 A CN 101356719A CN A2006800308482 A CNA2006800308482 A CN A2006800308482A CN 200680030848 A CN200680030848 A CN 200680030848A CN 101356719 A CN101356719 A CN 101356719A
- Authority
- CN
- China
- Prior art keywords
- voltage
- error
- power mode
- switch regulator
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种电压切换调节器,其包括在电压切换调节器处于高功率模式时提供电压调节的脉冲宽度调制(PWM)控制器。一脉冲频率调制(PFM)控制器在电压切换调节器处于低功率模式时提供电压调节。一误差电压估计器用于允许在保持电压切换调节器的输出在期望的最小和最大电压之间调节的同时在低功率模式和高功率模式间切换。
Description
优先权信息
本申请要求于2005年8月23日提交的序列号为60/710,697的临时申请的优先权,该申请的全部内容以引用的方式并入本文中。
发明背景
本发明涉及电压切换调节器领域,具体而言涉及能够在保持调节器输出处于调节之中的同时在两种控制模式间切换的电压切换调节器。
许多电压切换调节器使用两种不同的控制回路:一种用于高功率工作,一种用于低功率工作。传统地,在能够在保持切换调节器的输出在数据表中所指定的最小和最大电压之间调节的同时在两种控制模式间切换方面存在着巨大困难。在从低功率控制切换到高功率控制时,关于先前各种形式的调节器的经验显示电压可能降低至比理想调节点低约200毫伏,比数据表中的最小电压值低100毫伏。在达到平衡态之前需要经历数十个周期,这影响了性能。
发明概述
本发明的一个方面提供一种电压切换调节器。该电压切换调节器包括一在电压切换调节器处于高功率模式时提供电压调节的脉冲宽度调制(PWM)控制器。一调压作用脉冲频率调制(PFM)控制器在电压切换调节器处于低功率模式时提供电压调节。一误差电压估计器允许在保持电压切换调节器的输出在所期望的最小和最大电压之间调节的同时在低功率模式和高功率模式间切换。
本发明的另一方面提供一种用于执行电压切换调节的方法。该方法包括提供一在电压切换调节器处于高功率模式时提供电压调节的脉冲宽度调制(PWM)控制器。该方法还包括提供一在电压切换调节器处于低功率模式时提供电压调节的脉冲频率调制(PFM)控制器。提供一误差电压估计器,其允许在保持电压切换调节器的输出在所期望的最小和最大电压之间调节的同时在等待模式和活动模式间切换。
附图简述
图1是示出根据本发明的电压切换调节器的示意图;
图2是示出脉冲宽度调制(PWM)控制器的示意图;
图3是示出脉冲频率调制(PFM)控制器的示意图;
图4是示出在PFM和PWM模式之间切换的问题的图表;
图5是示出所发明的误差电压估计器的示意图;
图6是示出与误差信号放大器相结合的误差电压估计器的示意电路图;以及
图7示出了表示本发明的性能的图表。
详细描述
如图1所示,电压切换调节器2具有两个不同的控制回路:脉冲宽度调制(PWM)控制器8和脉冲频率调制(PFM)控制器10。在高功率模式下,使用PWM控制器8。该控制回路为从约10毫安至300毫安的负载电流提供有效的(85%-90%)功率转换。它具有高增益误差信号放大器,该放大器在全范围的线电压和负载电流上在最大约5毫伏的精度内调节输出电压。在低功率模式下,使用PFM控制器10来提供最高达10毫安的负载电流,同时消耗较少的静态电流。
PFM控制器10接收来自电压基准的输出信号26以及电压反馈信号28作为输入。PWM控制器8接收基准信号26以及反馈信号28作为输入。多路复用器12接收来自PWM控制器8的输出信号32和来自PFM控制器10的输出信号30作为输入。开关驱动器14接收来自多路复用器12的输出信号34作为输入。
多路复用器12接收数字模式信号56作为控制输入,该模式信号56以值1表示PFM模式,并以值0表示PWM模式。开关驱动器14的输出36、38分别被耦合至PMOS输出器件40和NMOS输出器件42。PMOS输出器件40的栅极被直接耦合至开关驱动器,而源极被连接至主电池电源44。PMOS输出器件40的漏极被耦合至开关式电源端子46。NMOS输出器件42的栅极被直接耦合至开关驱动器14,而源极被直接耦合接地。NMOS输出器件42的漏极被耦合至开关式电源端子46。
MOSFET 40、42被直接耦合至滤波器结构16。该滤波器结构16产生输出电压22。滤波器结构16包括耦合至电容器24以及MOSFET 40、42的漏极和开关式电源端子46的电感器22。电容器24的另一端耦合接地。输出的滤波后的信号22被连接至控制器作为反馈电压28。
在图2中示出了PWM控制器60的通用架构。PWM控制器60被构造为环路并且包括误差放大器62,该误差放大器输出目标输出电压Vset与反馈电压Vfb之间的经放大和滤波的差量信号64。该误差电压64通过比较器66与内部生成的斜坡函数76比较。比较器66的输出信号68控制输出级70中的电源开关。输出级70使用开关式电源端子72来驱动外部LC滤波器装置74以生成经调节的输出电压Vout。该经调节的输出电压Vout被连接至Vfb以完成反馈环路。
