CN101326428B - 用于内窥镜的角度分辨低相干干涉测量的系统和方法 - Google Patents

用于内窥镜的角度分辨低相干干涉测量的系统和方法 Download PDF

Info

Publication number
CN101326428B
CN101326428B CN2006800464014A CN200680046401A CN101326428B CN 101326428 B CN101326428 B CN 101326428B CN 2006800464014 A CN2006800464014 A CN 2006800464014A CN 200680046401 A CN200680046401 A CN 200680046401A CN 101326428 B CN101326428 B CN 101326428B
Authority
CN
China
Prior art keywords
sample
scattered
resolved
optical fiber
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800464014A
Other languages
English (en)
Other versions
CN101326428A (zh
Inventor
A·瓦克斯
J·W·皮蒂拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duke University
Original Assignee
Duke University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37714242&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101326428(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Duke University filed Critical Duke University
Publication of CN101326428A publication Critical patent/CN101326428A/zh
Application granted granted Critical
Publication of CN101326428B publication Critical patent/CN101326428B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02084Processing in the Fourier or frequency domain when not imaged in the frequency domain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02087Combining two or more images of the same region
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4531Devices without moving parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4709Backscatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Abstract

傅立叶域a/LCI(faLCI)系统和方法,其允许利用单独的扫描以快速比率的体内数据采集。利用扫描获得角度分辨和深度分辨光谱信息。由于仅需要一个扫描,参考臂可以关于样品保持固定。在样品的多个反射偏角下,参考信号和被反射的样品信号被互相关和分散,从而同时并行地表示来自样品上多个点的反射。利用以约40毫秒为数量级的扫描可以获得关于样品上多个不同点的每一个处样品的全部深度的信息。从空间、互相关参考信号,利用允许从角度分辨数据获得散射体的尺寸信息的技术也可以获得结构(尺寸)信息。

