CN101240780A - 用于太阳能装置的超临界二氧化碳涡轮 - Google Patents

用于太阳能装置的超临界二氧化碳涡轮 Download PDF

Info

Publication number
CN101240780A
CN101240780A CNA2007103061793A CN200710306179A CN101240780A CN 101240780 A CN101240780 A CN 101240780A CN A2007103061793 A CNA2007103061793 A CN A2007103061793A CN 200710306179 A CN200710306179 A CN 200710306179A CN 101240780 A CN101240780 A CN 101240780A
Authority
CN
China
Prior art keywords
carbon dioxide
supercritical carbon
turbine
energy
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007103061793A
Other languages
English (en)
Other versions
CN101240780B (zh
Inventor
R·Z·利特温
A·J·齐尔默
N·J·霍夫曼
A·V·冯阿克斯
D·韦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunlight Reserve Technology Co., Ltd.
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN101240780A publication Critical patent/CN101240780A/zh
Application granted granted Critical
Publication of CN101240780B publication Critical patent/CN101240780B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供用于太阳能装置的超临界二氧化碳涡轮,其中本发明的一种涡轮系统,包括:超临界二氧化碳涡轮;及太阳能加热系统,其具有为该超临界二氧化碳涡轮提供热能的熔融盐传热流体。本发明还公开一种为超临界二氧化碳涡轮提供能量的系统,该系统包括:向超临界二氧化碳涡轮提供能量的布雷顿环路工作流体;和太阳能接收器,加热传热流体,使传热流体的温度至少达到1065华氏温度左右,其中,传热流体和布雷顿环路工作流体联合作用。本发明还提供一种向超临界二氧化碳涡轮提供能量的方法。