请注意:输出级70包括两个MOSFET,它们是NMOS输出器件78和PMOS输出器件80。PMOS输出器件80和NMOS输出器件78的栅极被直接耦合至比较器66的输出信号68。PMOS输出器件80的源极被耦合至主电池电源。PMOS输出器件80的漏极被耦合至驱动滤波器装置74的输出信号72。NMOS输出器件78的源极被耦合接地并且其相应漏极被耦合至输出信号72。
为了提供具有低交流波动的输出电压,LC滤波器装置74具有比PWM控制器60的开关频率低很多的带宽,在本例中为几千赫兹。为了补偿LC滤波器装置74产生的低频复极对,必须使用在大体相同的频率下为零的滤波器来补偿误差放大器62。由于该种补偿,误差放大器62以比开关级低得多的时间常数做出响应。
图3示出了低功率模式控制回路,其使用脉冲频率调制(PWM)控制器80。在整个PFM周期中只有一个连续时间比较器82开启,这使得该控制器使用非常小的静态功率(10微安)。当Vfb降低到Vset以下时,PFM比较器82通过信号94触发逻辑和定时模块84产生到输出级86的信号,这个信号86启动固定持续时间的电流脉冲。该脉冲由连接至PMOS输出器件94的栅极的信号pdrv和连接至NMOS输出器件96栅极的信号ndrv来控制。PWM和PFM控制器之间共享相同的输出级86。
逻辑和定时模块84使用信号pdrv启动PMOS输出器件94的固定开启时间(on-time)脉冲。在该脉冲之后,使用信号ndrv开启NMOS输出器件96直到LC滤波器装置88中电感器的电流归零。一旦发生这种情况,输出器件94、96均被关闭直到Vout再次降低到Vset以下。对于低电流,PFM控制器60无补偿即稳定。
逻辑和定时模块接收来自比较器90的输出信号96作为输入。该信号指示从输出级86流入输出滤波器88的电流何时小于零。比较器90接收驱动滤波器装置88的输出信号92和地作为输入。
对于用户而言重要的是能够在两种控制模式间切换并且同时使经调压的输出保持在期望的最小和最大电压间。当从低功率(PFW)控制转换到高功率(PWM)控制时,关于先前各种形式的电压切换调节器的经验显示电压可能降低至比理想调节低约200毫伏,比数据表最小电压值低100毫伏。这是电压模式PWM回路所固有的问题。因为PWM误差放大器相对于开关频率而言响应得慢,在PWM回路需要几十个周期方能达到其平衡状态。
如图4所示,在此稳定间隔期间,应用到输出级的占空比可能比需要的低很多或者高很多,并且可能在正确的平衡占空比上下振荡。在此间隔期间转移到LC滤波器装置中的电荷或者从该LC滤波器装置转移出的电荷可能导致输出电压改变几百毫伏。
本发明包括一个在PFM模式下活动的电路,其估计出将在PWM模式中需要的误差放大器输出处的平衡电压。如果在转换到PWM控制时应用理想平衡误差电压作为误差放大器输出处的初始条件,则在过渡期间的瞬态扰动将被完全抑制。
理论上,如图5所示,电路利用了PWM和PFM的占空比均等于Vout/Vin这一事实。调压器输出级102现在被耦合至误差电压估计器100。误差电压估计器100包括复制输出级104和低通滤波器106。复制输出级104接收来自PFM控制器输出级102的信号pdrv和ndrv并接收最大斜坡电压(Vrampmax)。注意,复制输出级104包括NMOS输出器件110和PMOS输出器件108。PMOS输出器件108的栅极被直接耦合至输出信号pdrv。PMOS输出器件108的源极被耦合至最大斜坡电压(Vrampmax)。PMOS输出器件108的漏极被耦合至驱动低通滤波器106的数字误差信号112。NMOS输出器件110的栅极被耦合至输出信号ndrv。NMOS输出器件110的源极耦合接地,其相应漏极被耦合至数字误差信号112。
数字误差信号112是一个方波,其幅值等于Vrampmax,占空比等于PFM控制器的占空比,该占空比等于Vout/Vin。数字误差信号的平均值等于在相同条件下工作的PWM回路的平衡误差电压。低通滤波器用相同的平均电压作为数字误差信号112产生一个估计的误差电压114。
来自误差级104的数字误差信号112驱动低通滤波器级106。由误差级106产生的输出信号114是估计的平衡误差电压(Verr,est)。该估计的平衡误差电压等于最大斜坡电压乘以PFM占空比。最大斜坡电压是内部生成的并且在PFM工作周期内可用。占空比信息被编码进驱动PFM控制器输出级102的信号pdrv和ndrv中。
图6示出了误差估计器电路120被集成到PWM控制器的误差放大电路122中。误差电压估计器电路120使用与PFM控制器相关联的信号pdrv和ndrv来利用输出信号126驱动由误差放大器周围的补偿网络形成的低通滤波器装置124。所得的经滤波电压Verrstore是所估计的平衡误差电压。误差估计器电路120包括类似于图5所示的复制输出级104的MOSFET构造。注意,误差估计器电路120包括NMOS输出器件130和PMOS输出器件128。PMOS输出器件128的栅极被直接耦合至输出信号pdrv。PMOS输出器件128的源极被耦合至最大斜坡电压(Vrampmax)。PMOS输出器件128的漏极被耦合至驱动电路装置124的数字误差信号126。NMOS输出器件130的栅极被耦合至输出信号ndrv。NMOS输出器件130的源极耦合接地,其相应漏极被耦合至数字误差信号126。
