CN101254941B - 一种无机分子簇单源前体合成CdS纳米线的方法 - Google Patents

一种无机分子簇单源前体合成CdS纳米线的方法 Download PDF

Info

Publication number
CN101254941B
CN101254941B CN2008100642366A CN200810064236A CN101254941B CN 101254941 B CN101254941 B CN 101254941B CN 2008100642366 A CN2008100642366 A CN 2008100642366A CN 200810064236 A CN200810064236 A CN 200810064236A CN 101254941 B CN101254941 B CN 101254941B
Authority
CN
China
Prior art keywords
wire
cds nano
source precursor
nano wire
molecular cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100642366A
Other languages
English (en)
Other versions
CN101254941A (zh
Inventor
蔡伟
李志国
隋解和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2008100642366A priority Critical patent/CN101254941B/zh
Publication of CN101254941A publication Critical patent/CN101254941A/zh
Application granted granted Critical
Publication of CN101254941B publication Critical patent/CN101254941B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种无机分子簇单源前体合成CdS纳米线的方法,它涉及一种无机分子簇单源前体合成CdS纳米线的方法。它解决了现有CdS纳米线制备方法需要大型设备、制备温度高、后续处理工艺繁琐、纳米线容易被污染或损伤性能、尺寸和形貌难于控制或者工艺条件苛刻,难于操作,难以工业化大规模实施的问题。制备方法:一、将十六烷基胺真空脱气;二、降低温度、在氮气氛条件下将(Me4N)4[S4Cd10(SPh)16]加入,然后升温、并保温反应;三、降低混合物温度;四、分离、沉淀、干燥。本发明直接用无机分子簇单源前体合成CdS纳米线方法无需大型设备,操作安全、简便、易行、且成本低,便于控制CdS纳米线的尺寸、形貌和性能,易于工业化大规模生产,可重复性好,可一次性进行大剂量CdS纳米线的制备。

