CN101316160A - Multi-Node Simultaneous Sampling and Data Transfer Method - Google Patents

Multi-Node Simultaneous Sampling and Data Transfer Method Download PDF

Info

Publication number
CN101316160A
CN101316160A CNA2008101240736A CN200810124073A CN101316160A CN 101316160 A CN101316160 A CN 101316160A CN A2008101240736 A CNA2008101240736 A CN A2008101240736A CN 200810124073 A CN200810124073 A CN 200810124073A CN 101316160 A CN101316160 A CN 101316160A
Authority
CN
China
Prior art keywords
data
sampling
signal
synchronization
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101240736A
Other languages
Chinese (zh)
Other versions
CN101316160B (en
Inventor
庞吉耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING PANENG ELECTRIC POWER TECHNOLOGY CO LTD
Original Assignee
NANJING PANENG ELECTRIC POWER TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING PANENG ELECTRIC POWER TECHNOLOGY CO LTD filed Critical NANJING PANENG ELECTRIC POWER TECHNOLOGY CO LTD
Priority to CN2008101240736A priority Critical patent/CN101316160B/en
Publication of CN101316160A publication Critical patent/CN101316160A/en
Application granted granted Critical
Publication of CN101316160B publication Critical patent/CN101316160B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

多节点同步采样控制和数据传输方法,其步骤如下:(1)构建一个与上层数据处理设备和过程量采集控制装置(DAE)相匹配的全局同步装置,该设备利用外接同步源或本地定时器产生一个全局同步信号S1;(2)将全局同步信号接入一个或多个称之为通信装置(DCE)的设备,通信装置为每个接入的过程量采集控制装置产生一个同步信号S2;(3)利用信号S1中的绝对时标和全局采样计数器,在多个通信装置之间实现过程量的二次同步抽样;(4)负责过程量采集和执行输出的采集控制装置(DAE)在接收到信号S2后检出同步信号和命令数据;(5)采集控制装置根据Δti动态调整S2信号的启动时刻实现远距离多节点的同步采样。

Figure 200810124073

Multi-node synchronous sampling control and data transmission method, its steps are as follows: (1) Construct a global synchronization device matching with the upper layer data processing equipment and the process quantity acquisition control device (DAE), the device utilizes an external synchronization source or a local timer Generate a global synchronization signal S1; (2) connect the global synchronization signal to one or more devices called communication devices (DCE), and the communication device generates a synchronization signal S2 for each connected process quantity acquisition control device; (3) Using the absolute time scale and the global sampling counter in the signal S1, the secondary synchronous sampling of the process quantity is realized among multiple communication devices; (4) The acquisition and control device (DAE) responsible for the process quantity acquisition and execution output is in the After receiving the signal S2, the synchronous signal and command data are detected; (5) The acquisition control device dynamically adjusts the starting time of the S2 signal according to Δt i to realize synchronous sampling of long-distance multi-nodes.

Figure 200810124073

Description

多节点同步采样和数据传输方法 Multi-Node Simultaneous Sampling and Data Transfer Method

一、技术领域1. Technical field

本发明涉及分布在不同场所的多个数据采集节点之间同步采样和实时数据传输的方法。尤其在需要分布式采集控制和集中式数据处理,对数据采样要求严格同步,采样数据要求实时传输,时延固定的电力系统保护领域和工业控制领域。具体地说,本发明是多节点同步数据采集和实时传输的方法。The invention relates to a method for synchronous sampling and real-time data transmission among multiple data acquisition nodes distributed in different places. Especially in the field of power system protection and industrial control where distributed acquisition control and centralized data processing are required, data sampling requires strict synchronization, sampling data requires real-time transmission, and time delay is fixed. Specifically, the present invention is a multi-node synchronous data acquisition and real-time transmission method.

二、背景技术2. Background technology

在电力系统继电保护和工业过程控制领域,为精确地保留信号的相位信息,或对异步发生的事件进行精确时序分析,需要对某一组过程量进行严格异地同步等间隔采集,为提高系统实时处理能力和异步事件响应速度需要各个过程量采集控制装置的采样数据能够实时上送,并且处理装置的命令设置信息需要实时地发往执行机构或调节机构。一些标准如IEC61850-5就定义了3个等级的采样值同步准确度:T3,T4和T5。其中:T3等级要求为25μs,用于配电线路保护;T4等级要求为4μs,用于输电线路保护中;T5等级要求为1μs,用于计量[5]。而等间隔采样是后级基于准同步采样算法基础[4],当被测过程量可以接入同一个采集装置时同步采集比较容易实现,但当这些过程量位于不同的采集装置,而且这些采集装置物理分布不在一起时就没有统一的实现方法。In the field of power system relay protection and industrial process control, in order to accurately retain the phase information of the signal, or to conduct accurate timing analysis on asynchronous events, it is necessary to collect a certain group of process variables at different locations synchronously and at equal intervals, in order to improve the system Real-time processing capability and asynchronous event response speed require that the sampling data of each process quantity acquisition and control device can be uploaded in real time, and the command setting information of the processing device needs to be sent to the actuator or adjustment mechanism in real time. Some standards such as IEC61850-5 define three levels of sampling value synchronization accuracy: T3, T4 and T5. Among them: T3 level requires 25 μs, which is used for distribution line protection; T4 level requires 4 μs, which is used for transmission line protection; T5 level requires 1 μs, which is used for metering [5]. The equal interval sampling is the basis of the quasi-synchronous sampling algorithm in the subsequent stage [4]. When the measured process quantities can be connected to the same acquisition device, synchronous acquisition is relatively easy to achieve, but when these process quantities are located in different acquisition devices, and these acquisition devices When the devices are not physically distributed together, there is no unified implementation method.

目前现有的同步采样控制方法主要包括以下三种方法:At present, the existing synchronous sampling control methods mainly include the following three methods:

1.遵循IEC61850-9-1体系结构,由一个精确时钟源同步多个合并器,再由合并器产生控制ADC的启动信号,实现多节点采样[3]。1. Following the IEC61850-9-1 architecture, multiple combiners are synchronized by an accurate clock source, and then the combiner generates a start signal to control the ADC to achieve multi-node sampling [3].

2.基于IEEE1588精确时间协议PTP(Precision Time Protocol)的同步采样系统,通过对满足多点通信的分布式控制系统采用多播技术终端设备的时钟进行微秒级同步,进而根据绝对时间实现采样同步。2. The synchronous sampling system based on the IEEE1588 precision time protocol PTP (Precision Time Protocol), through the microsecond-level synchronization of the clock of the terminal equipment using the multicast technology for the distributed control system that satisfies the multipoint communication, and then realizes the sampling synchronization according to the absolute time .

3.GPS同步法。利用GPS模块为不同物理分布节点提供秒脉冲,各节点采样同步于GPS模块输出的秒脉冲实现全局同步采样。3. GPS synchronization method. The GPS module is used to provide the second pulse for different physical distribution nodes, and the sampling of each node is synchronized with the second pulse output by the GPS module to realize global synchronous sampling.

目前现有的同步采样控制方法的不足之处:The disadvantages of the existing synchronous sampling control methods:

1.IEC61850-9-1体系结构需要独立的同步通道,普遍采用秒脉冲同步合并器,这种体系结构没有考虑传输链路长度影响,而且数据传输的方向是单向的,在需要主从节点交互信息时不适用,对同步钟源和本地时钟要求高。1. The IEC61850-9-1 architecture requires an independent synchronization channel, and the second pulse synchronous combiner is generally used. This architecture does not consider the impact of the length of the transmission link, and the direction of data transmission is unidirectional. When master-slave nodes are required Not applicable when exchanging information, and requires high synchronization clock source and local clock.