当PWM控制器活动时,误差信号放大器仅驱动其输出132。误差放大器接收信号Vset和Vout作为输入。注意,误差放大电路122与具有电容器Cc和电阻器Rc的补偿网络124相组合。注意,电容器Cc上的电压提供对所估计的误差电压(Verrstore)的存储。
在PFM的“停歇时间(dead-time)”期间,当开关均没有闭合时,没有电荷转移到集成电容器或者转移出该电容器,因而计算不受影响。
在PWM模式中,放大器122活动,而误差电压估计电路120不活动。在PFM模式中,放大器输出132为高阻抗,而电压Verr受误差电压估计器120控制。电路装置124中的电阻器Rc和电容器Cc形成误差电压估计器的低通滤波器。
用于形成误差放大器电路120和电路装置124的元件是大的片上无源元件,故而以这种方式重复使用它们节约了大量芯片面积。反馈电压Vfb和所估计的误差电压Verr之差被储存在大的补偿电容器Cc上。由于该电容器限制了误差信号放大器122的稳定,因此将其预充电到正确的电压可确保PWM回路接近平衡点启动。
图7示出了所仿真的使用误差电压估计器从低功率模式到高功率模式的仿真转换。图表130显示了输出电压132和目标输出电压134。图表136显示了电感器电流。图表138显示电压Verr140和斜坡电压142。图表130、136和138并不表示未观测到显著的过冲或下冲,因而最小化了在PFM模式和PWM模式间切换的电位误差。
虽然本发明已经结合其若干优选实施方案得以描述和阐明,但是,在此可以对其形式和细节进行各种改变、省略以及增加而不脱离本发明精神和范围。
Claims (16)
1.一种电压切换调节器,其包括:
脉冲宽度调制(PWM)控制器,用于在所述电压切换调节器处于高功率模式时提供电压调节;
脉冲频率调制(PFM)控制器,用于在所述电压切换调节器处于低功率模式时提供电压调节;以及
误差电压估计器,用于允许在保持所述电压切换调节器的输出在期望的最小和最大电压之间调节的同时在所述低功率模式和所述高功率模式间切换。
2.如权利要求1所述的电压切换调节器,其特征在于,所述误差估计器与所述PWM控制器结合。
3.如权利要求1所述的电压切换调节器,其特征在于,所述PFM控制器使用小于10微安的功耗。
4.如权利要求1所述的电压切换调节器,其特征在于,所述PWM控制器包括高增益误差放大器。
5.如权利要求4所述的电压切换调节器,其特征在于,所述高增益误差放大器通过一反相器电路耦合至所述误差电压估计器。
6.如权利要求5所述的电压切换调节器,其特征在于,所述误差电压估计器驱动所述反相器电路产生所估计的平衡误差电压。
7.如权利要求6所述的电压切换调节器,其特征在于,所述所估计的平衡误差电压被储存在与所述反相器电路相关联的电容器中。
8.如权利要求6所述的电压切换调节器,其特征在于,所述误差电压估计器使用所述所估计的平衡误差电压在所述低功率模式和所述高功率模式间转换。
9.一种执行电压切换调节的方法,其包括:
提供一脉冲宽度调制(PWM)控制器,用于在一电压切换调节器处于高功率模式时提供电压调节;
提供一脉冲频率调制(PFM)控制器,用于在所述电压切换调节器处于低功率模式时提供电压调节;以及
提供一误差电压估计器,用于允许在保持所述电压切换调节器的输出在期望的最小和最大电压之间调节的同时在所述低功率模式和所述高功率模式间切换。
10.如权利要求9所述的方法,其特征在于,所述误差电压估计器与所述PWM控制器结合。
11.如权利要求9所述的方法,其特征在于,所述PFM控制器使用小于10微安的功耗。
12.如权利要求9所述的方法,其特征在于,所述PWM控制器包括高增益误差放大器。
13.如权利要求12所述的方法,其特征在于,所述高增益误差放大器通过一反相器电路耦合至所述误差电压估计器。
14.如权利要求13所述的方法,其特征在于,所述误差电压估计器驱动所述反相器电路产生所估计的平衡误差电压。
15.如权利要求14所述的方法,其特征在于,所述所估计的平衡误差电压被储存在与所述反相器电路相关联的电容器中。
16.如权利要求14所述的方法,其特征在于,所述误差电压估计器使用所述所估计的平衡误差电压在所述低功率模式和所述高功率模式间转换。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71069705P | 2005-08-23 | 2005-08-23 | |
US60/710,697 | 2005-08-23 | ||
PCT/US2006/032300 WO2007024675A1 (en) | 2005-08-23 | 2006-08-18 | Improving transient behavior while switching between control loops in a switching voltage regulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101356719A true CN101356719A (zh) | 2009-01-28 |
CN101356719B CN101356719B (zh) | 2012-06-27 |
Family