Description

用于内窥镜的角度分辨低相干干涉测量的系统和方法 
相关申请 
本申请要求于2005年10月11日提交的名称为“SYSTEMS ANDMETHODS FOR ENDOSCOPIC ANGLED-RESOLVED LOWCOHERENCE INTERFEROMETRY”的美国临时专利申请号No.60/725,603的优先权,在此并入其全部内容作为参考。 
本申请也涉及名称为“FOURIER DOMAIN LOW-COHERENCEINTERFEROMETRY FOR LIGHT SCATTERING SPECTROSCOPYAPPARATUS AND METHOD”的美国专利No.7,102,758,在此并入其全部内容作为参考。 
技术领域
傅立叶域角度分辨(angle-resolved)低相干干涉测量(faLCI)系统和方法允许样品的角度分辨和深度分辨光谱信息的数据采集,其中利用以快速比率的单独扫描可以获得关于样品的深度和尺寸信息,以具体用于体内应用。 
背景技术
检查细胞的结构特征对于许多临床和实验室研究是重要的。用于为了细胞研究的检查中的最普通的工具是显微镜。尽管显微镜检查已经带来了理解细胞和它们的结构的巨大进步,但其固有地局限于制备缺陷。细胞的特性只有在由于化学药品的添加而它们的结构特征被改变时才能被看到。此外,为了用于检查而获得细胞样品,侵入是必须的。 
因此,为了允许体内检查应用(包括细胞)而发展了光散射摄谱仪(LSS)。该LSS技术检查细胞器的弹性散射特性的变化,以便推断它们的尺寸和其他量纲信息。为了测量组织和其他细胞结构中的细胞特征,需要区别单独散射的光和漫射光,其已经被倍增散射,并且不再容易地运输关于散射目标的可得到的信息。可以以几种方式实现该区别或区分,比如偏振光栅的应用,通过限制或局限研究和分析于 弱被散射的样品,或通过利用用以去除漫射分量的模型。 
作为用于选择性地检测来自表面下位置的单独散射光的替代方法,低相干干涉测量法(LCI)已经被探究为LSS的方法。LCI采用具有低时间相干性的光源,比如宽带白色光源。只有当干涉计的路径长度延迟与光源的相干时间匹配时,才实现干涉。通过光源的相干长度确定系统的轴向分辨率,并且轴向分辨率典型地在适用于组织样品的检测的测微计范围中。实验结果已经示出:利用宽带光源和它的二次谐波允许利用LCI关于弹性散射的信息的恢复。通过关于导引光源于样品之上的参考臂移动样品,LCI已经利用时间深度扫描,以便接收来自样品上具体点的散射信息。因此,扫描时间以5-30分钟的数量级,从而完全扫描样品。 
角度分辨LCI(a/LCI)已经被发展为一种用以获得涉及细胞的尺寸的表面下结构信息的手段。光被分裂成参考和样品光束(beam),其中样品光束被以不同的角度投射于样品之上,以便检查散射光的角度分布。该a/LCI技术组合(LCI)的能力,以便利用光散射方法的能力而检测来自表面下位置的单独散射光,从而以次波长精度和用以构建深度分辨断层分析图像的精确度而获得结构信息。通过利用以传播角度与参考场混合的单独的宽带光源,检测反向散射光的角度分布来确定结构信息。通过比较测量的角度分布的振荡部与Mie理论的预测来确定细胞的尺寸分布。在Cellular Organization and SubstructureMeasured Using Angle-Resolved Low-Coherence Inteferometry(Biophysical Journal,82,April 2002,2256-2265)中描述了这种系统,在此并入其全部内容作为参考。 
a/LCI技术已经被成功地应用于测量细胞形态,并且诊断致癌作用的动物模型中的上皮内瘤形成。本申请的发明人在Determining nuclearmorphology using an improved angle-resolved low coherenceinterferometry system(Optics Express,2003,11(25):p.3473-3484)中描述了这种系统,在此并入其全部内容作为参考。获得关于样品的结构信息的该a/LCI方法已经成功地应用于测量组织中以及体内的细胞形态,以及诊断上皮内瘤形成,并且估计致癌作用的动物模型中化学预防试剂的功效。a/LCI已经用于预期地分级组织样品,而无需组织处理,展示了该技术作为生物医学诊断的潜力。 
初始原型和第二代a/LCI系统分别需要30和5分钟以获得类似的数据。这些较早的系统依赖于时间域深度扫描,正如在先前基于LCI的系统中提供的。干涉计的参考臂的长度不得不被机械调节,以便实现被检测散射角度的串行扫描。通过引起干涉测量方案的参考光束以可变角度交叉(cross)检测器平面而实现获得角度特性的方法。在名称为“Methods and systems using field-based light scatteringspectroscopy”的美国专利No.6,847,456中公开了用于获得角度分辨、深度分辨反向散射分布的该一般方法,在此并入其全部内容作为参考。
在美国专利No.6,002,480和No.6,501,551中公开了其他LCI现有技术的系统,在此并入其全部内容作为参考。美国专利No.6,002,480覆盖了获得深度分辨光谱分布,并且讨论了通过观察由于弹性散射特性而引起的波长的改变而获得散射体的尺寸。美国专利No.6,501,551覆盖了干涉测量法成像的内窥镜应用,并且没有预期用以获得深度分辨率的傅立叶域概念的使用。美国专利No.6,501,551没有讨论角分辨散射分布的测量,通过弹性散射特性的分析用以确定散射体尺寸的散射光的使用,也没有用以并行记录数据的成像摄谱仪的利用,无论该数据是散射或成像数据。最后,美国专利No.7,061,622讨论了用于测量角度散射分布的光纤装置,但是没有讨论傅立叶域概念。也因为它描述了成像技术,该实施例全部包括限制了探查区域的聚焦光学器件。 
发明内容
本发明涉及被称作傅立叶域a/LCI(faLCI)的新的a/LCI技术,其允许利用单独的扫描以快速比率的数据采集,足以使体内应用可行。本发明获得关于样品的角度分辨和深度分辨的光谱信息,其中利用单独的扫描可以获得关于样品的深度和尺寸信息,并且其中由于仅需要一个扫描,参考臂可以关于样品保持固定。参考信号和被反射的样品信号在样品的多个反射偏角下被互相关和分散,从而并行地同时表示来自样品上多个点的反射。 
由于该角度分辨,互相关信号被光谱分散,新的数据采集方案是重要的,因为它允许小于一秒地获得数据,该一秒就是被确定为从体内组织采集数据所必需的阈值。利用约40毫秒的数量级的一个扫描可以获得关于样品上多个不同点的每一个处样品的全部深度的信息。从空间、互相关参考信号,利用允许从角度分辨数据获得散射体的尺寸信息的技术也可以获得结构(尺寸)信息。 
本发明的faLCI技术利用傅立叶域概念采集深度分辨信息。通过以傅立叶(或光谱)域记录深度扫描,信噪比和数据采集时间的同等减小是可能的。该faLCI系统组合傅立叶域概念和成像摄谱仪的使用,以便并行地光谱记录角度分布。其后,利用通过在对样品的傅立叶变换平面中定位成像摄谱仪的入口狭缝获得的角度分辨测量,通过傅立叶变换两个固定场的光谱实现本发明的深度分辨。这将光谱信息转换成深度分辨信息,并将角度信息转换成横向空间分布。通过在深度分辨测量中析取聚苯乙烯珠(polystyrene bead)的尺寸已经初始展示了faLCI的能力。 
为了利用角度分辨、互相关信号而确定样品的尺寸信息,提供多种数学技术和方法。 
本发明不局限于任何具体的布置。在一个实施例中,该设备基于修改的Mach-Zehnder干涉计,其中通过光束分裂器,来自超发光二极管的宽带光被分裂成至样品的参考光束和输入光束。在另一个实施例中,独特的光纤探针可以用于传输光,并且从感兴趣的样品采集散射光的角度分布。 
a/LCI可以是用于估计组织健康的临床可行方法,不需要经由活体检查或随后的组织病理学估计的组织提取。该a/LCI系统可被应用于多个用途:用于有病塑性上皮组织的早期检测和筛查,疾病进度,治疗作用的监控以及导引临床医师至活体检查位置。光学a/LCI探针的非侵入性、非离子化特性意味着它可被经常应用,而没有不利效用。用以提供快速结果的a/LCI的潜力将大大增强其用于疾病筛查的广泛应用性。 
附图说明
被结合并形成该说明书的一部分的相关附图描述了本发明的几个方面,并且与说明书一起用于解释本发明的原理。 
图1A是采用Mach-Zehnder干涉计的faLCI系统的一个示范性实施例的示意图; 
图1B是示出了对图1A的干涉计布置中的摄谱仪的狭缝的被检测 散射角度的关系的描述; 
图2是描述了通过用以为了分析而恢复关于样品的深度分辨空间互相关信息的干涉计设备执行的步骤的流程图; 
图3A-D描述了对于聚苯乙烯珠的示范性样品在光谱域中恢复的faLCI数据的例子,包括总采集信号(图3A),参考场强度(图3B),信号场强度(图3C),以及参考和信号场强度之间的析取、互相关信号(图3D); 
图4A是作为深度和角度的函数基于图3D中所述的互相关faLCI数据而执行的轴向空间互相关函数的描述; 
图4B是为了恢复关于样品的尺寸信息,作为角度的函数涉及被散射的样品信号强度的原始和滤波数据的角度分布曲线的描述; 
图5A是为了确定关于样品的尺寸信息而与最佳拟合Mie理论相比较的被散射的样品信号强度的滤波角度分布的描述; 
图5B是为了估计样品中细胞的直径,关于样品的尺寸信息的χ2 (Chi-squired)最小化; 
图6是采用光纤探针的faLCI系统的示范性实施例的示意图; 
图7A是通过在图6中描述的faLCI系统可被采用的a/LCI光纤探针尖端的剖视图; 
图7B描述了在图7A中描述的faLCI系统中光纤探针的位置; 
图8A是利用本发明可被采用的可替代的光纤faLCI系统的描述; 
图8B是利用在图8B中描述的faLCI系统中探针的远端的样品照明和散射光收集的描述; 
图8C是在图8A中描述的faLCI系统的探针的照明远端的图像的描述。 
具体实施方式
下面阐述的实施例表示用于允许本领域的技术人员实践本发明的必要信息,并且描述了实践本发明的最佳模式。一旦阅读了以下基于附图的说明书,本领域熟练技术人员将理解本发明的概念,并且将认识到这些概念的应用并不局限于这里所公开的。可以理解,这些概念和应用落入公开内容和所附权利要求的范围之内。 