Description

用于太阳能装置的超临界二氧化碳涡轮
技术领域
本发明总的涉及二氧化碳涡轮,特别是涉及由可再生能源驱动的二氧化碳涡轮。
背景技术
由于地球石化燃料供应的耗尽及对因石化燃料燃烧引起的全球变暖现象的关注,清洁的可再生能源成为持续的需求。太阳能塔通过将太阳能射线集束聚焦至固定于塔中的接收器上,以从太阳光中产生电能。典型的太阳能塔系统包括冷储存箱、太阳能接收器、太阳光反射装置、热储存箱以及能量转换系统,比如一套蒸汽发电机和涡轮/发电机。在工作中,传热流体自冷储存箱泵出,进入太阳能接收器。传热流体可能是任何适宜的能传热并保持热的介质,比如水、液态金属或熔融盐。
太阳能接收器典型地置于离地面50-250英尺或更高的位置上,并由太阳光反射装置加热。太阳能反射装置重新定向并将太阳能射线从太阳聚焦到太阳能接受器上。传热流体流过太阳能接收器的接收管,并在其中受聚集的太阳能加热。在太阳能接收器中,液态金属作为传热流体使用,并可达到约为1600的温度。水/蒸汽用作传热流体时,峰值温度可达约1050。当前正使用的熔融盐用作传热流体时,最大可达到约为1100。
传热流体在太阳能接收器中加热后,典型地流入热储存箱中。传热流体贮存在热储存箱中,一直到需要产生电能时。热储存箱允许在多云或黑夜天气产生电能。当需要电能时,传热流体从热储存箱中泵出进入到能量转换系统中。传热流体在能量转换系统中传递热能。例如,能量转换系统可能是兰金循环转换系统或布雷顿循环转换系统。典型地是,布雷顿循环使用再生器(也叫回收装置),其比兰金循环具有较高的效率,效率可达到34%至40%左右。热从传热流体移除后,传热流体传送回冷储存箱中以备再用。
考虑到自然资源不断衰竭以及对全球变暖现象的影响,需要提供一种使用再生资源提供电能的方法。另外,太阳能设施明显具有高资本成本,因而,也需要提供一种采用有效而又节约成本的产生电能的方法。
发明内容
一涡轮系统包括一超临界二氧化碳涡轮和一太阳能加热系统。该太阳能加热系统具有熔融盐传热流体,其用于向该超临界二氧化碳涡轮提供热能。
附图说明
图1为涡轮系统的示意图;
图2为采用熔融盐作为太阳能加热系统的传热流体的方法流程图
具体实施方式
图1示出了涡轮系统10的示意图,其一般包括太阳能加热系统12和超临界二氧化碳涡轮系统14。太阳能加热系统12用于向超临界二氧化碳涡轮系统14在一天中提供24小时的热能。太阳能加热系统12和超临界二氧化碳涡轮系统14的联合使用能有效地使用超临界二氧化碳涡轮系统14并使超临界二氧化碳涡轮系统14的电转换效率提高至大约46%。这也就增加了涡轮系统10的总的效率,减低了装置的资本成本以及电能生成成本。
太阳能加热系统一般包括循环系统16、冷储存箱18、太阳能接收器20、太阳光反射装置22、热储存箱24以及热交换器26。循环系统16通过太阳能加热系统12传送传热流体,其一般包括主线路(line)28、次线路30、冷泵32a、热泵32b。主线路28从冷储存箱18运送传热流体至太阳能接收器20。次线路30从热储存箱24运送传热流体至热交换器26并在闭环回路中将传热流体送回冷储存箱18中。传热流体通过冷泵32a从主线路28中泵出,并通过热泵32b从次线路30中泵出。
在工作中,传热流体贮存在冷储存箱18中。传热流体通过冷泵32a泵出进入太阳能接收器20。太阳光反射装置22对来自太阳的太阳能射线进行重新定位和聚集至接收器20上,接收器将重新定位的太阳光转变为热能。传热流体流过太阳能接收器20,并在其中受聚集的太阳能加热。太阳能接收器20能抵抗至少大约1065的温度。在一实施例中,太阳能加热系统12为一太阳能塔系统。
当传热流体在太阳能接收器20中加热到所期望的温度后,其流入热能储存箱24。然后,传热流体一直贮存在热能储存箱24中,直到超临界二氧化碳系统14需要其产生电能为止。热能储存箱24在多云或黑夜天气允许产生电能。
当需要产生电能时,传热流体从热能储存箱24中泵出,并通过热交换器26进行循环,以向超临界二氧化碳系统14提供热能。当传热流体经过热交换器26后,自传热流体所获得的热能使传热流体的温度大幅下降,约降至800。然后,传热流体被送入冷储存箱18,储存在闭环太阳能加热系统12中以备再用。
传热流体可能是任何适宜的能传热并保持热的流体,比如水、流态金属或熔融盐。传热流体也能和容纳在冷、热储存箱18、24中的固态传热介质相互作用。在一示例性实施例中,太阳能加热系统12采用熔融盐作为传热流体。熔融盐作为从太阳能接收器20向超临界二氧化碳系统14传递热能的流体,其能够把加热温度提高到至少1065左右。熔融盐可能是由钠盐和钾盐构成的结晶混合物。合适的熔融盐是由重量比为50%-70%的钠盐和重量比为30%-50%的钾盐组成。更合适的熔融盐是由重量比为60%的钠盐和重量比为40%的钾盐组成。