设同步钟源的周期为T,而实际ADC的采样周期为Ta,为实现等间隔采样应有Let the period of the synchronous clock source be T, and the sampling period of the actual ADC be Ta. In order to realize equal interval sampling, there should be

T=N×Ta    式中:N为在周期T中采样点数T=N×T a where: N is the number of sampling points in period T

f0=1/T=(1/NTa)=fa/N  式中:fa=1/Ta为本地节点工作时钟f 0 =1/T=(1/NT a )=f a /N where: f a =1/T a is the working clock of the local node

由于f0,fa,N为整数,采样率N越高时,上式越无法精确相等,不同的节点之间由于fa不同和频率飘移,实际上无法实现同步等间隔采样。Since f 0 , f a , and N are integers, the higher the sampling rate N, the more precisely the above formula cannot be equal. Due to the difference in f a and frequency drift between different nodes, it is actually impossible to achieve synchronous equal interval sampling.

2.基于IEEE1588的同步采样方法,需要支持IEEE1588协议的网络硬件接口和交换设备,增加额外的成本。而且由于IEEE802.3对以太网传输距离和网络传输延时有要求,使之不适用物理上分布较远的多个节点之间的同步采集和控制。IEEE1588每秒启动一次同步过程,在时钟校同步失败后,再次同步需要反复计算两侧时钟的相对误差Δt,同步延时较长。2. The synchronous sampling method based on IEEE1588 requires a network hardware interface and switching equipment supporting the IEEE1588 protocol, which increases additional costs. Moreover, because IEEE802.3 has requirements on Ethernet transmission distance and network transmission delay, it is not suitable for synchronous acquisition and control among multiple nodes that are physically distributed far away. IEEE1588 starts a synchronization process every second. After the clock synchronization fails, re-synchronization needs to repeatedly calculate the relative error Δt of the clocks on both sides, and the synchronization delay is long.

此外,在高速多节点采集控制装置连接到同一个主控节点时,重载时网络冲突加剧,影响实时数据传输,不能保证每个采样数据在固定的时延下传输到数据处理终端。In addition, when the high-speed multi-node acquisition and control device is connected to the same master control node, network conflicts will intensify during heavy loads, affecting real-time data transmission, and it cannot be guaranteed that each sampled data will be transmitted to the data processing terminal under a fixed delay.

3.GPS同步法受到GPS的受捕获卫星数量影响,以及自然环境和社会环境等因素的制约,并且需要相应的硬件支持,需要额外的数据传输通道,成本较高。参考文献:3. The GPS synchronization method is affected by the number of satellites captured by GPS, as well as the natural environment and social environment and other factors, and requires corresponding hardware support, additional data transmission channels, and high cost. references:

1.高厚磊,江世芳,贺家李。数字电流差动保护中几种采样同步方法.电力系统自动化,1996,20(9)。1. Gao Houlei, Jiang Shifang, He Jiali. Several Sampling Synchronization Methods in Digital Current Differential Protection. Electric Power System Automation, 1996, 20(9).

2.杨维娜,鲍伟廉.PCM系统传送继电保护数据的信号处理.电力系统通信,1992(2)2. Yang Weina, Bao Weilian. Signal processing of relay protection data transmitted by PCM system. Power system communication, 1992(2)

3.殷志良 刘万顺 杨奇逊 秦应力一种遵循IEC61850标准的合并单元同步的实现新方法.电力系统自动化.2004,28(11).-57-613. Yin Zhiliang, Liu Wanshun, Yang Qixun, Qin Yingli, A New Method for Synchronization of Merging Units Complying with IEC61850 Standard. Electric Power System Automation. 2004, 28(11).-57-61

4.戴先中准同步采样及其在非正弦功率测量中的应用仪器仪表学报1984年11月4. Dai Xianzhong's quasi-synchronous sampling and its application in non-sinusoidal power measurement, Journal of Instrumentation, November 1984

5.IEC 61850-5.Communication Networks and Systems in Substations,Part 5:Communication Requirements for Functions and Device Models.2003.5.IEC 61850-5.Communication Networks and Systems in Substations, Part 5: Communication Requirements for Functions and Device Models.2003.

6.殷志良 刘万顺 杨奇逊 秦应力 基于IEEE 1588实现变电站过程总线采样值同步新技术电力系统自动化.2005,29(13).-60-636. Yin Zhiliang, Liu Wanshun, Yang Qixun, Qin Yingli. Based on IEEE 1588, realize the new technology of power system automation of substation process bus sampling value synchronization. 2005, 29(13).-60-63

三、发明内容3. Contents of the invention

本发明目的是提出一种在同一对全双工链路上实现了同步采样控制和实时数据传输的方法,并解决不同物理分布的多个采集控制节点之间由于物理链路长度和软件协议栈所产生的额外时延。The purpose of the invention is to propose a method that realizes synchronous sampling control and real-time data transmission on the same pair of full-duplex links, and solves the problem of physical link length and software protocol stack between multiple acquisition control nodes in different physical distributions. the resulting additional delay.

本发明是通过这样方案实现的:多节点同步采样和数据传输方法:The present invention is realized through such scheme: multi-node synchronous sampling and data transmission method:

(1).构建一个与上层数据处理设备和过程量采集控制装置相匹配的全局同步装置(以下简称GSE),该设备可以利用外接同步源,也可以利用本地定时器产生一个全局同步信号S1,其周期就是过程量采集控制装置的采样周期,通过编码在该信号中包含绝对时标和全局采样计数器。(1). Build a global synchronization device (hereinafter referred to as GSE) that matches the upper layer data processing equipment and process quantity acquisition control device. This device can use an external synchronization source or a local timer to generate a global synchronization signal S1, Its period is the sampling period of the process quantity acquisition control device, and the absolute time scale and the global sampling counter are included in the signal through encoding.

(2).将全局同步信号接入一个或多个(由系统规模确定)称之为通信装置(以下简称DCE)的设备,该设备为每个接入的过程层采集控制装置产生一个同步信号S2,S2的周期就是全局同步信号S1的周期,但信号的启动时刻和其与对应的采集装置之间的链路相关,即比S1延迟Δti(i为采集装置编号,i=1,2,...n)。通过对信号S2的编码使之携带上层数据处理设备发往对应采集控制装置控制信息和同步信号。(2). Connect the global synchronization signal to one or more (determined by the system scale) devices called communication devices (hereinafter referred to as DCE), which generate a synchronization signal for each connected process layer acquisition control device S2, the period of S2 is exactly the period of the global synchronous signal S1, but the start moment of the signal is related to the link between it and the corresponding acquisition device, that is, it is delayed by Δt i (i is the acquisition device number, i=1, 2 ,...n). By encoding the signal S2, it carries the control information and synchronization signal sent by the upper layer data processing equipment to the corresponding acquisition control device.

(3).利用信号S1中的绝对时标和全局采样计数器,在多个通信装置之间实现过程量的二次同步抽样。(3). Using the absolute time scale and the global sampling counter in the signal S1, the secondary synchronous sampling of the process quantity is realized among multiple communication devices.

(4).负责过程量采集和执行输出的采集控制装置(以下简称DAE)在接收到信号S2后检出同步信号和命令数据,在同步信号的控制下立即启动本地过程量的采集并回传信号S3到DCE,即S3和S2是严格时钟相关的.通过对信号S3的编码使之携带上一时刻的采样数据和发往上层数据处理设备的应用数据。(4). The acquisition control device (hereinafter referred to as DAE), which is responsible for process quantity acquisition and execution output, detects the synchronization signal and command data after receiving the signal S2, and immediately starts the acquisition of the local process quantity and returns it under the control of the synchronization signal The signal S3 to DCE, that is, S3 and S2 are strictly clock-related. By encoding the signal S3, it can carry the sampling data of the previous moment and the application data sent to the upper layer data processing equipment.