本发明涉及被称作傅立叶域a/LCI(faLCI)的新的a/LCI技术, 其允许利用单独的扫描以快速比率的数据采集,足以使体内应用可行。本发明获得关于样品的角度分辨和深度分辨的光谱信息,其中利用单独的扫描可以获得关于样品的深度和尺寸信息,并且其中由于仅需要一个扫描,参考臂可以关于样品保持固定。参考信号和被反射的样品信号在样品的多个反射偏角下被互相关和分散,从而并行地同时表示来自样品上多个点的反射。 
由于该角度分辨,互相关信号被光谱分散,新的数据采集方案是重要的,因为它允许小于一秒地获得数据,该一秒就是被确定为从体内组织采集数据所必需的阈值。利用约40毫秒的数量级的一个扫描可以获得关于样品上该多个不同点的每一个处样品的全部深度的信息。从空间、互相关参考信号,利用允许从角度分辨数据获得散射体的尺寸信息的技术,也可以获得结构(尺寸)信息。 
本发明的faLCI技术利用傅立叶域概念来获取深度分辨信息。通过以傅立叶(或光谱)域记录深度扫描,信噪比和数据采集时间的同等减小是可能的。该faLCI系统组合傅立叶域概念和成像摄谱仪的使用,以便并行地光谱记录角分布。其后,利用通过在对样品的傅立叶变换平面中定位成像摄谱仪的入口狭缝获得的角度分辨测量,通过傅立叶变换两个固定场的光谱实现本发明的深度分辨。这将光谱信息转换成深度分辨信息,并将角度信息转换成横向空间分布。通过在深度分辨测量中析取聚苯乙烯珠的尺寸已经初始展示了faLCI的能力。 
本发明的关键优势可分为三部分:(1)新的快速数据采集方法,(2)光纤探针设计,以及(3)数据采集方案。因此,以该方式描述本发明以便理解本发明。 
示范性的设备,以及在获得从样品散射的角度和深度分辨分布数据的过程中包括的步骤都在图2中阐述。依据本发明的一个实施例的faLCI方案基于如在图1A中所述的修改的Mach-Zehnder干涉计。通过反射镜13引导来自超发光二极管(SLD)12的宽带光10(图2中的步骤60),并且所述宽带光10通过光束分裂器BS1 20被分成至样品18的参考光束14和输入光束16(图3中的步骤62)。SLD 12的输出功率可以是3毫瓦,具有例如λ0=850nm,Δλ=20nm FWHM的规格,提供充分低的相干长度,以便隔离来自组织中的细胞层的散射。通过调节后向反射器RR22设置参考光束14的路径长度,但所述路径长度 在测量过程中保持固定。利用透镜L1(24)和L2(26)扩展参考光束14,以便产生照明(图2中的步骤64),其是均匀的,并且刚一到达成像摄谱仪29中的摄谱仪狭缝48就被校准。例如L1可以具有1.5厘米的焦距,并且L2 26具有15厘米的焦距。 
透镜L3(31)和L4(38)被布置成产生入射在样品18上的准直锐方向性光束30(图2中的步骤66)。通过垂直地相对于透镜L3(31)布置透镜L4(38),使输入光束30以相对于光轴0.10弧度的角度撞击样品。该布置允许透镜L4(38)的全角狭缝被用于收集来自样品18的散射光40。透镜L4(38)可以具有3.5厘米的焦距。 
通过透镜L4(32)收集通过样品18散射的光40,并通过由透镜L5(43)和L6(44)构成的4f成像系统被分程传递(relay),从而使以摄谱仪狭缝48处的相位和振幅复制透镜L4(32)的傅立叶平面(图2中的步骤68)。散射光40与第二光束分裂器BS242处的参考场14混合,组合场46落在至成像摄谱仪29的入口狭缝(在图1B中被描述为元件48)之上(图2中的步骤70)。成像摄谱仪29可以是模型SP2150i,例如由Acton Research制造。图1B描述了跨越狭缝48的尺寸的散射角的分布。利用高分辨率光栅(例如1200l/mm),混合场被分散,并利用冷却的CCD 50(例如1340×400,20μm×20μm像素,Spec10∶400,由Princeton Instruments制造)被检测(图2中的步骤72)。 
一旦光被摄谱仪29分散,检测信号46是摄谱仪狭缝48上的垂直位置、y和波长λ的函数。像素(m,n)处的检测信号可被与信号40和参考场16(Es,Er)相关,如下: 
I ( λ m , y n ) = ⟨ | E r ( λ m , y n ) | 2 ⟩ + ⟨ | E s ( λ m , y n ) | 2 ⟩ + 2 Re ⟨ E s ( λ m , y n ) E r * ( λ m , y n ) ⟩ cos φ , - - - ( 1 )
其中,φ是两个场30,16之间的相差,并且<...>表示时间上的总体均值。通过独立地测量信号30和参考光束16的强度,并且从总强度减去它们来提取干涉项。 
为了获得深度分辨信息,每一个散射角度处的波长谱被内插到波数(k=2π/λ)谱中,并被傅立叶变换,以便给出空间互相关,对于每一个像素yn的ΓSR(z): 
&Gamma; SR ( z , y n ) = &Integral; dke ikz &lang; E s ( k , y n ) E r * ( k , y n ) &rang; cos &phi; . - - - ( 2 )
参考场14采取下面的形式: 
其中k0(y0和Δk(Δy))表示高斯波矢量(空间)分布的中心和宽度,并且Δl表示选择的路径长度差。散射场40采取下面的形式: 
Es(k,θ)=∑jEo exp[-((k-ko)/Δk)2]exp[iklj]Sj(k,θ)    (4) 
其中Sj表示源自位于深度lj处的第j个界面的散射的振幅分布。通过关系y=f4θ,散射场40的角分布在透镜L4的傅立叶像平面中被转换成位置分布。对于CCD 50的像素尺寸(例如20μm),这获得角分辨率(例如0.57mrad)和预期的角范围(例如228mrad)。 
将方程(3)和(4)插入方程(2),并且要注意,参考场14的均匀性(Δy>>狭缝高度)获得检测器29上第n个垂直位置处的空间互相关: 
&Gamma; SR ( z , y n ) = &Sigma; j &Integral; dk | E o | 2 exp [ - 2 ( ( k - k o ) / &Delta;k ) 2 ] exp [ ik ( z - &Delta;l + l j ) ] &times; S j ( k , &theta; R = y R / f 4 ) cos &phi; . - - - ( 5 )
对单独的界面估计该方程获得: 
ΓSR(z,yn)=|Eo|2exp[-((z-Δl+lj)Δk)2/8]Sj(ko,θn=yn/f4)cosφ.(6) 
在这里我们已经假定散射幅度S不基于源光12的带宽而明显地改变。该表达式示出利用对应于散射角的每一个垂直像素,我们获得散射分布40的深度分辨轮廓。 
下面图3A示出通过聚苯乙烯珠的样品,表示参考场16和散射场40的和的总检测强度(上面的方程1)的典型数据,在作为波长和角度的函数给出的频率域中,关于向后散射方向给出。在示范性的实施例中,以40毫秒采集该数据,并且通过186mrad记录数据,预期范围的约85%,且在较高的角度处具有信号的一些损耗。 
图3B和3C分别描述了参考和信号场14,30的强度。基于从总检测强度减去信号和参考场14,30,如在图3D中所述地实现两个场之间的干涉46。在每一个角度处,干涉数据46被内插到k-空间中,并被傅立叶变换,以便如图4A中所述地给出样品18的角度深度分辨轮廓。为样品18的反射偏角的振幅处散射的信号40的结果,并且在透镜L4(38)的傅立叶平面中获得的角度分辨互相关信号46的傅立叶变换,作为角度和深度的函数产生关于样品18的深度分辨信息。这提供了关于样品18的深度分辨信息。由于角度分辨,互相关信号46被光谱分辨,数据采集允许以小于一秒地获得数据。利用约40毫秒的数量级的扫描可以获得关于样品18上该多个不同点(也就是角度)的每一个处样品18的全部深度的信息。通常,基于时间域的扫描需要获得关于多个不同点处样品的全部深度的信息,因此需要参考臂关于样品的基本的时间和运动。 
在图4A中所述的产生样品18的深度分辨轮廓的实验中,样品18由在80%的水和20%的甘油的混合物(n=1.36)中悬浮的聚苯乙烯微球体(例如n=1.59,10.1μm平均直径,8.9%方差(variance),NIST检定的,Duke Scientific)构成,以便提供中性浮力。该溶液被制备,以便获得l=200μm的散射长度。样品被包含在玻璃盖玻片(厚度,d~170μm)(未示出)之后的圆井(round well)(8mm直径,1mm深)中。样品光束30通过盖玻片入射在样品18之上。通过盖玻片(2nd=2(1.5)(170μm)=0.53mm-见图4A)的往返行程厚度示出方法的深度分辨能力。该数据是通过在一个平均自由程(MFP)内积分而被平均的总体。当利用低相干光探查被散射的样品时,该空间平均可以允许斑点的减小。为了简化该拟合程序,散射分布被低通滤波,以便产生较平滑的曲线,且截止频率被选择成抑制对超过16μm的长度规(length scale)的空间相关性。 
除了获得关于样品18的深度分辨信息之外,利用公开的数据采集方案从样品18获得的散射分布数据(也就是a/LCI数据)也可以用于利用Mie理论而进行核的尺寸确定。样品18的散射分布74在图4B中描述为轮廓绘图。关于样品18的原始散射信息74被示为信号场30和角度的函数。利用散射数据74确定滤波曲线。滤波散射分布曲线76(也就是散射数据74的表示)与Mie理论的预测(图5A中的曲线78) 的比较允许进行尺寸确定。 
为了拟合散射数据76与Mie理论,a/LCI信号被处理,以便析取是核尺寸的特性的振荡分量。平滑数据76被拟合到低阶多项式(例如在这里使用第4阶,但随后的研究使用较低的第2阶),其然后被从分布76减去,以便去除背景倾向。得到的振荡分量然后与利用Mie理论78获得理论预测的数据库做比较,为了分析而类似地从该Mie理论78去除缓慢改变的特征。 
滤波a/LCI数据76和Mie理论数据78之间的直接比较或许是不可能的,因为χ2(chi-squared)拟合算法趋于匹配背景斜率,而不是特性振荡。计算的理论预测包括特征在于平均直径(d)和标准偏差(δD)以及波长的分布的尺寸的高斯分布,以便精确地模型化宽的带宽源。 
通过最小化数据76和Mie理论(图5B)之间的χ2确定最佳拟合(图5A),获得10.2+/-1.7μm的尺寸,极好地与真实尺寸一致。测量误差大于珠尺寸的方差,最可能由于在测量中记录的角度的受限范围引起的。 
作为对处理a/LCI数据和比较Mie理论的替代,存在可以获得诊断信息的几个其他方法。这些包括利用傅立叶变换分析角数据,以便识别细胞核的周期振荡特性。该周期振荡可以与核尺寸相关,并因此将获得诊断值。用以分析a/LCI数据的另一方法是将数据和利用有限元方法(FEM)或T-矩阵计算产生的角度散射分布的数据库进行比较。这种计算可以提供高级的分析,因为它们不受如Mie理论的相同限制的支配。例如,FEM或T-矩阵计算可以模型化非球形散射体和具有内含物的散射体,同时Mie理论仅可以模型化同质球体。 