超临界二氧化碳涡轮系统14一般包括循环系统34、热交换器26、涡轮36、涡轮发电机38、高温复原器40、低温复原器42、预冷器44、主压缩机46、再压缩压缩机48。循环系统34使布雷顿工作流体在超临界二氧化碳涡轮系统14中循环,其一般包括高温线路50、第一中间温度线路52、高温复原器出口线路54、第二中间温度线路56、低温复原器出口线路58、第三中间温度线路60、预冷线路62、主压缩机线路64、低温复原器入口线路66、再压缩压缩机入口线路68、再压缩压缩机出口线路70、第一阀72、第二阀74、高温复原器入口线路76。布雷顿工作流体通过主压缩机46和再压缩压缩机48在循环系统34中循环。另外,发电机38、涡轮36、再压缩压缩机48和主压缩机46通过轴78相连。主压缩机46和再压缩压缩机48通过第一轴部78a彼此相连。再压缩压缩机48和涡轮36通过第二轴部78b彼此相连。涡轮36和发电机38通过第三轴部78c彼此相连。在一示例性实施例中,超临界二氧化碳系统14是一超临界二氧化碳布雷顿功率转换循环系统。
当传热流体自加热系统12通过热交换器26时,热量通过超临界二氧化碳系统14传递给布雷顿循环工作流体。在一示例性实施例中,超临界二氧化碳用作流过超临界二氧化碳系统14的布雷顿循环工作流体。流过超临界二氧化碳系统14的超临界二氧化碳能够被加热到温度为1022左右。当热能通过热交换器26从太阳能加热系统12中的熔融盐交换到超临界二氧化碳系统14的超临界二氧化碳时,并在其离开热交换器26及流过高温线路50时,超临界二氧化碳能被加热到1022左右,并具有2876磅/平方英寸(psi)的压力。高温线路50将超临界二氧化碳自热交换器26传递到涡轮36。
涡轮36中允许布雷顿循环工作流体膨胀和释放能量,使布雷顿循环工作流体的温度降低到825左右、压力降到1146psi左右。在涡轮36中由膨胀过程释放的能量足够使轴78的主压缩机46、再压缩压缩机48和发电机38转动。发电机38使用来自涡轮36的机械能来驱动发电单元来发电。在一示例性实施例中,发电机38产生大约300兆瓦特的净电能,发电效率达90%左右。发电机38产生的电能可有不同的应用,包括但不限于:商用和居民建筑供电。
然后,布雷顿循环工作流体通过第一中间温度线路52自涡轮36传递到高温复原器40。在高温复原器40中,布雷顿循环工作流体温度降到335左右。然后,布雷顿循环工作流体通过第二中间温度线路56到达低温复原器42,其温度进一步降到158左右。高低温复原器40、42的功用和热交换器一样:再次捕获热量并把热量传送回超临界二氧化碳系统14以改善超临界二氧化碳系统14的效率。从而,热量在高低温复原器40、42及热交换器26中增加到布雷顿循环工作流体。
自低温复原器42,布雷顿循环工作流体通过第三中间温度线路60送入到第一阀72。在第一阀72,布雷顿循环工作流体的一部分通过预冷线路62送入到预冷器44。在布雷顿循环工作流体通过主压缩机线路64被传送主压缩机46之前,布雷顿循环工作流体的温度在预冷器44中被降低到90左右。预冷器44可能把热量传递给水,水被送入到冷却塔以把热量释放到大气中。可替换地是,热释放也可以直接通过空气冷却来完成。需要冷却是因为需降低布雷顿循环工作流体的温度以满足闭环超临界二氧化碳系统14的低温启动的需要。在主压缩机46,布雷顿循环工作流体受压,其压力达到2900psi左右,温度达到142左右。一旦主压缩机46的入口条件在二氧化碳临界点之上,操作主压缩机46的所需工作就大大减少了。然后,布雷顿循环工作流体经过低温复原器入口线路66送入到低温复原器42并加热到317左右。然后,布雷顿循环工作流体离开低温复原器42,并通过低温复原器出口线路58进入到第二阀74。
并行地,布雷顿循环工作流体的第二部分自第一阀72通过再压缩压缩机入口线路68进入到再压缩压缩机48,在此处,其受压,压力达到2899psi,温度达到317左右。随后,来自再压缩压缩机48的布雷顿循环工作流体通过再压缩压缩机出口线路70把主压缩机46的排出物送到第二阀74。然后,混合的布雷顿循环工作流体通过高温复原器入口线路76流出第二阀74,并进入到高温复原器40,在此处,其可加热到746左右。布雷顿循环工作流体通过高温复原器出口线路54自高温复原器40流出,并在温度为746左右、压力为2895psi左右,进入到热交换器26。
图2为使用传热流体从太阳能加热系统12向超临界二氧化碳系统14提供热能的方法流程图。如前面提到的那样,熔融盐最初储存在冷储存箱18中,以方框100表示。当需要时,熔融盐泵入到太阳能接收器20(方框102),并在方框104中,加热到至少1065左右。如方框106所示,当超临界二氧化碳系统14需要时,加热后的熔融盐被送入到热储存箱中。加热后的熔融盐被泵送至超临界二氧化碳系统14,此处,来自熔融盐的热能被传递到超临界氧化物使超临界氧化物系统14产生电力,如方框108。
涡轮系统使用熔融盐加热系统为超临界氧化物系统提供热能。超临界氧化物系统需要超临界氧化物的峰值温度达1022左右。太阳能加热系统将熔融盐作为一种传热流体将所需要的热能传递并驱动超临界氧化物系统。在一示例性实施例中,太阳能加热系统为一能把熔融盐加热至1065左右的太阳能动力塔系统。
尽管参考了优选实施例对本发明进行了描述,本领域的技术人员能认识到:在不超出本发明的精神和范围,可做一些形式或内容的修改。