ID=37420877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800308482A Active CN101356719B (zh) | 2005-08-23 | 2006-08-18 | 对电压切换调节器中在控制回路间切换时的转换行为的改进 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7504812B2 (zh) |
EP (1) | EP1941603B1 (zh) |
CN (1) | CN101356719B (zh) |
WO (1) | WO2007024675A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070228A (zh) * | 2016-12-16 | 2017-08-18 | 东南大学 | 一种基于自适应功率控制的等离子谐振电源系统 |
CN110729897A (zh) * | 2014-12-31 | 2020-01-24 | 德克萨斯仪器股份有限公司 | 电力转换器的快速模式变换 |
CN111183576A (zh) * | 2017-09-14 | 2020-05-19 | 微芯片技术股份有限公司 | 具有自适应占空控制和操作模式的无缝转变的增强型开关调节器拓扑 |
CN113131730A (zh) * | 2019-12-30 | 2021-07-16 | 台达电子工业股份有限公司 | 预充电控制电路及其控制方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7679341B2 (en) * | 2007-12-12 | 2010-03-16 | Monolithic Power Systems, Inc. | External control mode step down switching regulator |
JP4618339B2 (ja) * | 2008-06-20 | 2011-01-26 | ミツミ電機株式会社 | Dc−dcコンバータ |
TWI368838B (en) * | 2008-09-02 | 2012-07-21 | Richtek Technology Corp | Buck switching regulator with improved mode transition and control method thereof |
US20100066323A1 (en) * | 2008-09-18 | 2010-03-18 | Intersil Americas Inc. | System and method for providing pulse frequency modulation mode |
US8324875B2 (en) * | 2008-10-30 | 2012-12-04 | Rohm Co., Ltd. | Multiphase DC/DC converter with output phases deviated from or aligned with each other and driven with fixed on time |
US20100164450A1 (en) * | 2008-12-30 | 2010-07-01 | International Business Machines Corporation | Apparatus, system, and method for providing high efficiency in a power supply over a range of load conditions |
US8330439B2 (en) * | 2009-06-23 | 2012-12-11 | Intersil Americas Inc. | System and method for PFM/PWM mode transition within a multi-phase buck converter |
GB0912745D0 (en) | 2009-07-22 | 2009-08-26 | Wolfson Microelectronics Plc | Improvements relating to DC-DC converters |
US8638079B2 (en) * | 2010-02-27 | 2014-01-28 | Infineon Technologies Ag | Pulse modulation control in a DC-DC converter circuit |
JP5735792B2 (ja) * | 2010-12-13 | 2015-06-17 | ローム株式会社 | コンパレータ、それを利用したスイッチングレギュレータの制御回路、スイッチングレギュレータ、電子機器 |
US8803499B2 (en) * | 2011-02-23 | 2014-08-12 | International Recifier Corporation | Power supply circuitry and adaptive transient control |