作为可替代的实施例,本发明也可以采用光纤,以便传送和收集来自感兴趣的样品的光,从而用在用于内窥镜应用的a/LCI系统中。在图6中描述该可替代的实施例。 
用于该可替代的实施例的光纤a/LCI方案利用透镜的傅立叶变换特性。该特性声明当目标被布置在透镜的前焦平面中时,共轭图像平面处的图像是该目标的傅立叶变换。通过空间频率的分布给出空间分布(目标或图像)的傅立叶变换,同时其是根据每毫米(mm)周期的图像的信息内容的表示。在弹性散射光的光学图像中,波长保持它的固定、初始值,并且空间频率表示简单地是散射光的角分布的成比例 的型式。 
在光纤a/LCI方案中,通过利用会聚透镜在样品的共轭傅立叶变换平面中定位纤维束的远端捕获角分布。该角分布然后被转换成纤维束的远端,其中它利用成像摄谱仪的入口狭缝上的4f系统被成像。光束分裂器被用于在进入狭缝之前重叠散射场与参考场,从而使低相干干涉测量法也可以用于获得深度分辨测量。 
现在转向图6,示出光纤faLCI方案。利用光纤分裂器(FS)80,来自宽带光源10’的光12’被分成参考场14’和信号场16’。在一个实施例中选择20∶1的分裂器比率,以便经由信号臂82引导更多的功率至样品18’,当通过组织返回的光典型地仅是小部分的入射功率时。 
参考光纤14’中的光源自光纤F1,并被装配在平移工作台86上的透镜L1(84)准直,以便允许参考臂路径长度的大体对准。在操作过程中不扫描该路径长度,但该路径长度在对准过程中可被改变。准直束88被布置成在尺寸上等于光纤束F3(90)的端91,从而使准直束88以相同的强度照明F3中的全部光纤。利用透镜L3(92)准直源自F3(90)的远尖端的参考场14’,从而重叠被光纤F4(94)覆盖的散射场。在可替代的实施例中,源自光纤F1(14’)的光被准直,然后利用透镜系统被扩展,以便产生宽光束。 
利用相干光纤束检测散射场。利用信号臂82中的光产生散射场,利用透镜L2(98)朝向感兴趣的样品18’引导该信号臂82。如同自由空间系统一样,从单模光纤F2的中心横向地布置透镜L2(98),以产生准直束,其以相对于光轴的角度行进。入射光束以倾斜的角度冲击样品的事实在分离弹性散射信息和镜面反射方面是重要的。通过光纤束收集通过样品18’散射的光,该光纤束由相干的单模或多模光纤的阵列构成。光纤的远尖端保持与透镜L2(98)一个焦距的距离,以便成像散射光的角分布。在图6中示出的实施例中,利用机械装配装置100,在透镜L2(98)的前焦平面中定位样品18’。在图7中示出的内窥镜适配探针中,利用透明外罩(部件102),在透镜L2(98)的前焦平面中定位该样品。 
如图6并且也如图7B中所示,通过透镜L4(104)重新准直源自光纤探针F4(94)的近端105的散射光104,并利用光束分裂器BS(108)与参考场14’重叠。利用透镜L5(112),该两个组合场110被重新成像在成像摄谱仪29’的狭缝(图7中的元件48’)上。透镜L5(112)的焦距可被改变,以便最佳地充满狭缝48’。得到的光学信号包括对于跨越狭缝48’的垂直尺寸的每一个散射角的信息,如上面对于图1A和1B的设备所述的。 
期望上面所述的a/LCI光纤探针将收集超过0.45弧度范围(约30度)的角分布,并且将以几分之一秒(a fraction of a second)采集完全深度分辨散射分布110。 
存在用于产生光纤探针的几种可能的方案,从光学工程的角度来看,这些方法是相同的。一个可能的实施方式将是信号和参考臂中单模光纤的线性阵列。可替代地,参考臂96将由单独的单模光纤构成,信号臂82由相关光纤束或线性光纤阵列构成。 
光纤探针尖端也可以具有几种基本上等价的实施方式。这些将包括取代透镜L2(98)而使用鼓(drum)或球透镜。利用透镜和反射镜或棱镜的组合,或通过使用凸镜取代透镜-反射镜组合,可以生成侧视探针。最后,可以使整个探针径向旋转,从而提供探查区域的圆周扫描。 
本发明另一个数据采集实施例是如图8A中所述的基于修改的Mach-Zehnder干涉计的fa/LCI系统。通过90/10光纤分裂器FS(80’)(例如由AC Photonics制造),来自光纤耦合超发光二极管(SLD)源12”(例如超亮度,P0=15mW,λ0=841.5nm,Δλ=49.5nm,相干长度=6.3μm)的输出10”被分成样品臂传输光纤16”和参考臂传输光纤14”。样品臂传输光纤16”可以由例如下面的任一种构成:(1)具有在尖端处集成的极化控制的单模光纤;或者(2)极化保持光纤。通过沿着光纤束116的远端处的套圈(ferrule)114固定传输纤维16”(NA=0.12)装配样品探针113,以使传输纤维16”的端面平行于光纤束116的表面,并且与光纤束116的表面齐平。球透镜L1(115)(例如f1=2.2mm)被定位在距离探针113的一面一个焦距处,并且集中在光纤束116上,从透镜L1(115)的光轴偏置传输纤维16”。也在图8B中描述的该结构产生例如以0.25rad的角度入射于样品18”上的具有0.5mm直径(例如2f1NA)的准直光束120(例如P=9mW)。 
通过透镜L1(115)收集来自样品的散射光122,并且经由透镜L1(115)的傅立叶变换特性,散射场122的角分布被转换成多模相干 光纤束116(例如Schott North America,Inc.,长度=840mm,像素尺寸=8.2μm,像素量=13.5K)的远极面(distal face)处的空间分布,在透镜L1(115)的傅立叶像平面处定位该多模相干光纤束。通过y`=f1θ给出光纤束上的垂直位置y`和散射角θ之间的关系。如所述的,在图8B中示出三个选择出的散射角处散射光122的光路。总之,例如通过约130个的单独光纤样品角分布,跨越光纤束116”的垂直条,如通过图8C中的高亮区域所示。例如,在该例子中,分离传输光纤16”和光纤束116的0.2mm的厚套圈(d1)限制最小理论采集角(θmin,th=d1/f1)至0.09rad。通过光纤束的直径d1和d2,以及θmax,th=(d1+d2)/f1确定最大理论采集角为0.50rad。利用标准被散射的样品122的实验表明可用的角范围为θmin=0.12rad至θmax=0.45rad。例如通过在远端套圈123中制备通道,并且在该通道中定位传输光纤16”可以最小化d1。光纤束116是空间相干的,导致近极面处收集的角度散射分布的复制。此外,因为光纤束116中的全部光纤在相干长度中是路径长度匹配的,因此在每一个角度处通过散射光122行进的光路长度是相等的。在T.Q.Xie,D.Mukai,S.G.Guo,M.Brenner和Z.P.Chen的“Fiber-optic-bundle-based optical coherence tomography”(OpticsLetters 30(14),1803-1805(2005))(下文中的“Xie”)中公开的系统公开了进入时间域光学相干层析X射线摄影系统的多模相干光纤束,并且证明耦合进入各个光纤的光的模式将行进不同的路径长度,在此并入其全部内容作为参考。在本发明的这里的例子中,试验确定较高阶模式被从基谐模式偏置了3.75mm,很好地超过需用于采集临床相关数据的深度(~100μm)。此外,较高阶模式中的功率对动态范围有最小的影响,因为样品臂功率显著小于参考臂功率。最后,需要指出,在Xie中公开的系统通过各个光纤连续收集数据的同时,这里本发明的例子使用130个光纤跨越角度范围地并行同步采集散射光,导致快速的数据采集。 
通过至成像摄谱仪29”(例如Acton Research,InSpectrum 150)的输入狭缝48”的L2和L3(f2=3.0cm,f3=20.0cm)的4f成像系统传送离开光纤束116的近端124的角分布。在该例子中,4f成像系统的理论放大倍数是(f3/f2)6.67。用实验方法,在该例子中放大倍数被测量为M=7.0,偏差最可能由于光纤束116的近极面124关于透镜L2(126) 的位置。所得到的摄谱仪狭缝48”上的垂直位置y和θ之间关系是y=Mf1(θ-θmin)。参考臂的光路长度被与样品臂的基谐模式的光路长度匹配。通过透镜L4(128)(例如f=3.5cm,光点尺寸=8.4mm)准直离开参考光纤14”的光127,以便匹配样品光的波阵面曲率,并且产生跨越成像摄谱仪29”的狭缝48”的均匀照明。通过中性强度滤波器132可以衰减参考场130,并且与分裂器BS(134)处的角度散射分布混合。利用高分辨率光栅(例如1200线/mm(lines/mm))分散混合场136,并利用例如覆盖在840nm处集中的99nm的光谱范围的集成、冷却的CCD(未示出)(例如1024×252,24μm×24μm像素,0.1nm分辨率)来检测该混合场136。 
如下,作为波长、λ和θ的函数的检测信号136可被与信号和参考场(Es,ER)相关: 
I ( &lambda; m , y n ) = &lang; | E r ( &lambda; m , &theta; n ) | 2 &rang; + &lang; | E s ( &lambda; m , &theta; n ) | 2 &rang; + 2 Re &lang; E s ( &lambda; m , &theta; n ) E r * ( &lambda; m , &theta; n ) cos ( &phi; ) &rang; , - - - ( 1 )
其中φ是两个场之间的相差,(m,n)表示CCD上的像素,并且<...>表示瞬时平均值。利用由National Instruments软件制造的LabVIEW,I(λm,θn)被上载至PC,并且以320ms被处理,以便产生散射强度的深度和角度分辨轮廓曲线。上面描述了用以获得深度和尺寸信息的角度分辨散射场的处理,并且具体地参照图1A和1B的数据采集设备,然后利用通过图8中的设备产生的散射混合场136,可以用于获得关于样品18”的角度分辨、深度分辨信息。 
上面阐述的实施例表示用于允许本领域的技术人员实践本发明的必要信息,并且描述了实践本发明的最佳模式。一旦阅读了以下基于附图的说明书,本领域技术人员将理解本发明的概念,并且将认识到这些概念的应用并不局限于这里所公开的。可以理解,这些概念和应用落入本发明的范围内。 
本领域的技术人员将认识到对本发明的优选实施例的改进和修改。全部这种改进和修改被考虑在于此公开的概念以及随后的权利要求的范围中。 