Description

一种无机分子簇单源前体合成CdS纳米线的方法
技术领域
本发明涉及一种合成CdS纳米线的方法。
背景技术
II-VI族半导体纳米线由于其优异的光学性质,无论从基础研究的角度还是从实际应用的角度都引起了人们极大的兴趣。CdS纳米线作为一种重要的II-VI族半导体材料,在光发射二极管(LEDs)、太阳能电池、非线性光学器件和光催化等方面有着潜在的广泛用途。
目前CdS纳米线的制备方法都存在不同的缺陷,如采用化学气相沉积法制备CdS纳米线需要大型设备且制备温度高(一般在800℃以上),采用模板法(软模板和硬模板)制备CdS纳米线后续处理工艺繁琐且容易对纳米线造成污染或损伤CdS纳米线性能,采用自组装法制备的CdS纳米线的尺寸和形貌难于控制。
在溶液中合成CdS纳米线,可以利用溶剂的极性差异诱导CdS沿择优取向晶面生长,从而以上CdS纳米线制备方法存在的缺陷,但是,这种在溶液中合成CdS纳米线的方法的实现必须同时具备以下条件:(a)在一定的反应温度下有机金属前体快速分解成单体;(b)用两种或两种以上不同的表面活性剂;(c)单体浓度高和形核生长速率快。所以目前在溶液中合成CdS纳米线的方法工艺条件苛刻,难于操作,难以工业化大规模实施。
发明内容
本发明的目的是为了解决现有CdS纳米线制备方法需要大型设备、制备温度高、后续处理工艺繁琐、纳米线容易被污染或损伤性能、尺寸和形貌难于控制或者工艺条件苛刻,难于操作,难以工业化大规模实施的问题,而提供的一种无机分子簇单源前体合成CdS纳米线的方法。
无机分子簇单源前体合成CdS纳米线的方法按以下步骤进行:一、将25g十六烷基胺在120±5℃的条件下真空脱气2h;二、降低十六烷基胺温度至80±2℃,在氮气氛条件下将1.2g(Me4N)4[S4Cd10(SPh)16]加入十六烷基胺,然后以2℃/min的速度升温至200~240℃,并保持200~240℃5h;三、降低混合物温度至60±2℃;四、用无水甲醇离心分离、沉淀物再真空干燥,即得到CdS纳米线。
本发明直接用无机分子簇单源前体(Me4N)4[S4Cd10(SPh)16]合成CdS纳米线方法无需大型设备,操作安全、简便、易行、且成本低,便于控制CdS纳米线的尺寸、形貌和性能,易于工业化大规模生产,可重复性好,可一次性进行大剂量CdS纳米线的制备(>30g/L)。
本发明CdS纳米线合成方法在单一表面活性剂体系中合成,CdS纳米线的生长是通过定向吸附机制合成的,不同于多表面活性剂溶液法利用溶剂极性不同诱导CdS纳米线生长,而且易于分离提纯。本发明反应条件温和,反应温度在200~240℃反应过程中不产生有害气体。本发明合成方法中所采用的有机溶剂十六烷基胺不需提纯,价格低,能在新合成的CdS纳米线表面形成包覆层,使CdS纳米线单分散于反应溶剂中,避免了CdS纳米线间相互团聚和缠绕,有利于CdS纳米线的分离。
本发明合成CdS纳米线的原材料无机分子簇(Me4N)4[S4Cd10(SPh)16]在空气条件下稳定而且易于保存,避免了现有技术中将CdS前体高温溶解于三正辛基膦(TOP)的步骤,因而不需要使用真空线设备和手套箱,成本低。
本发明合成出的CdS纳米线为单晶,直径为4nm、长度为30nm左右,长径比约为7∶1。
半导体纳米晶存在较大的永久偶极矩,经发明人研究、计算得出直径为3.4~5.4nm的半导体量子点间由于偶极吸引所产生的能量高达8.8~10kJ/mol,远远超过一般分子间偶极-偶极吸引所产生的能量(约1.5kJ/mol),所以通过这种相互作用可以使量子点偶极链形成(一般呈线性要求的摩尔热力学能量为2.4kJ/mol);但在前驱物浓度较低的情况下偶极-偶极相互作用较弱(偶极矩与离子间距离成反比),粒子不能克服配体间的静电排斥作用从而只能形成量子点。本发明不仅增加了前驱物浓度、减少了粒子间间距,而且在高温条件(200~240℃)下长时间(5h)反应,使得配体在粒子表面的吸附-脱附加快、静电排斥作用减弱,并沿能量较低的极性面(002)择优取向生长,形成单晶CdS纳米线。
附图说明
图1是具体实施方式一合成的CdS纳米线的透射电镜(TEM)和高分辨透射电镜图(HRTEM),图2是在反应温度为150℃的条件下合成出的珍珠状CdS纳米线的透射电镜图(TEM),图3是具体实施方式一合成的CdS纳米线的紫外可见吸收谱和荧光谱图,图4是具体实施方式一合成的CdS纳米线的X射线(XRD)和电子衍射图(SAED)。
具体实施方式
具体实施方式一:本实施方式无机分子簇单源前体合成CdS纳米线的方法按以下步骤进行:一、将25g十六烷基胺在120±5℃的条件下真空脱气2h;二、降低十六烷基胺温度至80±2℃,在氮气氛条件下将1.2g(Me4N)4[S4Cd10(SPh)16]加入十六烷基胺,然后以2℃/min的速度升温至200~240℃,并保持200~240℃5h;三、降低混合物温度至60±2℃;四、用无水甲醇离心分离、沉淀物再真空干燥,即得到CdS纳米线。
本实施方式合成的CdS纳米线的产量为36g/L。本实施方式合成的CdS纳米线为单晶,长径比约7∶1。本实施方式合成的CdS纳米线为纤锌矿(Hexagonal)结构,具有量子限域效应。
对CdS而言量子限域效应所显现的尺寸范围为6nm以下,而目前现有技术合成的CdS纳米线直径都在10nm以上,明显过大。本实施方式合成的CdS纳米线直径为4.0nm,表现出强的量子限域效应(如图3所示);相对于量子点而言CdS纳米线在一维尺度上量子限域降低,其发射峰发生大的斯托克位移(如图3所示)。图3是本实施方式合成的CdS纳米线的紫外可见吸收谱和荧光谱,CdS纳米线最大吸收峰在410nm(a峰),带边能量3.02ev高于CdS块体材料的带边能量2.45ev,表明所合成的纳米线具有明显的量子限域效应;所得CdS纳米线最大荧光发射峰在590nm(b峰),相对于吸收带边红移且发生较大的斯托克漂移。
图4是本实施方式合成的CdS纳米线的X射线(XRD)和电子衍射图(SAED),由图中XRD的002、102、110、103和112峰可知CdS纳米线为Hexagonal结构(JCPDS file No.41-1049);较宽的峰表明所制备的CdS纳米线在纳米范围之内。图4中SAED所显示的清晰的衍射环表明CdS纳米线具有高的结晶性质,这同HRTEM观察结论相一致。
本实施方式合成的是单晶CdS纳米线(如图1所示,图1中本实施方式合成的CdS纳米线的平均直径为4纳米左右,长度为30nm左右,长径比约为7∶1;CdS纳米线分散均匀,没有团聚现象,说明HDA很好的在纳米线外形成包覆层;从HRTEM图可以看出所合成的CdS纳米线为单晶,且其长度方向沿(002)面择优取向生长);而在低温反应条件下(150℃)合成出的是珍珠状(necklace)CdS纳米线,不具有完整的单晶,在纳米线晶格中存在“脖子neck”结构(如图2所示)。
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤四中无水甲醇离心的沉淀物用甲苯溶解,再加入甲醇体积1~2倍的无水甲醇再次离心分离。其它步骤及参数与实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一的不同点是:步骤四中在8000~15000r/min的条件下离心10min。其它步骤及参数与实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一的不同点是:步骤四中真空干燥的温度为10~20℃,干燥时间为24h,真空度为0.1MPa。其它步骤及参数与实施方式一相同。
具体实施方式五:本实施方式与具体实施方式一的不同点是:步骤二中以2℃/min的速度升温至220℃,并保持220℃5h。其它步骤及参数与实施方式一相同。