(5).在每次全局信号到来时按式3-1、式3-2和式3-3计算通信装置到采集控制装置DAEi(i=1,2,3......)的信道延迟量Δti(设链路传输延迟为tdelay,并认为收发数据的物理链路等长),根据Δti动态调整S2信号的启动时刻实现远距离多节点的同步采样。(5). Calculate the communication device to the acquisition control device DAE i (i=1, 2, 3...) according to formula 3-1, formula 3-2 and formula 3-3 when the global signal arrives each time The channel delay amount Δt i (set the link transmission delay as t delay and consider the physical link for sending and receiving data to be equal in length), dynamically adjust the start time of the S2 signal according to Δt i to realize synchronous sampling of long-distance multi-nodes.

tdelay=(trcv-tse-TFH)/2                  (式3-1)t delay =(t rcv -t se -T FH )/2 (Formula 3-1)

Δt=Tdm-(trcv-tse-TFH)/2=Tdm-tdelay     (式3-2)Δt=T dm -(t rcv -t se -T FH )/2=T dm -t delay (Formula 3-2)

Tdm=max{tdelay0,tdelay1,...,tdelayn}  (式3-3)T dm =max{t delay0 ,t delay1 ,...,t delayn } (Formula 3-3)

式中:Δt--通道延迟量In the formula: Δt--channel delay

TFH--同步帧头部宽度T FH -- synchronization frame header width

Tdm--系统最大链路传输延时,可以根据最大链路长度估算T dm -- the maximum link transmission delay of the system, which can be estimated according to the maximum link length

tse--特定通道发送同步波形时刻,trcv--接收到返送数据的时刻t se -- the time when a specific channel sends the synchronous waveform, t rcv -- the time when the returned data is received

由于采样数据在采样同步信号的控制下回传,获得稳定的实时采样数据的时延和传输带宽,在信号中通过编码同时携带控制命令和同步信号,实现了在同一对链路上的采样同步和数据传输。Since the sampling data is transmitted back under the control of the sampling synchronization signal, the time delay and transmission bandwidth of the real-time sampling data are stable, and the control command and synchronization signal are carried in the signal through encoding to realize the sampling synchronization on the same pair of links and data transfer.

本发明所述的采集控制装置发往通信装置的数据帧,由采样数据字段和用户协议字段组成。采样字段每次传送上次采样数据,协议字段传送高层协议数据单元,构成两个逻辑信道,采样数据为实时传输,协议数据非实时传输。同一个数据帧在一次采样间隔中被传送两次,链路层控制器根据帧校验码确定选取其中一个,简化传输机制并提高信道纠错能力。The data frame sent by the acquisition control device to the communication device according to the present invention is composed of a sampling data field and a user protocol field. The sampling field transmits the last sampling data each time, and the protocol field transmits high-level protocol data units, forming two logical channels. The sampling data is transmitted in real time, and the protocol data is transmitted in non-real time. The same data frame is transmitted twice in a sampling interval, and the link layer controller determines to select one of them according to the frame check code, which simplifies the transmission mechanism and improves the channel error correction capability.

多节点同步采样控制和数据传输方法适合需在不同场所布置采集控制装置,全局数据采样需要严格同步,对采样数据传输时延要求固定的分布式采集实时集中数据处理的电力系统保护领域和工业控制领域。The method of multi-node synchronous sampling control and data transmission is suitable for the power system protection field and industrial control where the collection and control devices need to be arranged in different places, the global data sampling needs to be strictly synchronized, and the time delay of sampling data transmission is fixed, distributed collection, real-time centralized data processing field.

本发明的特点Features of the invention

(1).利用一对数据链路实现数据传输和同步采样,成本低,可靠性好。(1). Using a pair of data links to realize data transmission and synchronous sampling, with low cost and good reliability.

(2).每个采样周期内完成数据传输,时刻固定,无需插入时标,可以直接传输采样数据,便于高层软件进行深度分析。(2). The data transmission is completed in each sampling period, and the time is fixed. There is no need to insert a time stamp, and the sampling data can be directly transmitted, which is convenient for high-level software to perform in-depth analysis.

(3).自动计算多个信道传输延迟并调整每个信道同步信号,保证多个节点之间精确同步。(3). Automatically calculate the transmission delay of multiple channels and adjust the synchronization signal of each channel to ensure accurate synchronization between multiple nodes.

(4).采样数据续传两遍,提高信道纠错能力,又减少高层请求重发的开销(4). The sampling data is transmitted twice to improve the channel error correction capability and reduce the overhead of high-level request retransmission

(5).数据字段分为实时数据字段和协议数据字段,保证实时数据传输同时提供逻辑信道传输高层协议数据。(5). The data field is divided into a real-time data field and a protocol data field to ensure real-time data transmission while providing a logical channel to transmit high-level protocol data.

(6).同步精度不受信道物理长度影响,也不受外界条件影响,可达到纳秒级。(6). The synchronization accuracy is not affected by the physical length of the channel, nor is it affected by external conditions, and can reach the nanosecond level.

(7).利用违规编码产生同步信号,发送方同步点为信号前沿,接收方同步点信号的后沿,保证同步信号精确检出。(7).Using illegal codes to generate synchronization signals, the synchronization point of the sender is the leading edge of the signal, and the synchronization point of the receiver is the trailing edge of the signal to ensure accurate detection of the synchronization signal.

(8).本发明的信道延时量算法和传输及差错控制规则简单有效,适合基于FPGA设计实现,通过并行处理提高系统性能。(8). The channel delay algorithm and transmission and error control rules of the present invention are simple and effective, suitable for design and implementation based on FPGA, and improve system performance through parallel processing.

附图说明 Description of drawings

图1多节点同步采样控制系统结构图Figure 1 Multi-node synchronous sampling control system structure diagram

图2全局同步装置同步信号S1Figure 2 Synchronization signal S1 of the global synchronization device

图3通信装置同步/命令信号S2(S3)Figure 3 Communication device synchronization/command signal S2 (S3)

图4多节点同步采样系统工作时序图Figure 4 The working sequence diagram of the multi-node synchronous sampling system

具体实施方式 Detailed ways

1.多节点同步系统构成1. Multi-node synchronization system composition

典型的多节点同步采样及数据传输系统如图1所示:A typical multi-node synchronous sampling and data transmission system is shown in Figure 1:

系统自下而上有三层结构,Level 1为采集控制装置,负责过程量采集和控制命令执行,待测过程量和执行/调节机构连接在采集控制装置上。DAE在接收到同步/命令(Syn/Cmd)信号后启动数据采样,执行相应命令并转发采样数据。Level 2包括全局同步装置(以下简称GSE)和通信装置(以下简称DCE),其中同步装置负责按高层要求的采样间隔产生全局同步信号,通信装置负责同步各采集控制装置并透明转发来自上层或下层的数据,Level 3为数据处理装置(以下简称DPE),负责实时数据处理和下发控制命令。本发明只涉及系统中Level 1和Level 2.The system has a three-layer structure from bottom to top. Level 1 is the acquisition control device, which is responsible for process quantity acquisition and control command execution. The process quantity to be measured and the execution/regulation mechanism are connected to the acquisition control device. DAE starts data sampling after receiving the synchronization/command (Syn/Cmd) signal, executes the corresponding command and forwards the sampled data. Level 2 includes a global synchronization device (hereinafter referred to as GSE) and a communication device (hereinafter referred to as DCE), in which the synchronization device is responsible for generating global synchronization signals according to the sampling interval required by the upper layer, and the communication device is responsible for synchronizing each acquisition control device and transparently forwarding data from the upper or lower layer Level 3 is a data processing device (hereinafter referred to as DPE), which is responsible for real-time data processing and issuing control commands. This invention only involves Level 1 and Level 2 in the system.

图1中S0为外同步信号,通过S0可以接入远方同步信号,扩大系统规模,实现多个系统同步采样。S1为采样/时标信号,由同步装置产生符合上层设备要求的过程量采样启动信号,该信号同时包括全局绝对时标和采样计数器。S2为通信装置发往采集控制装置的同步/命令信号,该信号包含过程量采样启动信号和上层设备发往采集装置的协议数据单元。S3为采集控制装置发往通信装置采样数据和协议数据单元,该信号包括一个同步脉冲。通过扩充图1虚线框中设备,可以扩大本地同步系统规模。S 0 in Fig. 1 is the external synchronous signal, can access the remote synchronous signal through S 0 , expand the scale of the system, and realize synchronous sampling of multiple systems. S 1 is the sampling/time scale signal. The synchronization device generates a process quantity sampling start signal that meets the requirements of the upper equipment. The signal also includes the global absolute time scale and sampling counter. S 2 is the synchronization/command signal sent by the communication device to the acquisition control device, which includes the process quantity sampling start signal and the protocol data unit sent by the upper layer equipment to the acquisition device. S 3 is the sampling data and protocol data unit sent by the acquisition control device to the communication device, and the signal includes a synchronization pulse. The scale of the local synchronization system can be expanded by expanding the equipment in the dotted box in Figure 1 .

本发明采用定长帧,传输延时固定,用于数据传输和同步控制的信号波形均由同步头和随后的数据字段形成,附加用于差错控制帧校验码。The present invention adopts fixed-length frames, and the transmission delay is fixed. The signal waveforms used for data transmission and synchronous control are formed by synchronous headers and subsequent data fields, and are additionally used for error control frame check codes.

2.全局同步信号S1 2. Global synchronization signal S 1

图1中同步装置输出的同步信号S1的物理层定时和编码如图2所示,编码使用高电平宽度表示信息,每个码元宽度为Tb。图中Th为帧同步头宽度,紧随同步头之后的是数据段,T0为码元逻辑0的宽度,T1为码元逻辑1的宽度,Ts为采样间隔。Tb、T0和T1均为Tb的函数。同步装置以间隔Ts发送同步信号,tfs为帧起始点,接收方连续检测到两个宽度为Th高电平认为检测到帧同步信号,标记图中tsyn为接收方同步检出点,帧同步头之前有一个码元宽度的低电平,可以确保同步检出。在信号S1的数据字段中,包含绝对时标和一个8位的采样计数器。当系统连接多个通信装置时,利用全局的采样计数器来标记某一特定时刻的采样数据,根据数据处理装置的需要可以进行二次抽样。The timing and encoding of the physical layer of the synchronization signal S 1 output by the synchronization device in Figure 1 is shown in Figure 2. The encoding uses a high level width to represent information, and the width of each symbol is T b . T h in the figure is the width of the frame synchronization header, followed by the data segment immediately after the synchronization header, T 0 is the width of the symbol logic 0, T 1 is the width of the symbol logic 1, and Ts is the sampling interval. T b , T 0 and T 1 are all functions of T b . Synchronization device sends synchronous signal with interval Ts, and t fs is frame starting point, and the receiving side detects two widths continuously and is T h high level and thinks that frame synchronous signal is detected, and t syn is the synchronous detection point of the receiving side in the mark figure, There is a symbol-width low level before the frame sync header to ensure sync detection. In the data field of the signal S 1 , an absolute time scale and an 8-bit sampling counter are included. When the system is connected with multiple communication devices, the global sampling counter is used to mark the sampling data at a specific time, and the second sampling can be performed according to the needs of the data processing device.

3.同步采样/数据传输信号S2/S3 3. Synchronous sampling/data transmission signal S 2 /S 3

如图2所示,本发明中通信装置下行信号S2和采集装置上行信号S3的帧格式相同,物理层定时和编码如图3。一次采样间隔中,数据被连续传送两次,图中tfs0为发送方帧起始点,tsyn为接收方同步信号检出点,由两个连续的宽度为Tsynh的高电平标记帧开始,由一个宽度为Tsynh的高电平标记随后将重传数据,tfsl为第二次传送起始时刻。图中t0为同步时刻,t1为数据重传的起始时刻,t2为下一个采样间隔开始,Ts为一个完整采样间隔时间。每帧的数据场在一个前导1之后开始,tdat表示数据场开始时刻,Tspae为标记信号到前导1之间的时间宽度,Tb为一个数据比特宽度。数据场编码采用曼切斯特编码,以便能同差分收发器相接。As shown in Figure 2, the frame format of the downlink signal S2 of the communication device and the uplink signal S3 of the acquisition device in the present invention are the same, and the timing and encoding of the physical layer are shown in Figure 3. In a sampling interval, the data is continuously transmitted twice. In the figure, t fs0 is the starting point of the frame of the sender, and t syn is the detection point of the synchronous signal of the receiver. It starts with two consecutive high-level marker frames with a width of T synh , followed by a high level mark with a width of T synh will retransmit the data, and t fsl is the starting moment of the second transmission. In the figure, t 0 is the synchronization time, t 1 is the start time of data retransmission, t 2 is the start of the next sampling interval, and Ts is a complete sampling interval. The data field of each frame starts after a leading 1, t dat represents the start time of the data field, T spae is the time width between the marker signal and the leading 1, and T b is a data bit width. The data field encoding adopts Manchester encoding, so that it can be connected with the differential transceiver.

由于本发明的S2/S3中帧控制信号不采用曼切斯特编码,而且宽度也比数据位宽大很多,所以接收方通过脉冲宽度检测办法可恢复同步信号。Since the frame control signal in S 2 /S 3 of the present invention does not use Manchester coding, and the width is much larger than the data bit width, the receiver can recover the synchronous signal by means of pulse width detection.

4.差错控制和协议数据传输4. Error control and protocol data transmission

如图3所示,本发明中,信号S2/S3的数据字段(从图3中tdat开始)被划分为如下三个部分,采样数据、协议数据和帧校验部分,如表1所示。As shown in Figure 3, in the present invention, the data field of signal S 2 /S 3 (starting from t dat in Figure 3) is divided into the following three parts, sampling data, protocol data and frame check part, as shown in Table 1 shown.

表1信号S2/S3的数据链路层帧格式Table 1 Data link layer frame format of signal S2/S3

  采样数据 Sampling data   用户协议数据 User Agreement Data   帧校验(CRC) frame check (CRC)

本发明的采样数据字段应由SGDMA(scatter gather DMA)装配,或者由协议栈的最低层在启动传输时填充.利用用户协议数据字段可以构成一个非实时的逻辑信道,用来传输DAE和对等的高层之间监视信息。如表2所示,一次协议数据传输可能包含多个采样间隔。The sampling data field of the present invention should be assembled by SGDMA (scatter gather DMA), or be filled by the lowest layer of the protocol stack when starting transmission. Utilizing the user protocol data field can constitute a non-real-time logical channel for transmitting DAE and peer Monitoring information between the upper layers. As shown in Table 2, a protocol data transmission may include multiple sampling intervals.