Claims (16)

1.一种获得样品的深度分辨光谱以便确定样品内散射体的尺寸和深度特性的设备,包括:
由运载从源光束分裂出来的样品光束的单模传输光纤构成的第一光学路径,其中样品光束通过传输光纤被引导至样品,并且以多个角度从样品被散射,以便产生被散射的样品光束;
由具有基本匹配的路径长度的多个光纤构成的第二光学路径,在第一光学元件的一个焦点处定位所述多个光纤,以便接收来自样品的在第一光学元件的另一焦点处定位的被散射的样品光束,从而使该多个光纤接收通过第一光学元件的傅立叶变换特性的被散射的样品光束的角度散射分布;
由运载从源光束分裂出来的参考光束的光纤构成并且结束于第二光学元件的第三光学路径,第二光学元件对参考光束进行准直以传输到光束分裂器;
所述光束分裂器被配置成使被散射的样品光束的角度散射分布与参考光束互相关以产生关于样品的角度分辨互相关信号;
检测器,其光谱分散所述角度分辨互相关信号,以便同时并行地获得在该多个角度的每一个下的角度分辨、光谱分辨轮廓;以及
处理器,其接收和分析所述角度分辨、光谱分辨轮廓。
2.权利要求1的设备,其中处理器适于从单个角度分辨、光谱分辨轮廓确定样品上的多个不同点处样品的散射体的深度。
3.权利要求1的设备,其中处理器适于从所述角度分辨、光谱分辨轮廓恢复关于散射体的尺寸信息。
4.权利要求3的设备,其中处理器适于通过比较被散射的样品光束的角度散射分布与样品的预测分析或数值计算的角度散射分布来恢复所述尺寸信息。
5.权利要求3的设备,其中样品光束以关于样品和该多个光纤的倾斜角度被引导至样品使得由于样品而导致的镜面反射没有被该多个光纤接收。
6.权利要求1的设备,其中该多个光纤被布置成收集样品光束的不同角度散射,以便收集被散射的样品光束的角度散射分布。
7.权利要求1的设备,其中该多个光纤包括单模或多模光纤的线性阵列。
8.权利要求1的设备,其中该多个光纤在该多个光纤的远端和近端处拥有相同的空间布置,从而使该多个光纤关于传输被散射的样品光束的角度散射分布是空间相干的。
9.权利要求1的设备,其中第一光学元件和第二光学元件由成像光学元件构成。
10.权利要求9的设备,其中所述成像光学元件是透镜。
11.权利要求1的设备,其中源光束由从下述中选择的光构成:来自弧光灯、热源、LED的白光,来自宽带激光器、超发光二极管、二极管激光器以及超连续源的相干光。
12.一种获得样品的深度分辨光谱以便确定样品内散射体的深度特性的方法,包括以下步骤:
发射从源光束分裂出来并通过由单模传输光纤构成的第一光学路径被运载的样品光束于样品之上,以使样品光束以多个角度从样品被散射,以产生被散射的样品光束;
通过由多个光纤构成的第二光学路径,接收通过在样品和该多个光纤之间被定位的第一光学元件的傅立叶变换特性的被散射的样品光束的角度散射分布,其中在第一光学元件的一个焦点处定位该多个光纤;
通过由光纤构成并结束于第二光学元件的第三光学路径运载从源光束分裂出来的参考光束,第二光学元件对参考光束进行准直;
使角度散射分布与参考光束互相关以提供关于样品的角度分辨互相关信号;
光谱分散所述角度分辨互相关信号,以便同时并行地获得在该多个角度的每一个下的角度分辨、光谱分辨轮廓;以及
对所述角度分辨、光谱分辨轮廓进行傅立叶变换,以便产生作为角度和深度的函数的关于样品的深度分辨信息。
13.权利要求12的方法,进一步包括从单个角度分辨、光谱分辨轮廓确定样品上的多个不同点处样品的散射体的深度。
14.权利要求12的方法,进一步包括从所述角度分辨、光谱分辨轮廓恢复关于散射体的尺寸信息。
15.权利要求14的方法,其中恢复关于散射体的尺寸信息包括比较被散射的样品光束的角度散射分布与样品的预测分析或数值计算的角度散射分布。
16.权利要求14的方法,其中发射样品光束进一步包括以关于样品和该多个光纤的倾斜角度发射样品光束于样品上使得由于样品而导致的镜面反射没有被该多个光纤接收。
CN2006800464014A 2005-10-11 2006-10-11 用于内窥镜的角度分辨低相干干涉测量的系统和方法 Expired - Fee Related CN101326428B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72560305P 2005-10-11 2005-10-11
US60/725,603 2005-10-11
PCT/US2006/039771 WO2007044821A1 (en) 2005-10-11 2006-10-11 Systems and method for endoscopic angle-resolved low coherence interferometry