US9531266B2 (en) | 2011-02-23 | 2016-12-27 | Infineon Technologies Americas Corp. | Power supply circuitry and adaptive transient control |
US9252661B2 (en) * | 2011-04-01 | 2016-02-02 | Qualcomm Inc. | Methods and devices for power supply control |
CN103269159B (zh) * | 2013-05-15 | 2016-04-27 | 西安交通大学 | 一种电压模控制dc-dc模式自动转换电路 |
EP3044874A4 (en) * | 2013-09-13 | 2017-04-12 | The Trustees of Columbia University in the City of New York | Circuits and methods for switched-mode operational amplifiers |
US9471077B2 (en) | 2014-10-30 | 2016-10-18 | Dialog Semiconductor (Uk) Limited | Method to pre-set a compensation capacitor voltage |
US10126769B2 (en) * | 2016-09-12 | 2018-11-13 | Marvell World Trade Ltd. | Class-D driven low-drop-output (LDO) regulator |
US10014774B2 (en) * | 2016-10-18 | 2018-07-03 | Texas Instruments Incorporated | Power supply with low to high power transition mode |
JP6779182B2 (ja) * | 2017-07-07 | 2020-11-04 | 日立オートモティブシステムズ株式会社 | 電源装置および電子制御装置 |
US10886774B2 (en) | 2018-10-30 | 2021-01-05 | Nxp Usa, Inc. | Method and apparatus to switch power supply for low current standby operation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162987A (en) * | 1990-12-28 | 1992-11-10 | Leslie Controls, Inc. | Controller which uses pulse width and pulse frequency modulated signals to control a variable |
US5568044A (en) * | 1994-09-27 | 1996-10-22 | Micrel, Inc. | Voltage regulator that operates in either PWM or PFM mode |
JP3511195B2 (ja) | 1997-09-03 | 2004-03-29 | 株式会社ルネサステクノロジ | 電圧変換回路 |
US6396250B1 (en) * | 2000-08-31 | 2002-05-28 | Texas Instruments Incorporated | Control method to reduce body diode conduction and reverse recovery losses |
EP1213822B1 (en) | 2000-12-05 | 2006-08-02 | Infineon Technologies AG | Frequency limitation and overload detection in a voltage regulator |
JP2002300774A (ja) | 2001-03-30 | 2002-10-11 | Seiko Instruments Inc | スイッチング・レギュレータ制御回路 |
JP2003070242A (ja) * | 2001-08-28 | 2003-03-07 | Seiko Instruments Inc | スイッチングレギュレータ |
JP4110926B2 (ja) * | 2002-07-11 | 2008-07-02 | 富士電機デバイステクノロジー株式会社 | Dc−dcコンバータ |
-
2006
- 2006-08-18 CN CN2006800308482A patent/CN101356719B/zh active Active
- 2006-08-18 WO PCT/US2006/032300 patent/WO2007024675A1/en active Application Filing
- 2006-08-18 EP EP06801831A patent/EP1941603B1/en active Active