Claims (4)

1. 一种无机分子簇单源前体合成CdS纳米线的方法,其特征在于无机分子簇单源前体合成CdS纳米线的方法按以下步骤进行:一、将25g十六烷基胺在120±5℃的条件下真空脱气2h;二、降低十六烷基胺温度至80±2℃,在氮气氛条件下将1.2g(Me4N)4[S4Cd10(SPh)16]加入十六烷基胺,然后以2℃/min的速度升温至200~240℃,并保持200~240℃5h;三、降低混合物温度至60±2℃;四、用无水甲醇离心分离、沉淀物再真空干燥,即得到CdS纳米线。
2. 根据权利要求1所述的一种无机分子簇单源前体合成CdS纳米线的方法,其特征在于步骤四中无水甲醇离心的沉淀物用甲苯溶解,再加入甲醇体积1~2倍的无水甲醇再次离心分离。
3. 根据权利要求1或2所述的一种无机分子簇单源前体合成CdS纳米线的方法,其特征在于步骤四中在8000~15000r/min的条件下离心10min。
4. 根据权利要求1所述的一种无机分子簇单源前体合成CdS纳米线的方法,其特征在于步骤四中真空干燥的温度为10~20℃,干燥时间为24h,真空度为0.1MPa。
CN2008100642366A 2008-04-03 2008-04-03 一种无机分子簇单源前体合成CdS纳米线的方法 Expired - Fee Related CN101254941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100642366A CN101254941B (zh) 2008-04-03 2008-04-03 一种无机分子簇单源前体合成CdS纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100642366A CN101254941B (zh) 2008-04-03 2008-04-03 一种无机分子簇单源前体合成CdS纳米线的方法

Publications (2)

Publication Number Publication Date
CN101254941A CN101254941A (zh) 2008-09-03
CN101254941B true CN101254941B (zh) 2011-01-05

Family

ID=39890116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100642366A Expired - Fee Related CN101254941B (zh) 2008-04-03 2008-04-03 一种无机分子簇单源前体合成CdS纳米线的方法

Country Status (1)

Country Link
CN (1) CN101254941B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071397B (zh) * 2011-01-18 2012-07-04 浙江理工大学 一种制备硫化镉纳米线的方法

Also Published As

Publication number Publication date
CN101254941A (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
Li et al. Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures
Wang et al. Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature
Li et al. Synthesis of flower-like ZnO microstructures via a simple solution route
Feng et al. Synthesis, characterization and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation
Wang et al. Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods
Yu et al. Solution synthesis and optimization of ZnO nanowindmills
CN102040187B (zh) 一种核壳结构ZnO纳米线阵列的生长方法
Liu et al. Preparation and photoluminescence of ZnO complex structures with controlled morphology
Xie et al. Synthesis of needle-and flower-like ZnO microstructures by a simple aqueous solution route
CN113198493B (zh) 一种纳米花状硫化锌镉固溶体光催化剂及其制备方法
Li et al. Preparation of photoluminescent single crystalline MgO nanobelts by DC arc plasma jet CVD
Gong et al. Aqueous phase approach to ZnO microspindles at low temperature
Niu et al. Self-assembly of porous MgO nanoparticles into coral-like microcrystals
Wang et al. Solution synthesis of ZnO nanotubes via a template-free hydrothermal route
CN108163843B (zh) 一种合成硫磷共掺杂石墨烯量子点的制备方法
Mohammadikish et al. Various morphologies of nano/micro PbS via green hydrothermal method
Li et al. Synthesis and photocatalytic properties of CuO nanostructures
CN105019029A (zh) 高纯度、高产率制备ws2层片状纳米结构的方法
Ji et al. Star-shaped PbS crystals fabricated by a novel hydrothermal method
CN101254941B (zh) 一种无机分子簇单源前体合成CdS纳米线的方法
Hou et al. PEG-mediated synthesis of ZnO nanostructures at room temperature
CN105585044B (zh) 高纯度高密度CuS网络状纳米结构的制备方法
Zhang et al. Synthesis and separation property of flower-like Cd (OH) 2 microstructures via a simple solution route
CN102586882A (zh) 一种氧化锌/硫化锌超晶格纳米材料及其制备方法
Mohammadikish et al. Hierarchical crystal growth of sheaf-like CdS by microemulsion/hydrothermal route

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110105

Termination date: 20120403