在本发明中,采样数据和协议数据的位宽比例由应用决定,帧校验为16位CRC.一个协议数据的完整帧可能由表2所示的协议数据0到协议数据n-1的n个分组组合而成,视具体应用而定。In the present invention, the bit width ratio of sampling data and protocol data is determined by the application, and the frame check is 16-bit CRC. A complete frame of protocol data may be from protocol data 0 to protocol data n-1 shown in Table 2. A combination of groups, depending on the specific application.

表2协议数据S2/S3组成Table 2 Composition of protocol data S2/S3

Figure A20081012407300081
Figure A20081012407300081

由于实时采集的数据必须在每个采样间隔送达,在高速采样时不能采用出错请求重发的机制,而串行链路上的错误如果不是扩展性错误,可以通过随后的一帧纠正。本发明同一帧数据在链路层连发两次,接收方根据帧校验确定选取正确的一组,若两组都错提交高层确定。Since the data collected in real time must be delivered at each sampling interval, the error request retransmission mechanism cannot be used during high-speed sampling, and the error on the serial link can be corrected through the subsequent frame if it is not a scalable error. In the present invention, the same frame of data is transmitted twice at the link layer, and the receiving side selects the correct group according to the frame verification, and if both groups are wrong, it is submitted to the upper layer for determination.

5.多节点同步采样系统工作原理5. Working principle of multi-node synchronous sampling system

完整系统工作物理层信号交互和定时信息如图4所示,图4中以两个采集控制装置为例给出了全局同步装置GSE和两个采集控制装置及通信装置之间的工作信号时序。The physical layer signal interaction and timing information of the complete system work is shown in Figure 4. Taking two acquisition control devices as an example in Figure 4, the working signal timing between the global synchronization device GSE and the two acquisition control devices and communication devices is given.

图4中Ts为采样周期,波形Wav0为GSE到DCE的同步信号,Wav00为通信装置DCE到采集控制装置DAE0的同步/命令波形,Wav01为经过传输延迟DAE0接收到同步波形,Wav02为DCE接收到来自DAE0的采样数据波形。Wav10为通信装置DCE到采集控制装置DAE1的同步/命令波形,Wav11为DAE0侧经过传输延迟接收到同步波形,Wav12为DCE侧接收到来自DAE1的采样数据波形。类似地,若一个DCE接入多个采集控制装置,则物理链路上的数据波形和传输过程与DAE0和DAE1类似,不再分析。In Figure 4, T s is the sampling period, the waveform Wav0 is the synchronization signal from GSE to DCE, Wav00 is the synchronization/command waveform from the communication device DCE to the acquisition control device DAE0, Wav01 is the synchronization waveform received by DAE0 after transmission delay, and Wav02 is the reception by DCE to the sampled data waveform from DAE0. Wav10 is the synchronization/command waveform from the communication device DCE to the acquisition control device DAE1, Wav11 is the synchronization waveform received by the DAE0 side after transmission delay, and Wav12 is the sampling data waveform received by the DCE side from DAE1. Similarly, if one DCE is connected to multiple acquisition and control devices, the data waveform and transmission process on the physical link are similar to DAE0 and DAE1, and will not be analyzed any more.

6.信道延时和同步采样实现6. Realization of channel delay and synchronous sampling

图4中在时刻t0同步装置GSE发出带时标的采样同步信号S1,通信装置根据上一时刻确定的链路延迟计算出发往DAE0和DAE1的同步信号同S1的延迟量为Δt0和Δt1,并在时刻t1和t2分别产生各自同步/命令信号S2,见波形Wav01和Wav11.经过通信链路延迟,DAE0和DAE1在时刻t5产生本地过程量采集启动信号,同时返送上一采样时刻的数据,参见波形Wav02和Wav12。通道延迟量每个采样间隔计算一次,计算方法如下:In Fig. 4, at time t 0 , the synchronization device GSE sends out a sampling synchronization signal S 1 with a time scale, and the communication device calculates the delays between the synchronization signals to DAE0 and DAE1 and S 1 based on the link delay determined at the previous time as Δt 0 and Δt 1 , and generate their respective synchronization/command signals S 2 at time t 1 and t 2 , see waveforms Wav01 and Wav11. After communication link delay, DAE0 and DAE1 generate local process quantity acquisition start signal at time t 5 , and send back at the same time For the data at the last sampling moment, see waveforms Wav02 and Wav12. The channel delay is calculated once per sampling interval, and the calculation method is as follows:

如上图6,可以按式3-1、式3-2和式3-3计算出通道i的延时量Δti,对接在通道i上的采集控制装置,同步命令帧在时刻tfsi=t0+Δti(i=0,1,2,....)发出,设采集控制装置i的数据采样时刻为tiADC,tdelayi为通道i的链路传输延时,TFH为帧头宽度,综合式3-1和式3-2有:As shown in Figure 6 above, the delay amount Δt i of channel i can be calculated according to formula 3-1, formula 3-2 and formula 3-3, and the acquisition control device connected to channel i, the synchronization command frame at time t fsi = t 0 +Δt i (i=0, 1, 2, ...) is sent out, the data sampling time of acquisition control device i is set to t iADC , t delayi is the link transmission delay of channel i, T FH is the frame header Width, combined Equation 3-1 and Equation 3-2 have:

tiADC=t0+Δti+tdelayi+TFH=t0+Tdm+TFH=t5    (式3-4)t iADC =t 0 +Δt i +t delayi +T FH =t 0 +T dm +T FH =t 5 (Formula 3-4)

式3-4的结果为常数,所以如果按上法选择通道i选择通道延迟量即可保证所有采集控制装置在同一时刻tiADC(=t0+Tdm+TFH)启动数据采样。The result of Equation 3-4 is a constant, so if channel i is selected according to the method above and channel delay is selected, it can ensure that all acquisition control devices start data sampling at the same time t iADC (=t 0 +T dm +T FH ).

7.信道误码和数据完整性监视7. Channel error and data integrity monitoring

本发明采集装置到通信装置之间的信号S2/S3的数据字段采用曼切斯特编码,解码部件可以监视每一个比特的信号完整性,同时监视数据帧完整性,提供帧碎片检测。通过监视接收信道上数据流来监视信道工作状况,向高层软件发送信道锁定信号,以便于根据信道工作状况采取不同算法或控制策略。The data field of the signal S2/S3 between the acquisition device and the communication device of the present invention adopts Manchester encoding, and the decoding part can monitor the signal integrity of each bit, and simultaneously monitor the integrity of the data frame to provide frame fragment detection. Monitor the working condition of the channel by monitoring the data flow on the receiving channel, and send a channel locking signal to the high-level software, so as to adopt different algorithms or control strategies according to the working condition of the channel.

Claims (6)

1、多节点同步采样控制和数据传输方法,其特征是步骤如下:1, multi-node synchronous sampling control and data transmission method, it is characterized in that the steps are as follows: (1).构建一个与上层数据处理设备和过程量采集控制装置(DAE)相匹配的全局同步装置,该设备利用外接同步源或本地定时器产生一个全局同步信号S1,其周期就是过程量采集控制装置的采样间隔,通过编码使S1携带绝对时标和全局采样计数器信息;(1). Build a global synchronization device that matches the upper layer data processing equipment and the process quantity acquisition control device (DAE). This device uses an external synchronization source or a local timer to generate a global synchronization signal S1, and its period is the process quantity acquisition The sampling interval of the control device is encoded so that S1 carries absolute time scale and global sampling counter information; (2).将全局同步信号接入一个或多个称之为通信装置(DCE)的设备,通信装置为每个接入的过程量采集控制装置产生一个同步信号S2,S2的周期与全局同步信号S1的周期相同,但S2的启动时刻和其与对应的采集装置之间的链路相关,即比S1延迟Δti,i为采集装置编号,i=1,2,...n;通过对信号S2的编码使S2携带上层数据处理设备发往对应采集控制装置控制命令数据信息和同步信号;(2). Connect the global synchronization signal to one or more devices called communication devices (DCE), and the communication device generates a synchronization signal S2 for each connected process quantity acquisition and control device, and the cycle of S2 is synchronized with the global The period of the signal S1 is the same, but the starting moment of S2 is related to the link between it and the corresponding acquisition device, that is, it is delayed by Δt i from S1, i is the number of the acquisition device, i=1, 2,...n; through Coding the signal S2 makes S2 carry the upper layer data processing equipment and send it to the corresponding acquisition control device to control command data information and synchronization signals; (3).利用信号S1中的绝对时标和全局采样计数器,在多个通信装置之间实现过程量的二次同步抽样;(3). Using the absolute time scale and the global sampling counter in the signal S1, the secondary synchronous sampling of the process quantity is realized between multiple communication devices; (4).负责过程量采集和执行输出的采集控制装置(DAE)在接收到信号S2后检出同步信号和命令数据,在同步信号的控制下立即启动本地过程量的采集并回传数据信号S3到DCE,通过对S3的编码使之携带上个采样间隔的采样数据和发往上层数据处理设备的应用数据;(4). The acquisition and control device (DAE), which is responsible for process quantity acquisition and execution output, detects the synchronization signal and command data after receiving the signal S2, and immediately starts the acquisition of the local process quantity and returns the data signal under the control of the synchronization signal From S3 to DCE, S3 is encoded to carry the sampling data of the last sampling interval and the application data sent to the upper layer data processing equipment; (5).在每次全局信号到达通信装置时重新计算通信装置到采集控制装置DAEi,i=1,2,3......的信道延迟量Δti,根据Δti动态调整S2信号的启动时刻实现远距离多节点的同步采样。(5). Recalculate the channel delay Δt i from the communication device to the acquisition control device DAE i each time the global signal arrives at the communication device, i=1, 2, 3..., and dynamically adjust S2 according to Δt i The start-up moment of the signal realizes the synchronous sampling of long-distance multi-nodes. 2、根据权利要求1所述的多节点同步采样控制和数据传输方法,其特征是:全局同步信号S1使用高电平宽度表示编码信息,每个码元宽度为Tb,由一个宽度为Tb的前导0和两个连续高电平宽度为Th的脉冲构成帧同步头,随后附加数据字段,逻辑0的高电平宽度为T0,逻辑1的高电平宽度为T1,Th、T0和T1均为Tb的函数;同步装置以间隔Ts发送同步信号,接收方连续检测到两个宽度为Th高电平认为检测到帧同步信号,并将后一个高电平宽度为Th的脉冲的下降沿标记为接收方同步检出点;2. The multi-node synchronous sampling control and data transmission method according to claim 1 is characterized in that: the global synchronous signal S 1 uses a high level width to represent encoded information, and each symbol width is T b , which is formed by a width of The leading 0 of Tb and two pulses with continuous high-level width Th constitute the frame synchronization header, followed by an additional data field, the high-level width of logic 0 is T 0 , the high-level width of logic 1 is T 1 , T h , T 0 and T 1 are all functions of T b ; the synchronization device sends a synchronization signal at an interval of Ts, and the receiver detects two consecutive high levels with a width of T h , which is considered to have detected a frame synchronization signal, and the next high level The falling edge of the pulse whose width is T h is marked as the synchronous detection point of the receiver; 3、根据权利要求1所述的多节点同步采样控制和数据传输方法,其特征是:同步信号S2和数据信号S3的帧格式相同,由一个宽度为Tp的前导0和两个连续高电平宽度为Tsynh的脉冲构成帧同步头,标记后一个宽度为Tsynh脉冲的下降沿为接收方同步检出点。3. The multi-node synchronous sampling control and data transmission method according to claim 1, characterized in that: the synchronous signal S2 and the data signal S3 have the same frame format, consisting of a leading 0 with a width of Tp and two consecutive high A pulse with a level width of T synh constitutes a frame synchronization head, and the falling edge of a pulse with a width of T synh after marking is the synchronous detection point of the receiver. 4、根据权利要求1所述的多节点同步采样控制和数据传输方法,其特征是:在采集控制装置发往通信装置的数据帧由采样数据字段和用户协议字段组成,采样数据字段每次传送上次采样数据,用户协议字段传送上层协议数据单元,构成两个逻辑信道,采样数据为实时传输,协议数据非实时传输。4. The multi-node synchronous sampling control and data transmission method according to claim 1, characterized in that: the data frame sent from the collection control device to the communication device is composed of a sampling data field and a user protocol field, and the sampling data field is transmitted every time For the last sampling data, the user protocol field transmits the upper-layer protocol data unit, which constitutes two logical channels. The sampling data is transmitted in real time, and the protocol data is transmitted in non-real time. 5、根据权利要求3所述的多节点同步采样控制和数据传输方法,其特征是:在通信装置和采集控制装置交换的信息帧,同一个数据报在一次采样间隔中被传送两次,由两个连续的宽度为Tsynh的高电平标记帧开始、Tspace的低电平和一个前导1及随后的数据字段构成第一个数据包;由一个宽度为Tsynh的高电平标记随后将重传数据,链路层控制器根据帧校验码确定选取其中的一个数据包,简化传输机制并提高信道纠错能力。5. The multi-node synchronous sampling control and data transmission method according to claim 3, characterized in that: in the information frame exchanged between the communication device and the collection control device, the same datagram is transmitted twice in a sampling interval, and is determined by Two consecutive high levels with a width of T synh mark the start of the frame, a low level of T space and a leading 1 and subsequent data fields constitute the first data packet; a high level mark with a width of T synh will then To retransmit the data, the link layer controller determines to select one of the data packets according to the frame check code, which simplifies the transmission mechanism and improves the channel error correction capability. 6、根据权利要求1所述的多节点同步采样控制和数据传输方法,其特征是:通信装置DCE根据全局同步信号S1和上个采样间隔确定的链路延迟计算出发往采集控制装置DAEi的同步信号同S1的延迟量为Δti,并在时刻tfsi=t0+Δti(i=0,1,2,....)发出同步/命令信号S2.经过通信链路延迟,DAEi在时刻tiADC产生本地过程量采样启动信号,同时返送上一采样时刻的数据,延迟量Δti的计算方法如下:6. The method for multi-node synchronous sampling control and data transmission according to claim 1, characterized in that: the communication device DCE calculates the data sent to the acquisition control device DAE i according to the link delay determined by the global synchronization signal S1 and the last sampling interval The delay between the synchronization signal and S 1 is Δt i , and the synchronization/command signal S 2 is issued at the time t fsi =t 0 +Δt i (i=0, 1, 2,....). Delayed through the communication link , DAE i generates a local process quantity sampling start signal at time t iADC , and at the same time sends back the data at the previous sampling time. The calculation method of the delay Δt i is as follows: tdelay=(trcv-tse-TFH)/2t delay =(t rcv -t se -T FH )/2 Δt=Tdm-(trcv-tse-TFH)/2=Tdm-tdelay Δt=T dm -(t rcv -t se -T FH )/2=T dm -t delay Tdm=max{tdelay0,tdelay1,...,tdelayn}T dm = max{t delay0 , t delay1 , . . . , t delayn } tiADC=t0+Δti+tdelayi+TFH=t0+Tdm+TFH=常数t iADC =t 0 +Δt i +t delayi +T FH =t 0 +T dm +T FH =constant 式中:Δt--通道延迟量In the formula: Δt--channel delay TFH--同步帧头部宽度,TFH=t3-t1=t4-t2=....T FH --Synchronous frame header width, T FH =t 3 -t 1 =t 4 -t 2 =.... Tdm--系统最大链路传输延时,可以根据最大链路长度估算T dm -- the maximum link transmission delay of the system, which can be estimated according to the maximum link length tse--特定通道发送同步波形时刻,trcv--接收到返送数据的时刻t se -- the time when a specific channel sends the synchronous waveform, t rcv -- the time when the returned data is received tdelay--链路传输延迟,设收发数据的物理链路等长。t delay -- link transmission delay, the physical link for sending and receiving data is set to be equal in length.
CN2008101240736A 2008-06-11 2008-06-11 Multi-node synchronization sampling and data transmission method Expired - Fee Related CN101316160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101240736A CN101316160B (en) 2008-06-11 2008-06-11 Multi-node synchronization sampling and data transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101240736A CN101316160B (en) 2008-06-11 2008-06-11 Multi-node synchronization sampling and data transmission method

Publications (2)

Publication Number Publication Date
CN101316160A true CN101316160A (en) 2008-12-03
CN101316160B CN101316160B (en) 2010-12-15

Family

ID=40107019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101240736A Expired - Fee Related CN101316160B (en) 2008-06-11 2008-06-11 Multi-node synchronization sampling and data transmission method

Country Status (1)

Country Link
CN (1) CN101316160B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045156A (en) * 2010-11-18 2011-05-04 和芯星通科技(北京)有限公司 Method and device for multi-module synchronous processing of digital signals
CN102209027A (en) * 2011-04-27 2011-10-05 盛科网络有限公司 Sampled data hierarchical transmission core device with timestamp
CN102265575A (en) * 2008-12-24 2011-11-30 高通股份有限公司 Methods and systems for improved timing acquisition for varying channel conditions
WO2012034368A1 (en) * 2010-09-14 2012-03-22 中兴通讯股份有限公司 Method and apparatus for delaying data collection
CN102103199B (en) * 2009-12-22 2012-12-05 华北电力科学研究院有限责任公司 Digital signal generating device and method based on three-phase power system model
CN103078401A (en) * 2012-12-17 2013-05-01 广东电网公司电力科学研究院 Time synchronization and sampling synchronization system and method for transformer substation
CN103281171A (en) * 2013-05-10 2013-09-04 国家电网公司 Multi-clock synchronization method of distributed type sampling value network
US8675631B2 (en) 2005-03-10 2014-03-18 Qualcomm Incorporated Method and system for achieving faster device operation by logical separation of control information
CN103684735A (en) * 2013-11-12 2014-03-26 航天科工深圳(集团)有限公司 Synchronous method of distributed device
CN103905137A (en) * 2014-04-23 2014-07-02 南京磐能电力科技股份有限公司 Synchronous pulse jitter suppression method and system based on FPGA
CN104135359A (en) * 2014-07-22 2014-11-05 南京磐能电力科技股份有限公司 Hard real-time cascading multi-node synchronous sampling and data transmission method
CN104158646A (en) * 2013-05-14 2014-11-19 中兴通讯股份有限公司 Link delay processing method and device
US8948329B2 (en) 2005-12-15 2015-02-03 Qualcomm Incorporated Apparatus and methods for timing recovery in a wireless transceiver
CN104750021A (en) * 2013-12-25 2015-07-01 发那科株式会社 Numerical control system
CN105515706A (en) * 2015-10-13 2016-04-20 福州开发区慧聚通信技术有限公司 Method and system for employing pulse mapping domain for achieving synchronization
CN105871378A (en) * 2016-03-24 2016-08-17 航天科技控股集团股份有限公司 A synchronous circuit of multi-channel high-speed ADC and DAC
CN105896489A (en) * 2016-05-11 2016-08-24 许继集团有限公司 Differential protection method and system for multi-end T connected transmission line
CN106980306A (en) * 2017-03-29 2017-07-25 北京广利核系统工程有限公司 A kind of nuclear power station data acquisition device and method
CN107817721A (en) * 2017-10-26 2018-03-20 上海乐耘电气技术有限公司 Electric power wave-recording synchronous data sampling system
CN108170044A (en) * 2016-12-07 2018-06-15 上海协同科技股份有限公司 The device of time synchronization and its time synchronization implementation method between achievable module
CN108923882A (en) * 2018-05-25 2018-11-30 苏州汇川技术有限公司 Point-to-point Communication Method, computer readable storage medium and master and slave node device
CN109521712A (en) * 2018-11-16 2019-03-26 北京遥感设备研究所 Data collection system for different acquisition periodic device
CN110061827A (en) * 2018-01-19 2019-07-26 中电普瑞电力工程有限公司 A kind of collecting method at equal intervals and device based on synchronised clock
CN110710186A (en) * 2018-04-09 2020-01-17 鲁门无线电通信公司 Streaming using constrained dynamic multi-hop networks
CN110730048A (en) * 2019-09-04 2020-01-24 深圳震有科技股份有限公司 Frame information positioning method and system of time division multiplexing interface
CN110891153A (en) * 2019-11-20 2020-03-17 中国水产科学研究院渔业机械仪器研究所 Serial-type fishing trawl monitoring data transmission system and method
CN111034128A (en) * 2017-09-25 2020-04-17 欧姆龙株式会社 Control system and control device
CN116844321A (en) * 2023-09-01 2023-10-03 之江实验室 Multichannel pulse width output implementation method for DO module in industrial control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646709B (en) * 2019-09-29 2022-08-23 南瑞集团有限公司 Data collection method and system suitable for subsynchronous oscillation monitoring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916558A (en) * 1995-04-28 1997-01-17 Sony Corp Digital signal processor
WO2002082713A1 (en) * 2001-04-05 2002-10-17 Schweitzer Engineering Laboratories, Inc. System and method for aligning data between local and remote sources thereof
CN100452684C (en) * 2003-09-15 2009-01-14 华东电网有限公司 Method for measuring transmission time-delay of telemechanical system by GPS
CN1870491A (en) * 2005-05-24 2006-11-29 深圳市木青科技实业有限公司 Clock recovery technology using of far-end measuring near-end recovery simulation packet circuit
CN100530892C (en) * 2007-05-18 2009-08-19 南京磐能电力科技股份有限公司 Method for sampling, controlling and transmitting data synchronously