Claims (20)

1、一种涡轮系统,包括:
超临界二氧化碳涡轮;及
太阳能加热系统,其具有为该超临界二氧化碳涡轮提供热能的熔融盐传热流体。
2、如权利要求1所述的涡轮系统,其中,超临界二氧化碳涡轮至少在约为1022华氏温度的温度下工作。
3、如权利要求1所述的涡轮系统,其中,熔融盐传热流体是由重量比约为50%-70%的钠盐和重量比约为30%-50%的钾盐组成。
4、如权利要求1所述的涡轮系统,其中,太阳能加热系统将熔融盐传热流体加热到至少1065华氏温度左右。
5、如权利要求1所述的涡轮系统,其中,超临界二氧化碳涡轮由超临界二氧化碳布雷顿功率转换环路组成。
6、如权利要求1所述的涡轮系统,进一步包括热交换器,其中,热能自熔融盐传热流体传送到二氧化碳布雷顿环路工作流体。
7、一种为超临界二氧化碳涡轮提供能量的系统,该系统包括:
向超临界二氧化碳涡轮提供能量的布雷顿环路工作流体;和
太阳能接收器,加热传热流体,使传热流体的温度至少达到1065华氏温度左右,其中,传热流体和布雷顿环路工作流体联合作用。
8、如权利要求7所述的系统,其中,超临界二氧化碳涡轮在1022华氏温度左右的入口温度下工作。
9、如权利要求7所述的系统,其中,传热流体由熔融盐组成。
10、如权利要求9所述的系统,其中,熔融盐传热流体是由重量比约为50%-70%的钠盐和重量比约为30%-50%的钾盐组成。
11、如权利要求9所述的系统,其中,传热流体向超临界二氧化碳涡轮提供热能。
12、如权利要求11所述的系统,进一步包括热交换器,其中,热能自熔融盐传热流体传送到二氧化碳。
13、如权利要求7所述的系统,其中,所述系统为太阳能加热系统。
14、一种向超临界二氧化碳涡轮提供能量的方法,该方法包括:
自太阳光捕获太阳能;
用太阳能加热传热流体,使其温度至少到达1065华氏温度左右;
将来自传热流体的能量传递并加热超临界二氧化碳涡轮的布雷顿环路工作流体。
15、如权利要求14所述的方法,其中,使用太阳能加热系统捕获太阳能。
16、如权利要求14所述的方法,传热流体由熔融盐组成。
17、如权利要求16所述的方法,其中,熔融盐传热流体是由重量比约为50%-70%的钠盐和重量比约为30%-50%的钾盐组成。
18、如权利要求14所述的方法,其中,传输传热流体的能量来加热超临界二氧化碳涡轮的布雷顿环路工作流体时,包括使用热交换器。
19、如权利要求14所述的方法,其中,传热流体向超临界二氧化碳涡轮提供热能。
20、如权利要求14所述的方法,其中,超临界二氧化碳涡轮由超临界二氧化碳布雷顿功率转换环路组成。
CN2007103061793A 2006-12-08 2007-12-07 用于太阳能装置的超临界二氧化碳涡轮 Expired - Fee Related CN101240780B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/636247 2006-12-08
US11/636,247 US7685820B2 (en) 2006-12-08 2006-12-08 Supercritical CO2 turbine for use in solar power plants

Publications (2)

Publication Number Publication Date
CN101240780A true CN101240780A (zh) 2008-08-13
CN101240780B CN101240780B (zh) 2012-01-11

Family

ID=39111321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007103061793A Expired - Fee Related CN101240780B (zh) 2006-12-08 2007-12-07 用于太阳能装置的超临界二氧化碳涡轮

Country Status (4)

Country Link
US (1) US7685820B2 (zh)
EP (1) EP1930587A3 (zh)
JP (1) JP5311366B2 (zh)
CN (1) CN101240780B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245978A (zh) * 2008-12-11 2011-11-16 学校法人同志社 太阳能的聚热方法及聚热装置
CN102318096A (zh) * 2009-02-15 2012-01-11 黑利福卡斯有限公司 太阳能热系统
CN102400867A (zh) * 2010-09-08 2012-04-04 中国科学院工程热物理研究所 带蓄热的超临界co2太阳能热发电系统
CN103939306A (zh) * 2014-04-11 2014-07-23 中国华能集团清洁能源技术研究院有限公司 一种两回路式太阳能热发电系统
CN104728823A (zh) * 2015-03-17 2015-06-24 西安热工研究院有限公司 一种新型超临界二氧化碳燃煤锅炉
CN104854315A (zh) * 2012-09-26 2015-08-19 超临界技术有限公司 模块化功率基础设施网络以及相关的系统和方法
CN105201579A (zh) * 2015-10-16 2015-12-30 上海晶电新能源有限公司 基于二次反射聚光吸热技术的超临界二氧化碳发电系统
CN105261404A (zh) * 2015-11-19 2016-01-20 中国核动力研究设计院 采用超临界二氧化碳工质的钠冷快堆发电系统
CN105355247A (zh) * 2015-11-19 2016-02-24 中国核动力研究设计院 采用超临界二氧化碳的新型熔盐堆能量转换系统
CN105637184A (zh) * 2013-05-30 2016-06-01 通用电气公司 废热回收的系统和方法
CN104153954B (zh) * 2013-05-16 2016-09-21 张建城 多模式塔式太阳能热发电装置
CN104153953B (zh) * 2013-05-16 2016-10-12 张建城 多模式槽式太阳能布雷顿热发电装置
CN106098122A (zh) * 2016-05-31 2016-11-09 哈尔滨工程大学 一种基于超临界二氧化碳布雷顿循环的核能发电系统
CN106574552A (zh) * 2014-02-26 2017-04-19 派瑞格恩涡轮技术有限公司 具有部分回收流动路径的动力生成系统和方法
CN108643982A (zh) * 2018-07-04 2018-10-12 西安热工研究院有限公司 一种带制冷冷却的超临界布雷顿循环发电系统及方法
CN110863961A (zh) * 2019-11-28 2020-03-06 西安石油大学 一种超临界co2再压缩布雷顿和lng联合循环发电系统
CN110905747A (zh) * 2019-11-28 2020-03-24 西安石油大学 一种利用高温太阳能和lng冷能的联合动力循环发电系统
CN111911371A (zh) * 2020-06-29 2020-11-10 东方电气集团东方汽轮机有限公司 一种高效紧凑多功能碟式聚光发电系统

