CN101273480A - 用于改善有机电子元件中空穴注入的新型材料及该材料的应用 - Google Patents

用于改善有机电子元件中空穴注入的新型材料及该材料的应用 Download PDF

Info

Publication number
CN101273480A
CN101273480A CNA2006800323603A CN200680032360A CN101273480A CN 101273480 A CN101273480 A CN 101273480A CN A2006800323603 A CNA2006800323603 A CN A2006800323603A CN 200680032360 A CN200680032360 A CN 200680032360A CN 101273480 A CN101273480 A CN 101273480A
Authority
CN
China
Prior art keywords
organic
organic electronic
hole transmission
transmission layer
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800323603A
Other languages
English (en)
Other versions
CN101273480B (zh
Inventor
安德烈亚斯·卡尼茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of CN101273480A publication Critical patent/CN101273480A/zh
Application granted granted Critical
Publication of CN101273480B publication Critical patent/CN101273480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thiazole And Isothizaole Compounds (AREA)

Abstract

本发明涉及用于空穴传输层的p型掺杂的新型材料,如式(1)给出的噻唑啉化合物,其中通过所述材料的较高蒸发温度和/或玻璃形成特性来克服现有技术的缺点,尤其是已知p型掺杂材料的较差可蒸发性。

Description

用于改善有机电子元件中空穴注入的新型材料及该材料的应用
技术领域
本发明涉及用于改善有机电子元件中空穴注入和空穴传输的新型材料,所述电子元件是例如有机发光二极管(OLED)、有机场效应晶体管(OFET)和有机太阳能电池。
背景技术
近年来,一些特别是用于有机发光二极管的材料日益为人所知,通过该材料OLED中空穴注入和空穴传输得到显著改善(文献:Gufeng He,Martin Pfeiffer,Karl Leo,Appl.Phys.Lett.85(2004)3911-3913)。
在同样的OLED效率下,这额外地引起工作电压的降低。所述材料是强电子受主并且以较少的量掺杂到OLED的空穴传输层中。由此,这些添加物促进了空穴传输材料的氧化(由此形成空穴),否则,这仅仅是通过电场能引起氧化。因此,在较弱的电场(这对应较低的工作电压)下达到同样的效率。
对于改善空穴传输(也称为p掺杂)的方法,所用材料的物理性质在蒸发过程中存在问题。其中涉及蒸发性极难控制的氟化的四氰基苯醌二甲烷,以致于这类掺杂剂不能用于批量生产的装置中,因为所述材料通过不可控制的分布会污染装置。
发明内容
因此,本发明的任务是提供用于改善有机半导体元件中空穴注入的材料,从而克服现有技术中的缺点,尤其是已知材料在蒸发过程中差的可控制性。
权利要求、实施例和说明书中公开了解决所述任务的方法和本发明的主题。
提出了具有较高蒸发温度和/或玻璃形成特性的受主材料,由此受控制地蒸发。具有玻璃形成特性的材料是无定形材料,并且由于无结晶性而保证了材料中晶界的消失,从而在空穴传输材料和p掺杂材料之间形成能量上有利的电子传输或空穴传输。较高的蒸发温度使得所述材料可以被可控制地蒸发。
所要求的上述特性可以通过下面结构1的杂环苯醌二甲烷衍生物来实现。
Figure A20068003236000041
取代基R1至R5互相独立地代表氢、氯、氟、硝基和/或氰基。
另外,R1至R5可以互相独立地被苯基取代基和/或可以形成稠合的芳香族取代基的结构单元替代,其在周围又可以除了氢以外还带有氯和/或氟取代基。
一般合成途径:
Figure A20068003236000042
所述化合物通过对应的2-二氰基亚甲基-4-芳基-取代的噻唑啉的氧化偶联来合成。
所述新型材料适用于通过与任意空穴传输层的化学相互作用来改善空穴传输和空穴注入,因此,所述材料可以普遍地成功应用于聚合物电子(或者称为有机电子)元件中,对此理解为优选所有用于制造有机发光二极管(OLED)、有机场效应晶体管(OFET)的技术和/或有机光电元件(如有机太阳能电池)的技术。
由此提供了具有空穴传输层的有机电子元件,所述空穴传输层用改善空穴传输特性的材料掺杂或掺入。
加入的所述材料的量根据基体材料而变化。总的来说以常用的掺杂量来掺杂。另外还可以参考开头提到的出版物中的现有技术。
实施例:
1.芳基甲基酮的溴化
在冰醋酸中用溴来溴化相应的芳基甲基酮。
2.芳基酰基硫氰酸酯的合成
在沸腾的乙醇中用硫氰酸钾来转化1.)中的溴甲基芳基酮。
3.2-二氰基亚甲基-4-芳基-噻唑啉的合成
在沸腾的乙醇中用丙二腈和三乙胺将2.)中的芳基酰基硫氰酸酯转化成相应的噻唑啉衍生物。
4.4,4’-二芳基-醌基-5,5’-二噻唑基-2,2’-二氰基二甲烷的合成
在-70℃用丁基锂将3.)中对应的噻唑啉衍生物去质子化,随后用氧化剂(例如CuCl2)将其氧化成期望的4,4’-二芳基-醌基-5,5’-二噻唑基-2,2’-二氰基二甲烷。