- 2006-08-18 US US11/506,957 patent/US7504812B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110729897A (zh) * | 2014-12-31 | 2020-01-24 | 德克萨斯仪器股份有限公司 | 电力转换器的快速模式变换 |
CN107070228A (zh) * | 2016-12-16 | 2017-08-18 | 东南大学 | 一种基于自适应功率控制的等离子谐振电源系统 |
CN111183576A (zh) * | 2017-09-14 | 2020-05-19 | 微芯片技术股份有限公司 | 具有自适应占空控制和操作模式的无缝转变的增强型开关调节器拓扑 |
CN111183576B (zh) * | 2017-09-14 | 2023-11-10 | 微芯片技术股份有限公司 | 开关调节器中的无缝模式转变的方法及控制器 |
CN113131730A (zh) * | 2019-12-30 | 2021-07-16 | 台达电子工业股份有限公司 | 预充电控制电路及其控制方法 |
CN113131730B (zh) * | 2019-12-30 | 2023-12-19 | 台达电子工业股份有限公司 | 预充电控制电路及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1941603A1 (en) | 2008-07-09 |
WO2007024675A1 (en) | 2007-03-01 |
US20070046273A1 (en) | 2007-03-01 |
EP1941603B1 (en) | 2011-10-19 |
US7504812B2 (en) | 2009-03-17 |
CN101356719B (zh) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101356719B (zh) | 对电压切换调节器中在控制回路间切换时的转换行为的改进 | |
US8085013B2 (en) | DC power converter and mode-switching method | |
CN101640481B (zh) | 混合功率转换器 | |
KR101126456B1 (ko) | 히스테리시스의 레귤레이터들에 대한 적응형 전력 제어 | |
JP3556652B2 (ja) | Dc−dcコンバータ | |
US7965071B2 (en) | DC-DC boost converter | |
US9893623B2 (en) | Windowless H-bridge buck-boost switching converter | |
US5717318A (en) | Step-down type DC-DC regulator | |
US7876073B2 (en) | Switching regulator with slope compensation and control method therefor | |
US7365998B2 (en) | Unregulated isolated DC/DC converter with ripple control | |
CN102739045B (zh) | 电源的集成开关式dc-dc转换器系统和方法 | |
KR101840412B1 (ko) | 벅 스위치 모드 파워 컨버터 큰 신호 천이 응답 최적화기 | |
TWI387189B (zh) | 直流對直流轉換器及其方法 | |
CN102043417A (zh) | 低压降稳压器、直流对直流转换器以及低压降稳压方法 | |
US10355584B1 (en) | Transient response techniques for voltage regulators | |
JP2006314197A (ja) | 低損失dc/dcコンバータ | |
Martinez-Salamero et al. | Sliding-mode control of DC-DC switching converters | |
CN105075086A (zh) | 电压调节器 | |
US8797010B2 (en) | Startup for DC/DC converters | |
CN101483383A (zh) | 用于功率转换器的具有可编程反馈电路的切换控制器 | |
CN104167904A (zh) | 电源转换器的时间产生器及时间信号产生方法 | |
US8547078B2 (en) | Methods for light load efficiency improvement of a buck boost voltage regulator | |
CN113114184A (zh) | 功率级和电流监视器输出信号产生电路 | |
CN111509978A (zh) | Dc-dc转换装置和电源管理系统 | |
CN106208689A (zh) | 具有可变电压输出的降压型电源转换器的动态工作频率控制 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |