CN101338377B - 一种红土镍矿中镍高效浸出工艺 - Google Patents

一种红土镍矿中镍高效浸出工艺 Download PDF

Info

Publication number
CN101338377B
CN101338377B CN200810032169XA CN200810032169A CN101338377B CN 101338377 B CN101338377 B CN 101338377B CN 200810032169X A CN200810032169X A CN 200810032169XA CN 200810032169 A CN200810032169 A CN 200810032169A CN 101338377 B CN101338377 B CN 101338377B
Authority
CN
China
Prior art keywords
nickel
ore
extraction
leaching
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810032169XA
Other languages
English (en)
Other versions
CN101338377A (zh
Inventor
冯其明
罗伟
欧乐明
张国范
卢毅屏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN200810032169XA priority Critical patent/CN101338377B/zh
Publication of CN101338377A publication Critical patent/CN101338377A/zh
Application granted granted Critical
Publication of CN101338377B publication Critical patent/CN101338377B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种红土镍矿中镍高效浸出工艺,本发明以硅酸盐型红土镍矿为原料,经破碎、筛分之后,以硫酸作为浸出剂,将浸出物料加入到一定浓度的浸出液中,在一定的温度和搅拌速率下浸出反应一段时间,待反应结束后立即进行固液分离,获得富含镍的浸出溶液。本发明在常压下进行搅拌浸出反应,通过选择合适的浸出矿浆浓度,并调节浸出反应时间、温度以及搅拌器转速,实现了红土镍矿中镍的高效浸出,具有酸耗低、对设备腐蚀小等优点,适合大规模生产。

Description

一种红土镍矿中镍高效浸出工艺
技术领域
本发明属于属化学选矿领域,具体涉及一种从红土镍矿中高效提取镍的工艺。
背景技术
随着我国钢铁工业的高速发展,对金属镍的需求越来越大,而通过传统的硫化镍矿选、冶生产金属镍不仅无法满足需求,而且硫化镍矿资源面临日趋枯竭的困境。2003年,全球对金属镍的需求超过120万吨,并且仍将以每年4%的速度递增,但是从红土镍矿中生产的金属镍仅占总产量的42%。预计到2010年,镍供需缺口将超过20万吨/年。据统计,全球范围内陆基镍品位≥1%的镍矿资源含金属镍1.3亿吨,其中硫化镍矿仅占40%,而红土镍矿占60%。因此,开发从储量丰富的红土镍矿中高效提取镍的技术工艺具有良好的发展前景。
红土镍矿是镍橄榄石经风化、淋滤、再沉积而形成的次生矿物,主要有两种类型:一种是褐铁矿型红土镍矿[(Fe,Ni)O(OH)·nH2O],位于红土型镍矿床的上部,主要矿物为针铁矿(α-FeO·OH)和褐铁矿,通常含Ni<1.5%,Fe>40%,Mg<5%,钴含量相对较高(Co/Ni≥0.1);另一种是硅酸盐型红土镍矿[(Ni,Mg)6Si4O10(OH)8],位于红土型镍矿床的下部,主要矿物为蛇纹石[(Ni,Mg)6Si4O10(OH)8],包括利蛇纹石、纤蛇纹石、叶蛇纹石和硅镁镍矿,通常含Ni>1.5%,Fe<20%,Mg>15%,钴含量相对较低(Co/Ni≤0.05)。赋存于针铁矿、粘土和腐泥土中的镍一般采用湿法冶金工艺进行处理,而富含硅酸盐的硅镁镍矿则多采用火法冶金生产高碳镍铁(Ni>2.2%,Fe/Ni=5~6)、低碳镍铁(Ni>1.5%,Fe/Ni=6~12)或者镍锍(Fe/Ni>6,SiO2/MgO=1.8~2.2)。
目前,已商业化应用于处理红土镍矿的生产工艺主要包括镍铁熔炼工艺(Rotary kiln-electric furnace,RKEF),镍锍熔炼工艺(Blast furnace mattesmelting,BFMS),还原焙烧—氨浸工艺(Caron)和高压酸浸工艺(Highpressure acid leaching,HPAL)。
1950年,Caron首次报道了在古巴Nicaro采用预还原焙烧—氨浸工艺处理褐铁矿型红土镍矿(CARON M H.Fundamental and practical factors inammonia leaching of nickel and cobalt ores[J].Jom,1950,188(No.1,Trans.):67-90),该工艺虽然在生产过程不使用高温、高压,浸出剂循环使用。但能源消耗过大且金属回收率较低:其中Ni浸出率约80%、Co浸出率约55%。1960年在新喀里多尼亚的Doniambo工厂首次采用回转窑—电炉,通过熔炼腐泥土型红土镍矿生产镍铁合金。该工艺的主要缺点是能源利用率低,且无法控制高温焙烧渣细粒粉尘的排放。造锍熔炼工艺与镍铁熔炼工艺类似,同样存在能耗高、污染严重等缺点(BERGMAN R A.Nickel productionfrom low-iron laterite ores:Process descriptions[J].Cim.Bulletin.,2003,96(1072):127-138)。1998年西澳大利亚的Murrin-Murrin、Cawse和Bulong采用高压酸浸工艺处理红土镍矿(WHITTINGTON B I,MUIR D.PressureAcid Leaching of Nickel Laterites:A Review[J].Mineral Processing andExtractive Metallurgy Review,2000,21(6):527-599),该工艺在上述处理工艺中成本最低,铁能够以固相的方式保留在浸出渣中,Ni和Co浸出率>90%,但所使用的钛合金高压釜价格昂贵且腐蚀严重,还存在无法妥善处置反应后所产生的大量浸出渣的问题。因此开发常压下红土镍矿的高效浸出工艺具有十分重要的意义。
发明内容
本发明的目的在于提供一种能源消耗较少、金属回收率高、反应速率较快且对设备腐蚀较少、适合大规模生产的红土镍矿中镍高效浸出工艺。
本发明的原理是:硅酸盐型红土镍矿经过常压酸浸之后,晶体结构遭到一定程度的破坏,以晶格取代方式赋存于蛇纹石矿物中的镍在浸出过程中由固相转入液相,实现有价金属镍的高效浸出。
为了实现本发明目的,还需要同时考虑以下几个因素:1)浸出液中合适的硫酸浓度能在保证镍的高浸出率同时降低整个浸出过程的酸耗;2)合适的浸出矿浆浓度,不仅使得浸出过程能够高效进行,同时降低浸出过程的酸耗;3)适宜的搅拌速度,能够保障传质过程的有效进行;4)一定的反应温度确保较高的镍浸出率;5)合理的反应时间使得浸出反应不仅能够充分进行,同时不造成镍在浸出渣中的损失。
我们通过反复多次试验,探索出了合适的浸出液中硫酸浓度、矿浆体系中浸出物料与浸出液的质量体积比、浸出反应时间、温度以及搅拌器的转速等相关参数,在保证镍高效、快速浸出的同时显著降低了酸耗。
本发明的红土镍矿中镍高效浸出工艺包括以下步骤:
1)将原矿进行破碎、筛分,获得粒度合适的浸出物料;浸出物料的粒度优选为59.9%物料<74μm。
2)将浸出物料加入到硫酸体积百分比浓度为2~30%的浸出液中,配制成矿浆体系。
3)在浸出温度为60~100℃、搅拌条件下反应5~240分钟;
4)反应结束后立即进行固液分离,得到富含镍的浸出液。
所述2)步骤中加入的硫酸体积百分比浓度优选为5~20%;矿浆体系中浸出物料与浸出液的质量体积比为1:1~3;浸出物料与浸出液的质量体积比最优选为1:3。
所述3)步骤中浸出温度优选为为70~90℃;搅拌器转速优选为300~600转/分,最优选为为500转/分;反应时间优选为10~50分钟。
与现有技术相比,本发明具有以下优势:
1、本发明在常压下,以硫酸作为浸出剂实现了硅酸盐型红土镍矿中镍的高效浸出,整个浸出过程在较温和的条件下进行,避免使用价格昂贵的高压釜,且有利于降低能耗,显著降低了生产成本。
2、本发明通过调节浸出反应时间、温度以及搅拌器的转速,在相对较短的时间内(30min左右)实现红土镍矿中镍的高效浸出,在保证生产效率的同时节约了成本。
附图说明
图1:不同温度下镍浸出率随时间的变化曲线图。
图2:FTIR分析图谱。a为硅酸盐型红土镍矿原矿,b为浸出物料硫酸浸出渣。
图3:XRD分析图谱。a为硅酸盐型红土镍矿原矿,b为浸出物料硫酸浸出渣。
具体实施方式
实施例1:
将硅酸盐型红土镍矿进行破碎、筛分得到59.9%物料<74um的浸出物料。然后将一定量的浸出物料加入到5%(v/v)的硫酸溶液中,配制成液固比为3mL/g的矿浆体系。在搅拌机转速为500转/分钟,反应温度为90℃,反应时间为240分钟的条件下进行搅拌浸出反应,反应结束后立即进行固液分离,固体样品烘干、称重、备样留用,对液体取样进行化验分析,得到镍的浸出率为31.2%。
实施例2:
将硅酸盐型红土镍矿进行破碎、筛分得到59.9%物料<74um的浸出物料。然后将一定量的浸出物料加入到10%(v/v)的硫酸溶液中,配制成液固比为3mL/g的矿浆体系。在搅拌机转速为500转/分钟,反应温度为90℃,反应时间为240分钟的条件下进行搅拌浸出反应,反应结束后立即进行固液分离,固体样品烘干、称重、备样留用,对液体取样进行化验分析,得到镍的浸出率为68.2%。
实施例3:
将硅酸盐型红土镍矿进行破碎、筛分得到59.9%物料<74um的浸出物料。然后将一定量的浸出物料加入到20%(v/v)的硫酸溶液中,配制成液固比为3mL/g的矿浆体系。在搅拌机转速为500转/分钟,反应温度为90℃,反应时间为240分钟的条件下进行搅拌浸出反应,反应结束后立即进行固液分离,固体样品烘干、称重、备样留用,对液体取样进行化验分析,得到镍的浸出率为79.7%。
实施例4:
将硅酸盐型红土镍矿进行破碎、筛分得到59.9%物料<74um的浸出原料。然后将一定量的原矿加入到10%(v/v)的硫酸溶液中,配制成液固比为3mL/g的矿浆体系。在搅拌机转速为500转/分钟,反应温度为70℃,反应时间为50分钟的条件下进行搅拌浸出反应,反应结束后立即进行固液分离,固体样品烘干、称重、备样留用,对液体取样进行化验分析,获得镍的浸出率为83.7%。70℃下镍的浸出率随时间变化的关系见图1。
实施例5:
将硅酸盐型红土镍矿进行破碎、筛分得到59.9%物料<74um的浸出原料。然后将一定量的原矿加入到10%(v/v)的硫酸溶液中,配制成液固比为3mL/g的矿浆体系。在搅拌机转速为500转/分钟,反应温度为80℃,反应时间为30分钟的条件下进行搅拌浸出反应,反应结束后立即进行固液分离,固体样品烘干、称重、备样留用,对液体取样进行化验分析,获得镍的浸出率为90.2%。80℃下镍的浸出率随时间变化的关系见图1。
实施例6:
将硅酸盐型红土镍矿进行破碎、筛分得到59.9%物料<74um的浸出原料。然后将一定量的原矿加入到10%(v/v)的硫酸溶液中,配制成液固比为3mL/g的矿浆体系。在搅拌机转速为500转/分钟,反应温度为90℃,反应时间为12分钟的条件下进行搅拌浸出反应,反应结束后立即进行固液分离,固体样品烘干、称重、备样留用,对液体取样进行化验分析,获得镍的浸出率为91.3%。90℃下镍的浸出率随时间变化的关系见图1。
硅酸盐型红土镍矿原矿和浸出物料硫酸浸出渣的FTIR和XRD分析图谱见图2和图3。由图可知,硅酸盐型红土镍矿经过常压酸浸之后,晶体结构遭到一定程度的破坏,以晶格取代方式赋存于蛇纹石矿物中的镍在浸出过程中由固相转入液相,实现有价金属镍的高效浸出。
由以上实施例化验分析数据可知,硅酸盐型红土镍矿在浸出过程中生成带负电的硅酸胶粒,能够强烈吸附溶液中的正电离子,因而随着反应时间的延长已经浸出的镍重新被硅酸吸附,从而进入浸出渣,造成镍的损失。所以控制合适的反应时间至关重要。

Claims (1)

1.一种红土镍矿中镍高效浸出工艺,其特征在于,包括以下几个步骤:
1)将原矿进行破碎、筛分,获得粒度为59.9%物料<74μm的浸出物料;
2)将浸出物料加入到硫酸体积百分比浓度为10%的浸出液中,浸出物料与浸出液的质量体积比为1∶3配制成矿浆体系;
3)在浸出温度为80-90℃、500转/分搅拌条件下反应12~30分钟;
4)反应结束后立即进行固液分离,得到富含镍的浸出液。
CN200810032169XA 2008-08-27 2008-08-27 一种红土镍矿中镍高效浸出工艺 Expired - Fee Related CN101338377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810032169XA CN101338377B (zh) 2008-08-27 2008-08-27 一种红土镍矿中镍高效浸出工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810032169XA CN101338377B (zh) 2008-08-27 2008-08-27 一种红土镍矿中镍高效浸出工艺

Publications (2)

Publication Number Publication Date
CN101338377A CN101338377A (zh) 2009-01-07
CN101338377B true CN101338377B (zh) 2010-09-15

Family

ID=40212548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810032169XA Expired - Fee Related CN101338377B (zh) 2008-08-27 2008-08-27 一种红土镍矿中镍高效浸出工艺

Country Status (1)

Country Link
CN (1) CN101338377B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525690B (zh) * 2009-04-15 2010-11-03 广西冶金研究院 从红土镍矿中分离回收镍钴镁铁硅的方法
CN102251102A (zh) * 2010-12-27 2011-11-23 兰州金川新材料科技股份有限公司 一种硫酸堆浸红土矿中镍的方法
CN102146511A (zh) * 2011-03-17 2011-08-10 北京科技大学 一种选择性还原焙烧回收红土镍矿中镍和铁的工艺方法
CN102212684B (zh) * 2011-06-08 2013-06-12 广西银亿科技矿冶有限公司 一种过渡层红土镍矿湿法浸出的方法
CN102329955A (zh) * 2011-08-25 2012-01-25 云南锡业集团(控股)有限责任公司 全湿法处理红土镍矿生产电解镍的综合方法
CN102876892B (zh) * 2012-10-30 2013-11-20 杭州蓝普水务有限公司 低铁高镁、高铁低镁红土镍矿用废稀硫酸浸出镍钴的方法
CN102943174A (zh) * 2012-11-21 2013-02-27 广西藤县雅照钛白有限公司 由钛白废酸制取硫化镍精矿的方法
CN106337125A (zh) * 2016-08-09 2017-01-18 四川师范大学 硅酸锌矿的浸出方法
CN106337127A (zh) * 2016-08-09 2017-01-18 四川师范大学 硅酸镍矿的浸出方法
CN106337128A (zh) * 2016-08-09 2017-01-18 四川师范大学 硅酸铜矿的浸出方法
CN106337121A (zh) * 2016-08-09 2017-01-18 四川师范大学 硅酸镍矿的浸出方法
CN106337124A (zh) * 2016-08-09 2017-01-18 四川师范大学 硅酸铜矿的浸出方法
CN106337129A (zh) * 2016-08-09 2017-01-18 四川师范大学 硅酸锌矿的浸出方法

Also Published As

Publication number Publication date
CN101338377A (zh) 2009-01-07

Similar Documents

Publication Publication Date Title
CN101338377B (zh) 一种红土镍矿中镍高效浸出工艺
AU2009212947B2 (en) Hydrometallurgical process of nickel laterite ore
CN101413055B (zh) 一种由红土镍矿直接制取镍铁合金粉的工艺
CN101323909B (zh) 一种微波选择性还原焙烧-稀酸浸出氧化镍矿的方法
CN109097562B (zh) 一种红土镍矿选择性硫化焙烧的方法
CN112080636B (zh) 一种利用红土镍矿生产电池级硫酸镍盐的方法
CN101407861A (zh) 一种含镍褐铁矿的综合回收利用方法
CN102329955A (zh) 全湿法处理红土镍矿生产电解镍的综合方法
CN102212684B (zh) 一种过渡层红土镍矿湿法浸出的方法
CN101575676A (zh) 一种红土镍矿沉淀除铁和镍钴富集的方法
CN101338374A (zh) 从红土镍矿提取镍钴的方法
CN101550483A (zh) 一种红土镍矿的联合流程处理方法
CN102373329A (zh) 一种红土镍矿富集镍和铁方法
CN103509955B (zh) 两矿联合法处理红土镍矿和软锰矿的工艺
CN101805828B (zh) 一种低成本处理红土镍矿的方法
CN105568001A (zh) 一种钴合金和氧化钴矿联合高压酸浸的方法
CN103589939A (zh) 一种红土镍矿熔融还原冶炼镍铁合金的方法
CN103509936A (zh) 一种气基选择性还原红土镍矿生产高品位镍精矿的方法
CN112111644A (zh) 一种高效回收金银的方法
CN101139656A (zh) 一种红土镍矿浸出方法
CN104775027A (zh) 一种从低品位红土镍矿中回收镍、铁、硅和镁的方法
CN110564961A (zh) 一种还原浸出水钴矿的方法
CN113735179B (zh) 一种利用铁锰制备高纯硫酸铁的方法
CN101798633B (zh) 一种焙烧-浸出处理褐铁矿型氧化镍矿的方法
Wang et al. Current studies of treating processes for nickel laterite ores

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100915

Termination date: 20140827

EXPY Termination of patent right or utility model