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675631B2 (en) 2005-03-10 2014-03-18 Qualcomm Incorporated Method and system for achieving faster device operation by logical separation of control information
US8948329B2 (en) 2005-12-15 2015-02-03 Qualcomm Incorporated Apparatus and methods for timing recovery in a wireless transceiver
CN102265575B (en) * 2008-12-24 2014-07-30 高通股份有限公司 Methods and systems for improved timing acquisition for varying channel conditions
CN102265575A (en) * 2008-12-24 2011-11-30 高通股份有限公司 Methods and systems for improved timing acquisition for varying channel conditions
CN102103199B (en) * 2009-12-22 2012-12-05 华北电力科学研究院有限责任公司 Digital signal generating device and method based on three-phase power system model
WO2012034368A1 (en) * 2010-09-14 2012-03-22 中兴通讯股份有限公司 Method and apparatus for delaying data collection
CN102045156A (en) * 2010-11-18 2011-05-04 和芯星通科技(北京)有限公司 Method and device for multi-module synchronous processing of digital signals
CN102045156B (en) * 2010-11-18 2014-12-10 和芯星通科技(北京)有限公司 Method and device for multi-module synchronous processing of digital signals
CN102209027A (en) * 2011-04-27 2011-10-05 盛科网络有限公司 Sampled data hierarchical transmission core device with timestamp
CN102209027B (en) * 2011-04-27 2013-09-11 盛科网络有限公司 Sampled data hierarchical transmission core device with timestamp
CN103078401A (en) * 2012-12-17 2013-05-01 广东电网公司电力科学研究院 Time synchronization and sampling synchronization system and method for transformer substation
CN103078401B (en) * 2012-12-17 2016-01-06 广东电网公司电力科学研究院 The system and method for transformer station's time synchronized and sample-synchronous
CN103281171A (en) * 2013-05-10 2013-09-04 国家电网公司 Multi-clock synchronization method of distributed type sampling value network
CN103281171B (en) * 2013-05-10 2016-05-04 国家电网公司 The multi-clock synchronization method of distributed sample value networking
CN104158646B (en) * 2013-05-14 2018-12-21 南京中兴新软件有限责任公司 Link delay processing method and processing device
CN104158646A (en) * 2013-05-14 2014-11-19 中兴通讯股份有限公司 Link delay processing method and device
CN103684735A (en) * 2013-11-12 2014-03-26 航天科工深圳(集团)有限公司 Synchronous method of distributed device
CN104750021A (en) * 2013-12-25 2015-07-01 发那科株式会社 Numerical control system
US9671773B2 (en) 2013-12-25 2017-06-06 Fanuc Corporation Numerical control system
CN104750021B (en) * 2013-12-25 2017-05-24 发那科株式会社 Numerical control system
CN103905137A (en) * 2014-04-23 2014-07-02 南京磐能电力科技股份有限公司 Synchronous pulse jitter suppression method and system based on FPGA
CN103905137B (en) * 2014-04-23 2016-08-17 南京磐能电力科技股份有限公司 Lock-out pulse jitter suppression method based on FPGA and system
CN104135359A (en) * 2014-07-22 2014-11-05 南京磐能电力科技股份有限公司 Hard real-time cascading multi-node synchronous sampling and data transmission method
CN104135359B (en) * 2014-07-22 2017-12-12 南京磐能电力科技股份有限公司 Tandem type multi-node synchronization sampling and data transmission method when a kind of strong
CN105515706A (en) * 2015-10-13 2016-04-20 福州开发区慧聚通信技术有限公司 Method and system for employing pulse mapping domain for achieving synchronization
CN105871378A (en) * 2016-03-24 2016-08-17 航天科技控股集团股份有限公司 A synchronous circuit of multi-channel high-speed ADC and DAC
CN105896489A (en) * 2016-05-11 2016-08-24 许继集团有限公司 Differential protection method and system for multi-end T connected transmission line
CN105896489B (en) * 2016-05-11 2019-05-14 许继集团有限公司 A kind of multiterminal T connection electric transmission line differential protecting method and system
CN108170044A (en) * 2016-12-07 2018-06-15 上海协同科技股份有限公司 The device of time synchronization and its time synchronization implementation method between achievable module
CN106980306A (en) * 2017-03-29 2017-07-25 北京广利核系统工程有限公司 A kind of nuclear power station data acquisition device and method
CN106980306B (en) * 2017-03-29 2019-10-11 北京广利核系统工程有限公司 A kind of nuclear power station data acquisition device and method
CN111034128B (en) * 2017-09-25 2022-04-05 欧姆龙株式会社 Control system and control device
CN111034128A (en) * 2017-09-25 2020-04-17 欧姆龙株式会社 Control system and control device
US11082197B2 (en) 2017-09-25 2021-08-03 Omron Corporation Control system and control device
CN107817721A (en) * 2017-10-26 2018-03-20 上海乐耘电气技术有限公司 Electric power wave-recording synchronous data sampling system
CN110061827A (en) * 2018-01-19 2019-07-26 中电普瑞电力工程有限公司 A kind of collecting method at equal intervals and device based on synchronised clock
CN110061827B (en) * 2018-01-19 2023-07-18 中电普瑞电力工程有限公司 Equidistant data acquisition method and device based on synchronous clock
CN110710186A (en) * 2018-04-09 2020-01-17 鲁门无线电通信公司 Streaming using constrained dynamic multi-hop networks
CN108923882A (en) * 2018-05-25 2018-11-30 苏州汇川技术有限公司 Point-to-point Communication Method, computer readable storage medium and master and slave node device
CN108923882B (en) * 2018-05-25 2021-12-21 苏州汇川控制技术有限公司 Point-to-point communication method, computer readable storage medium, master node device and slave node device
CN109521712A (en) * 2018-11-16 2019-03-26 北京遥感设备研究所 Data collection system for different acquisition periodic device
CN110730048B (en) * 2019-09-04 2020-11-10 深圳震有科技股份有限公司 Frame information positioning method and system of time division multiplexing interface
CN110730048A (en) * 2019-09-04 2020-01-24 深圳震有科技股份有限公司 Frame information positioning method and system of time division multiplexing interface
CN110891153A (en) * 2019-11-20 2020-03-17 中国水产科学研究院渔业机械仪器研究所 Serial-type fishing trawl monitoring data transmission system and method
CN116844321A (en) * 2023-09-01 2023-10-03 之江实验室 Multichannel pulse width output implementation method for DO module in industrial control system
CN116844321B (en) * 2023-09-01 2024-01-09 之江实验室 Multichannel pulse width output implementation method for DO module in industrial control system

Also Published As

Publication number Publication date
CN101316160B (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CN101316160B (en) Multi-node synchronization sampling and data transmission method
CN106921456B (en) Multi-hop wireless backhaul network time synchronization error compensation method based on PTP protocol
CN105680975B (en) A kind of method for synchronizing time of host-guest architecture multinode network
CN110113242B (en) Multi-node synchronous sampling and data transmission method in ring communication network
CN104507156B (en) For the time synchronization improved method based on IEEE 1588PTP mechanism of wireless network
CN104968043B (en) A kind of clock synchronizing frequency deviation estimating method suitable for WIA-PA network
CN114050884B (en) Cross-network time synchronization method for industrial wireless and TSN fusion
CN101778405B (en) Method and system for synchronous acquisition of wireless sensor network for structural health monitoring
CN106992830B (en) A kind of clock synchronizing method in FC-AE-1553 networks
CN103457685B (en) High precision time synchronization method for industrial wireless network based on predictive compensation
CN103178918B (en) Factory automation wireless network time synchronous method based on TDMA
CN102843620B (en) A kind of OTN Apparatus and method for realizing time synchronized and transmit
US20100034191A1 (en) Method and system for time synchronization in a sensor network
CN101645869B (en) Switch with submicrosecond clock and switching processing method thereof
CN103929293A (en) Asymmetric delay time synchronization method and system
CN101753578B (en) ETHERNET/EI protocol conversion method and protocol converter
CN104135359A (en) Hard real-time cascading multi-node synchronous sampling and data transmission method
CN103108388A (en) Method, device and system of wireless sensor network clock synchronization
CN111556559B (en) Hybrid clock synchronization method based on timestamp-free interaction and one-way message propagation
WO2011074529A1 (en) Time synchronization system, slave node, time synchronization method, and program for time synchronization
CN104079401A (en) High-precision and short-period real-time communication procedure based on chain industry Ethernet
JP2007166278A (en) Wireless communication system and wireless communication method
WO2013155944A1 (en) Boundary clock, transparent clock, and method for clock transmission
CN116318506A (en) Clock synchronization method for wireless time-sensitive network in spacecraft
CN105162726A (en) Remote SV data transmission and delay compensation method based on E1 link

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101215

CF01 Termination of patent right due to non-payment of annual fee