Claims (4)

1.一种用于掺杂有机半导体元件的空穴传输层的材料,其特征在于,在所述材料中,受主特性与高于150℃的蒸发温度和/或玻璃形成特性结合存在。
2.根据权利要求1的用于掺杂的材料,其特征在于,所述材料包含下面结构1的杂环苯醌二甲烷衍生物
Figure A20068003236000021
其中,可以互相独立地选择取代基R1至R5,并且代表氢、氯、氟、硝基和/或氰基,
或者取代基R1至R5互相独立地被苯基取代基和/或可形成稠合的芳香族取代基的结构单元替代,其在周围又可以除了氢以外还带有氯和/或氟取代基。
3.根据权利要求1或2任一项的材料在有机电子元件例如有机发光二极管(OLED)、有机场效应晶体管(OFET)和/或有机光电元件如有机太阳能电池中的用途。
4.一种具有至少两个电极和位于它们之间的有源层的有机电子元件,其中在至少一个电极和有源层之间布置空穴传输层,其特征在于,所述空穴传输层用根据权利要求1~3任一项的材料来掺杂。
CN2006800323603A 2005-09-05 2006-08-28 用于改善有机电子元件中空穴注入的新型材料及该材料的应用 Active CN101273480B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005042105 2005-09-05
DE102005042105.9 2005-09-05
PCT/EP2006/065726 WO2007028733A1 (de) 2005-09-05 2006-08-28 Neue materialien zur verbesserung der lochinjektion in organischen elektronischen bauelementen und verwendung des materials

Publications (2)

Publication Number Publication Date
CN101273480A true CN101273480A (zh) 2008-09-24
CN101273480B CN101273480B (zh) 2010-09-15

Family

ID=37137540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800323603A Active CN101273480B (zh) 2005-09-05 2006-08-28 用于改善有机电子元件中空穴注入的新型材料及该材料的应用

Country Status (7)

Country Link
US (1) US7947975B2 (zh)
EP (1) EP1938398B1 (zh)
JP (1) JP4922301B2 (zh)
KR (1) KR101339712B1 (zh)
CN (1) CN101273480B (zh)
DE (1) DE502006007053D1 (zh)
WO (1) WO2007028733A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483529A (zh) * 2019-08-09 2019-11-22 宁波卢米蓝新材料有限公司 一种稠杂环化合物及其应用
CN113809246A (zh) * 2020-06-15 2021-12-17 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306341B2 (ja) * 2007-07-04 2013-10-02 コーニンクレッカ フィリップス エヌ ヴェ パターン化された層を基板上に形成する方法
JP5488473B2 (ja) * 2008-11-19 2014-05-14 日産化学工業株式会社 電荷輸送性ワニス
KR102442614B1 (ko) 2015-08-07 2022-09-14 삼성디스플레이 주식회사 디벤조보롤계 화합물 및 이를 포함한 유기 발광 소자

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3515373A1 (de) * 1985-04-27 1986-11-06 Merck Patent Gmbh, 6100 Darmstadt Stickstoffhaltige heterocyclen
JPH09512572A (ja) 1994-04-28 1997-12-16 ビーエーエスエフ アクチェンゲゼルシャフト チアゾールメチン染料
EP0941990A3 (de) 1998-03-09 2002-07-24 Siemens Aktiengesellschaft Verfahren zur Herstellung von Azamethinen sowie Azamethine selbst
JP2000196140A (ja) * 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
WO2002012212A1 (de) 2000-08-07 2002-02-14 Siemens Aktiengesellschaft Di(het)arylaminothiazol-derivate und ihre verwendung in organischen lichtemittierenden dioden (oleds) und organischen photovoltaischen bauelemente
DE10357044A1 (de) * 2003-12-04 2005-07-14 Novaled Gmbh Verfahren zur Dotierung von organischen Halbleitern mit Chinondiiminderivaten
WO2006102620A2 (en) * 2005-03-24 2006-09-28 Northwestern University TWISTED π-ELECTRON SYSTEM CHROMOPHORE COMPOUNDS WITH VERY LARGE MOLECULAR HYPERPOLARIZABILITIES AND RELATED COMPOSITIONS AND DEVICES

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483529A (zh) * 2019-08-09 2019-11-22 宁波卢米蓝新材料有限公司 一种稠杂环化合物及其应用
CN110483529B (zh) * 2019-08-09 2021-04-13 宁波卢米蓝新材料有限公司 一种稠杂环化合物及其应用
CN113809246A (zh) * 2020-06-15 2021-12-17 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管
CN113809246B (zh) * 2020-06-15 2024-06-11 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管

Also Published As

Publication number Publication date
JP2009507386A (ja) 2009-02-19
CN101273480B (zh) 2010-09-15
JP4922301B2 (ja) 2012-04-25
EP1938398A1 (de) 2008-07-02
WO2007028733A1 (de) 2007-03-15
US7947975B2 (en) 2011-05-24
EP1938398B1 (de) 2010-05-26
US20090152535A1 (en) 2009-06-18
KR20080052634A (ko) 2008-06-11
DE502006007053D1 (de) 2010-07-08
KR101339712B1 (ko) 2013-12-11

Similar Documents

Publication Publication Date Title
Xiao et al. Multiple roles of a non-fullerene acceptor contribute synergistically for high-efficiency ternary organic photovoltaics
Guo et al. A coplanar π‐extended quinoxaline based hole‐transporting material enabling over 21% efficiency for dopant‐free perovskite solar cells
Zhao et al. Hexaazatrinaphthylene derivatives: Efficient electron‐transporting materials with tunable energy levels for inverted perovskite solar cells
Gets et al. Reconfigurable perovskite lec: Effects of ionic additives and dual function devices
Ye et al. The renaissance of polythiophene organic solar cells
Sessolo et al. Hybrid organic–inorganic light‐emitting diodes
Sun et al. High efficiency tandem organic light emitting diode using an organic heterojunction as the charge generation layer: an investigation into the charge generation model and device performance
Yu et al. Stabilizing the Dynamic p− i− n Junction in Polymer Light-Emitting Electrochemical Cells
Li et al. Highly Efficient p‐i‐n Perovskite Solar Cells Utilizing Novel Low‐Temperature Solution‐Processed Hole Transport Materials with Linear π‐Conjugated Structure
CN106450021A (zh) 一种有机电致发光器件及其制备方法
CN101273480B (zh) 用于改善有机电子元件中空穴注入的新型材料及该材料的应用
Wang et al. High efficiency green phosphorescent organic light-emitting diodes with a low roll-off at high brightness
CN101556988B (zh) 一种具有非掺杂增益层的有机光电子器件及其制备方法
WO2011134458A1 (de) Organisches halbleitendes material und elektronisches bauelement
Tian et al. High-performance white organic light-emitting diodes with simplified structure incorporating novel exciplex-forming host
WO2011131185A1 (de) Mischung zur herstellung einer dotierten halbleiterschicht
Zhao et al. Highly efficient orange fluorescent OLEDs based on the energy transfer from bilayer interface exciplex
CN102593374A (zh) 电子传输材料及有机发光元件
Liu et al. Improved performance of inverted quantum dot light-emitting diodes by blending the small-molecule and polymer materials as hole transport layer
Bao et al. Hybrid perovskite charge generation layer for highly efficient tandem organic light-emitting diodes
Hassan et al. Charge trap assisted high efficiency in new polymer-blend based light emitting diodes
WO2010057471A1 (de) Chinoxalinverbindungen und halbleitermaterialien
CN101217838B (zh) 基于强关联电子体系的有机电致发光器件及其制备方法
Hu et al. Efficient CsPbBr3 Inorganic Perovskite Light-Emitting Diodes via Lewis Acid–Base Reaction with Organic Small Molecule mCP
CN103280534A (zh) 基于掺杂型双空穴传输层的高效率低电压有机电致发光器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160629

Address after: Regensburg, Germany

Patentee after: OSRAM OPTO SEMICONDUCTORS GMBH

Address before: Regensburg, Germany

Patentee before: Osram Opto Semiconductors GmbH & Co. OHG