Publications (2)

Publication Number Publication Date
CN101326428A CN101326428A (zh) 2008-12-17
CN101326428B true CN101326428B (zh) 2011-05-18

Family

ID=37714242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800464014A Expired - Fee Related CN101326428B (zh) 2005-10-11 2006-10-11 用于内窥镜的角度分辨低相干干涉测量的系统和方法

Country Status (9)

Country Link
US (3) US7595889B2 (zh)
EP (3) EP2444783B1 (zh)
JP (2) JP2009511909A (zh)
CN (1) CN101326428B (zh)
AU (1) AU2006302086B2 (zh)
CA (3) CA2626116C (zh)
ES (2) ES2402796T3 (zh)
PT (2) PT1934567E (zh)
WO (1) WO2007044821A1 (zh)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241038B2 (ja) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション 組織分析のための光学的な方法及びシステム
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
US7865231B2 (en) 2001-05-01 2011-01-04 The General Hospital Corporation Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
WO2004088361A2 (en) 2003-03-31 2004-10-14 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US7102758B2 (en) 2003-05-06 2006-09-05 Duke University Fourier domain low-coherence interferometry for light scattering spectroscopy apparatus and method
KR101386971B1 (ko) 2003-06-06 2014-04-18 더 제너럴 하스피탈 코포레이션 파장 동조 소스용 방법 및 장치
WO2005031431A1 (de) * 2003-09-25 2005-04-07 Leica Microsystems Cms Gmbh Mikroskopobjektiv zur totalinternen-reflexions-mikroskopie und mikroskop
US7733497B2 (en) 2003-10-27 2010-06-08 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
AU2004320269B2 (en) 2004-05-29 2011-07-21 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006024014A2 (en) 2004-08-24 2006-03-02 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
US8208995B2 (en) 2004-08-24 2012-06-26 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US7365859B2 (en) 2004-09-10 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
EP2329759B1 (en) 2004-09-29 2014-03-12 The General Hospital Corporation System and method for optical coherence imaging
US7995210B2 (en) 2004-11-24 2011-08-09 The General Hospital Corporation Devices and arrangements for performing coherence range imaging using a common path interferometer
JP2008521516A (ja) 2004-11-29 2008-06-26 ザ ジェネラル ホスピタル コーポレイション サンプル上の複数の地点を同時に照射し検出することによって光学画像生成を実行する構成、装置、内視鏡、カテーテル、及び方法
WO2006095343A1 (en) * 2005-03-10 2006-09-14 Anatoly Babchenko An optical sensor and a method of its use
EP2325803A1 (en) 2005-04-28 2011-05-25 The General Hospital Corporation Evaluating optical coherence tomography information for an anatomical structure
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
ES2354287T3 (es) 2005-08-09 2011-03-11 The General Hospital Corporation Aparato y método para realizar una desmodulación en cuadratura por polarización en tomografía de coherencia óptica.
CN101365375B (zh) 2005-09-29 2013-09-11 通用医疗公司 用于经由谱编码进行光学成像的方法和设备
JP4642681B2 (ja) * 2005-09-30 2011-03-02 富士フイルム株式会社 光断層画像化装置
US8537366B2 (en) * 2005-10-11 2013-09-17 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
EP2444783B1 (en) * 2005-10-11 2015-03-04 Duke University Systems and method for fiber-based endoscopic angle-resolved low coherence interferometry
US7889348B2 (en) 2005-10-14 2011-02-15 The General Hospital Corporation Arrangements and methods for facilitating photoluminescence imaging
EP1971848B1 (en) 2006-01-10 2019-12-04 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
PL1973466T3 (pl) 2006-01-19 2021-07-05 The General Hospital Corporation Balonowy cewnik do obrazowania
WO2007149603A2 (en) 2006-02-01 2007-12-27 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
JP5524487B2 (ja) 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。
JP5519152B2 (ja) 2006-02-08 2014-06-11 ザ ジェネラル ホスピタル コーポレイション 光学顕微鏡法を用いて解剖学的サンプルに関わる情報を取得するための装置
EP1987318B1 (en) * 2006-02-24 2015-08-12 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
EP2517616A3 (en) 2006-05-10 2013-03-06 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
US20080021276A1 (en) * 2006-07-21 2008-01-24 Oncoscope, Inc. Protective probe tip, particularly for use on a fiber-optic probe used in an endoscopic application
CN101589301B (zh) 2006-08-25 2012-11-07 通用医疗公司 利用体积测定过滤技术来增强光学相干断层成像的装置和方法
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
US7949019B2 (en) 2007-01-19 2011-05-24 The General Hospital Wavelength tuning source based on a rotatable reflector
US7502119B2 (en) * 2007-01-29 2009-03-10 Filmetrics, Inc. Thin-film metrology using spectral reflectance with an intermediate in-line reference
EP2602651A3 (en) 2007-03-23 2014-08-27 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2008131082A1 (en) 2007-04-17 2008-10-30 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques
WO2008157790A2 (en) * 2007-06-20 2008-12-24 The Trustees Of Dartmouth College Pulsed lasers in frequency domain diffuse optical tomography and spectroscopy
JP5917803B2 (ja) 2007-07-31 2016-05-18 ザ ジェネラル ホスピタル コーポレイション 高速ドップラー光周波数領域撮像法のためのビーム走査パターンを放射するシステムおよび方法
EP2191254B1 (en) 2007-08-31 2017-07-19 The General Hospital Corporation System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith
JP2009063407A (ja) * 2007-09-06 2009-03-26 Yokogawa Electric Corp 照射集光装置
EP2188587A4 (en) * 2007-09-13 2017-01-18 Duke University Apparatuses, systems, and methods for low-coherence interferometry (lci)
WO2009059034A1 (en) 2007-10-30 2009-05-07 The General Hospital Corporation System and method for cladding mode detection
WO2009089344A1 (en) 2008-01-08 2009-07-16 Oncoscope, Inc. Systems and methods for tissue examination, diagnostic, treatment, and/or monitoring
US9952148B2 (en) * 2008-02-19 2018-04-24 Trustees Of Tufts College Non-invasive optical characterization of biomaterial mineralization
DE102008016973B4 (de) * 2008-04-03 2009-12-31 Precitec Optronik Gmbh Interferometer und Verfahren zum Betreiben eines Interferometers
US7898656B2 (en) * 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
EP2274572A4 (en) 2008-05-07 2013-08-28 Gen Hospital Corp SYSTEM, METHOD AND COMPUTER MEDIUM FOR MONITORING THE MOVEMENT OF VESSELS DURING A THREE-DIMENSIONAL MICROSCOPY EXAMINATION OF CORONARY ARTERIES
US9013692B2 (en) * 2008-06-12 2015-04-21 East Carolina University Flow cytometer apparatus for three dimensional difraction imaging and related methods
WO2009155536A2 (en) 2008-06-20 2009-12-23 The General Hospital Corporation Fused fiber optic coupler arrangement and method for use thereof
WO2010009136A2 (en) 2008-07-14 2010-01-21 The General Hospital Corporation Apparatus and methods for color endoscopy
KR101109968B1 (ko) * 2008-07-23 2012-02-17 올림푸스 메디칼 시스템즈 가부시키가이샤 피검체 관측 장치 및 피검체 관측 방법
CN102144154B (zh) 2008-10-01 2015-04-22 东卡莱罗纳大学 用结构入射光测定混浊介质光学特征的方法与系统
US8004688B2 (en) 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry
JP5731394B2 (ja) 2008-12-10 2015-06-10 ザ ジェネラル ホスピタル コーポレイション 光サブサンプリングを通じて、光コヒーレンストモグラヒィーのイメージング深度範囲を伸ばすためのシステム、装置及び方法
US8537367B2 (en) * 2009-01-17 2013-09-17 Luna Innovations Incorporated Optical imaging for optical device inspection
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
WO2010085775A2 (en) 2009-01-26 2010-07-29 The General Hospital Corporation System, method and computer-accessible medium for providing wide-field superresolution microscopy
US9351642B2 (en) 2009-03-12 2016-05-31 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s)
JP5325679B2 (ja) * 2009-07-03 2013-10-23 富士フイルム株式会社 低コヒーレンス光源を用いた動的光散乱測定装置及び光散乱強度測定方法
BR112012001042A2 (pt) 2009-07-14 2016-11-22 Gen Hospital Corp equipamento e método de medição do fluxo de fluído dentro de estrutura anatômica.
TWI425188B (zh) * 2009-08-31 2014-02-01 Zygo Corp 顯微鏡系統和成像干涉儀系統
JP5560628B2 (ja) * 2009-09-04 2014-07-30 ソニー株式会社 検査装置および検査方法
JP2011095181A (ja) 2009-10-30 2011-05-12 Sysmex Corp 粒子分析装置
US9823127B2 (en) 2010-01-22 2017-11-21 Duke University Systems and methods for deep spectroscopic imaging of biological samples with use of an interferometer and spectrometer
CA2787696A1 (en) * 2010-01-22 2011-07-28 Adam Wax Multiple window processing schemes for spectroscopic optical coherence tomography (oct) and fourier domain low coherence interferometry
ES2831223T3 (es) 2010-03-05 2021-06-07 Massachusetts Gen Hospital Aparato para proporcionar radiación electromagnética a una muestra
AU2010348375A1 (en) * 2010-03-19 2012-10-11 Duke University Single-mode optical fiber-based angle-resolved low coherence interferometric (LCI) (a/LCI) and non-interferometric systems and methods
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
EP2575591A4 (en) 2010-06-03 2017-09-13 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US8462349B1 (en) * 2010-07-20 2013-06-11 Science Applications International Corporation System and method for a self-referencing interferometer
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
WO2013013049A1 (en) 2011-07-19 2013-01-24 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
EP2565625A1 (en) * 2011-09-05 2013-03-06 Ludwig-Maximilians-Universität München Optical measurement system and method for operating an optical measurement system
EP2769491A4 (en) 2011-10-18 2015-07-22 Gen Hospital Corp DEVICE AND METHOD FOR PRODUCING AND / OR PROVIDING RECIRCULATING OPTICAL DELAY (DE)
WO2013148306A1 (en) 2012-03-30 2013-10-03 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
JP6560126B2 (ja) 2013-01-28 2019-08-14 ザ ジェネラル ホスピタル コーポレイション 光周波数ドメインイメージングに重ね合わせされる拡散分光法を提供するための装置および方法
WO2014120791A1 (en) 2013-01-29 2014-08-07 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
WO2014124537A1 (en) * 2013-02-14 2014-08-21 Verisante Technology, Inc. Method and apparatus for optical measurements under ambient light conditions
JP6378311B2 (ja) 2013-03-15 2018-08-22 ザ ジェネラル ホスピタル コーポレイション 物体を特徴付ける方法とシステム
WO2014144307A2 (en) 2013-03-15 2014-09-18 Gebhart Steven C Probe assembly and disposable cover particularly for use in endoscope applications of low coherence interferometry
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
EP3021735A4 (en) 2013-07-19 2017-04-19 The General Hospital Corporation Determining eye motion by imaging retina. with feedback
WO2015009932A1 (en) 2013-07-19 2015-01-22 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
EP3025173B1 (en) 2013-07-26 2021-07-07 The General Hospital Corporation Apparatus with a laser arrangement utilizing optical dispersion for applications in fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
WO2015153982A1 (en) 2014-04-04 2015-10-08 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
JP6588083B2 (ja) * 2014-04-25 2019-10-09 エックス−ライト,インコーポレイテッドX−Rite,Incorporated 照準システムおよび方法
WO2016015052A1 (en) 2014-07-25 2016-01-28 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
WO2016054408A2 (en) * 2014-10-01 2016-04-07 Purdue Research Foundation Organism identificaton
CA2979398A1 (en) 2015-03-12 2016-09-15 Purdue Research Foundation Biodynamic microscopes and methods of use thereof
DE102016218290A1 (de) * 2016-07-15 2018-01-18 Carl Zeiss Meditec Ag Verfahren zur hochsensitiven Messung von Abständen und Winkeln im menschlichen Auge
US10434970B2 (en) * 2016-12-08 2019-10-08 Toyota Jidosha Kabushiki Kaisha Vehicle side section structure
GB201803523D0 (en) * 2018-03-05 2018-04-18 Malvern Panalytical Ltd Improved particle sizing by optical diffraction
CN109620134B (zh) * 2019-01-21 2020-05-22 浙江大学 基于光纤阵列多通道并行探测的微血管造影方法和系统
US11333487B2 (en) * 2019-10-28 2022-05-17 Kla Corporation Common path mode fiber tip diffraction interferometer for wavefront measurement
CN113091896B (zh) * 2021-03-18 2023-03-14 西北工业大学 基于偏振光栅的动态测量任意光场完整信息的方法及光路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243005A2 (en) * 1986-03-25 1987-10-28 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
US5601087A (en) * 1992-11-18 1997-02-11 Spectrascience, Inc. System for diagnosing tissue with guidewire
CN1341209A (zh) * 1999-01-25 2002-03-20 牛顿实验室公司 使用偏振光对组织成像

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110033A (ja) * 1984-11-02 1986-05-28 Toray Ind Inc 凝集反応の測定装置
US4646722A (en) 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
US4699513A (en) * 1985-02-08 1987-10-13 Stanford University Distributed sensor and method using coherence multiplexing of fiber-optic interferometric sensors
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6501551B1 (en) * 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US5956355A (en) * 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6134003A (en) * 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US5386817A (en) 1991-06-10 1995-02-07 Endomedical Technologies, Inc. Endoscope sheath and valve system
US5208466A (en) * 1991-10-08 1993-05-04 Beckman Instruments, Inc. Apparatus and method for aligning capillary column and detection optics
JPH0695036A (ja) * 1992-07-27 1994-04-08 Nikon Corp 光学素子
US5643175A (en) 1992-09-01 1997-07-01 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
CA2143639C (en) 1992-09-01 2004-07-20 Edwin L. Adair Sterilizable endoscope with separable disposable tube assembly
DE4411017C2 (de) * 1994-03-30 1995-06-08 Alexander Dr Knuettel Optische stationäre spektroskopische Bildgebung in stark streuenden Objekten durch spezielle Lichtfokussierung und Signal-Detektion von Licht unterschiedlicher Wellenlängen
US5771327A (en) 1996-11-18 1998-06-23 Optical Biopsy Optical fiber probe protector
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5930440A (en) 1998-02-18 1999-07-27 Optical Biopsy Technologies, Llc Fiber optic probe protector
US20040116682A1 (en) 1998-03-06 2004-06-17 Nordine Cheikh Nucleic acid molecules and other molecules associated with the carbon assimilation pathway
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6404497B1 (en) 1999-01-25 2002-06-11 Massachusetts Institute Of Technology Polarized light scattering spectroscopy of tissue
US6263133B1 (en) * 1999-03-29 2001-07-17 Scimed Life Systems, Inc. Optical focusing, collimating and coupling systems for use with single mode optical fiber
US6233373B1 (en) * 1999-06-21 2001-05-15 The United States Of America As Represented By The Secretary Of The Navy Optical spectrometer with improved geometry and data processing for monitoring fiber optic bragg gratings
US20040215296A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. System and method for treating abnormal epithelium in an esophagus
JP5134177B2 (ja) * 2000-04-28 2013-01-30 マサチユセツツ・インスチチユート・オブ・テクノロジイ 電場に基づいた光散乱分光法を用いたシステム
EP1432960A2 (en) 2000-09-04 2004-06-30 Forskningscenter Riso Optical amplification in coherence reflectometry
US6697652B2 (en) 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
AU2002240155A1 (en) * 2001-01-29 2002-09-19 Joseph A. Izatt Frequency-encoded parallel oct and associated systems and methods
US6879851B2 (en) * 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US7061622B2 (en) * 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US20030042438A1 (en) * 2001-08-31 2003-03-06 Lawandy Nabil M. Methods and apparatus for sensing degree of soiling of currency, and the presence of foreign material
US6863651B2 (en) 2001-10-19 2005-03-08 Visionscope, Llc Miniature endoscope with imaging fiber system
US7355716B2 (en) * 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US6879741B2 (en) 2002-11-04 2005-04-12 C Technologies, Inc Sampling end for fiber optic probe
US20090075391A1 (en) * 2003-01-17 2009-03-19 Newton Laboratories, Inc. Spectroscopic diagnostic method and system based on scattering of polarized light
EP2319405B1 (en) 2003-01-24 2013-09-18 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
WO2004073501A2 (en) * 2003-02-20 2004-09-02 Gutin Mikhail Optical coherence tomography with 3d coherence scanning
EP1611411A2 (en) * 2003-03-26 2006-01-04 Southwest Sciences Incorporated Method and apparatus for imaging internal structures of transparent and translucent materials
US7102758B2 (en) 2003-05-06 2006-09-05 Duke University Fourier domain low-coherence interferometry for light scattering spectroscopy apparatus and method
WO2005003743A2 (en) * 2003-05-20 2005-01-13 University Of Maryland Apparatus and methods for surface plasmon-coupled directional emission
US7428050B2 (en) * 2003-06-25 2008-09-23 The University Of Akron Multispectral, multifusion, laser-polarimetric optical imaging system
GB2407155A (en) * 2003-10-14 2005-04-20 Univ Kent Canterbury Spectral interferometry method and apparatus
WO2006014392A1 (en) * 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
US7417740B2 (en) * 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
JP4429886B2 (ja) * 2004-12-09 2010-03-10 富士フイルム株式会社 光断層映像装置
US7428057B2 (en) * 2005-01-20 2008-09-23 Zygo Corporation Interferometer for determining characteristics of an object surface, including processing and calibration
WO2006078839A2 (en) * 2005-01-20 2006-07-27 Duke University Methods, systems and computer program products for characterizing structures based on interferometric phase data
WO2006133030A2 (en) * 2005-06-06 2006-12-14 Board Of Regents Oct using spectrally resolved bandwidth
US7391520B2 (en) * 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
JP2007029603A (ja) 2005-07-29 2007-02-08 Fujinon Corp 光診断治療装置
WO2007044786A2 (en) * 2005-10-11 2007-04-19 Zygo Corporation Interferometry method and system including spectral decomposition
EP2444783B1 (en) 2005-10-11 2015-03-04 Duke University Systems and method for fiber-based endoscopic angle-resolved low coherence interferometry
EP1987318B1 (en) * 2006-02-24 2015-08-12 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
US7366372B2 (en) 2006-02-27 2008-04-29 Honeywell International, Inc. Waveguide device having improved spatial filter configurations
CN101548153A (zh) 2006-05-12 2009-09-30 西北大学 低相干增强背散射光谱的系统、方法和设备
US8131348B2 (en) * 2006-05-12 2012-03-06 Northshore University Healthsystem Systems, methods and apparatuses of elastic light scattering spectroscopy and low coherence enhanced backscattering spectroscopy
US20080058629A1 (en) * 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
US20080255461A1 (en) 2007-03-26 2008-10-16 Robert Weersink Real-time optical monitoring system and method for thermal therapy treatment
US7583872B2 (en) * 2007-04-05 2009-09-01 University Of Washington Compact scanning fiber device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243005A2 (en) * 1986-03-25 1987-10-28 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
US5601087A (en) * 1992-11-18 1997-02-11 Spectrascience, Inc. System for diagnosing tissue with guidewire
CN1341209A (zh) * 1999-01-25 2002-03-20 牛顿实验室公司 使用偏振光对组织成像

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
John W. Pyhtila et al.Rapid,depth-resolved light scattering measurements usingFourier domain,angle-resolved low coherence interferometry.Optics Express12 25.2004,12(25),6178-6183.
John W. Pyhtila et al.Rapid,depth-resolved light scattering measurements usingFourier domain,angle-resolved low coherence interferometry.Optics Express12 25.2004,12(25),6178-6183. *
John W.Pyhtila et al.Determining nuclear morphology using an improved angle-resolved low coherence interferometry system.Optics Express11 25.2003,11(25),3473-3484.
John W.Pyhtila et al.Determining nuclear morphology using an improved angle-resolved low coherence interferometry system.Optics Express11 25.2003,11(25),3473-3484. *

Also Published As

Publication number Publication date
JP5555277B2 (ja) 2014-07-23
WO2007044821A1 (en) 2007-04-19
CA2626116C (en) 2012-08-21
ES2402796T3 (es) 2013-05-09
US20120281224A1 (en) 2012-11-08
ES2541851T3 (es) 2015-07-27
AU2006302086A1 (en) 2007-04-19
CA2967964A1 (en) 2007-04-19
EP2444783B1 (en) 2015-03-04
EP1934567A1 (en) 2008-06-25
EP1934567B1 (en) 2013-01-16
EP2950065A1 (en) 2015-12-02
EP2444783A1 (en) 2012-04-25
CA2786755C (en) 2017-06-20
US7595889B2 (en) 2009-09-29
CA2786755A1 (en) 2007-04-19
JP2012198221A (ja) 2012-10-18
PT1934567E (pt) 2013-04-24
US20100014090A1 (en) 2010-01-21
AU2006302086B2 (en) 2011-08-18
CN101326428A (zh) 2008-12-17
CA2626116A1 (en) 2007-04-19
JP2009511909A (ja) 2009-03-19
US20070133002A1 (en) 2007-06-14
PT2444783E (pt) 2015-06-17
US7903254B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
CN101326428B (zh) 用于内窥镜的角度分辨低相干干涉测量的系统和方法
US10292595B2 (en) Systems and methods for endoscopic angle-resolved low coherence interferometry
US20150062591A1 (en) Apparatuses, systems, and methods for low-coherence interferometry (lci)
KR20020027377A (ko) 필드-베이스 빛 산란 스펙트로스코피를 이용하는 방법 및시스템
WO2011115627A1 (en) Single-mode optical fiber-based angle-resolved low coherence interferometric (lci) (a/lci) and non-interferometric systems and methods
KR20090093368A (ko) 편광 민감 광 간섭 영상검출용 프로브
AU2011244958B2 (en) Systems and method for endoscopic angle-resolved low coherence interferometry
Song et al. Two-dimensional Angle-resolved Low-coherence Interferometry with Spatial Scanning
AU2014250634B2 (en) Apparatuses, systems, and methods for low-coherence interferometry (LCI)
Pyhtila et al. Endoscopic Fourier-domain angle-resolved low coherence interferometry for assessing nuclear morphology in human epithelial tissues
Pyhtila Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system
Terry et al. Development of a clinical Fourier-domain angle resolved low coherence interferometry system for in vivo measurements

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110518

Termination date: 20201011