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032408A (ko) 2007-06-06 2010-03-25 오스라, 인크. 조합 사이클 파워 플랜트
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US20090056703A1 (en) 2007-08-27 2009-03-05 Ausra, Inc. Linear fresnel solar arrays and components therefor
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor
DE102008051384B3 (de) * 2008-10-11 2010-02-11 Technische Universität Dresden Solarhybridbetriebenes Gas- und Dampfkraftwerk
US20120133510A1 (en) 2010-11-30 2012-05-31 Panduit Corp. Physical infrastructure management system having an integrated cabinet
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
EA024852B1 (ru) 2009-02-26 2016-10-31 Палмер Лэбз, Ллк Способ и устройство для сжигания топлива при высокой температуре и высоком давлении и соответствующие система и средства
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
WO2010133688A2 (en) * 2009-05-20 2010-11-25 Csem Centre Suisse D'electronique Et De Microtechnique Sa Recherche Et Développement Mini solar islands for household needs
US9567876B2 (en) * 2009-06-05 2017-02-14 Gas Technology Institute Reactor system and solid fuel composite therefor
BRPI1011938B1 (pt) 2009-06-22 2020-12-01 Echogen Power Systems, Inc sistema e método para gerenciar problemas térmicos em um ou mais processos industriais.
WO2011017476A1 (en) 2009-08-04 2011-02-10 Echogen Power Systems Inc. Heat pump with integral solar collector
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9115605B2 (en) * 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
IN2012DN02495A (zh) * 2009-09-18 2015-08-28 Massachusetts Inst Technology
US8490397B2 (en) 2009-11-16 2013-07-23 General Electric Company Compound closed-loop heat cycle system for recovering waste heat and method thereof
US8327641B2 (en) 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy
ES2363288B1 (es) * 2010-01-15 2012-02-27 Abengoa Solar New Technologies S.A. Receptor solar de sales fundidas y procedimiento para reducir el gradiente térmico en dicho receptor.
US10094219B2 (en) * 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
CN102906393B (zh) 2010-03-30 2015-04-22 斯蒂芬·李·坎宁安 振荡活塞发动机
JP2013128333A (ja) * 2010-03-31 2013-06-27 Tokyo Institute Of Technology 蒸気発生装置及びこれを用いたエネルギ供給システム
ITMS20100005A1 (it) * 2010-06-25 2011-12-26 Technical Partners S A S Di Natalia Kozlova & C Centrale termoelettrica elioassistita
ES2377254B1 (es) * 2010-08-24 2013-03-12 Guradoor, S.L. Procedimiento industrial para la obtención de alcoholes inferiores a partir de energía solar.
US20120255312A1 (en) * 2010-09-27 2012-10-11 Air Products And Chemicals, Inc. Method and System to Produce Electric Power
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
WO2012093354A2 (en) * 2011-01-03 2012-07-12 Brightsource Industries (Israel) Ltd. Thermal storage system and methods
CN102182997B (zh) * 2011-01-30 2012-11-14 杭州锅炉集团股份有限公司 二元工质复合式太阳能吸热器及配套装置
CN102146899B (zh) * 2011-01-30 2012-12-12 杭州锅炉集团股份有限公司 多塔式二元工质太阳能高温热发电系统
US20120216536A1 (en) * 2011-02-25 2012-08-30 Alliance For Sustainable Energy, Llc Supercritical carbon dioxide power cycle configuration for use in concentrating solar power systems
WO2012122541A2 (en) * 2011-03-09 2012-09-13 California Institute Of Technology Beam-forming concentrating solar thermal array power systems
JP2014513260A (ja) * 2011-03-11 2014-05-29 ステレンボッシュ ユニバーシティ 特に集光型太陽熱装置に適切な蓄熱設備
KR20140033017A (ko) * 2011-03-22 2014-03-17 클리메온 에이비 저온 열을 전기 및 냉각으로 변환하는 방법 및 그의 시스템
DE102011007650A1 (de) * 2011-04-19 2012-10-25 Siemens Aktiengesellschaft Solarthermische Kraftwerkanlage und Verfahren zum Betreiben einer solarthermischen Kraftwerksanlage
US9869272B1 (en) * 2011-04-20 2018-01-16 Martin A. Stuart Performance of a transcritical or supercritical CO2 Rankin cycle engine
ITRM20110212A1 (it) * 2011-04-26 2012-10-27 Enea Agenzia Naz Per Le Nuo Ve Tecnologie Procedimento per la gestione di fasi di start-up e shut-down di impianti solari a collettori parabolici lineari utilizzanti miscele di sali fusi come fluido termovettore.
CN102226449B (zh) * 2011-05-06 2013-11-13 湘潭电机股份有限公司 燃气轮机太阳能发电系统的工质加热装置
EP2710288B1 (de) * 2011-05-19 2015-07-08 Basf Se Rohrleitung zur förderung einer salzschmelze
WO2012162438A2 (en) * 2011-05-24 2012-11-29 Navitasmax, Inc. Supercritical fluids, systems and methods for use
JP5602306B2 (ja) 2011-06-30 2014-10-08 バブコック日立株式会社 太陽熱ボイラおよびそれを用いた太陽熱発電プラント
CN102878033B (zh) * 2011-07-14 2014-12-10 湘潭电机力源模具有限公司 一种太阳能热发电系统及其热电转化装置
US9745899B2 (en) 2011-08-05 2017-08-29 National Technology & Engineering Solutions Of Sandia, Llc Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures
US9038387B2 (en) 2011-08-31 2015-05-26 Brightsource Industries (Israel) Ltd Solar thermal electricity generating systems with thermal storage
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US8863494B2 (en) 2011-10-06 2014-10-21 Hamilton Sundstrand Space Systems International, Inc. Turbine outlet frozen gas capture apparatus and method
DE102011116338B4 (de) * 2011-10-19 2013-07-11 Horst Schierack Solarthermisches Kraftwerk sowie Verfahren zum Betreiben eines solarthermischen Kraftwerks
US20130118145A1 (en) * 2011-11-11 2013-05-16 8 River Capital, LLC Hybrid fossil fuel and solar heated supercritical carbon dioxide power generating system and method
CN102418917A (zh) * 2011-12-08 2012-04-18 江苏太阳宝新能源有限公司 太阳能光热发电储能罐与蒸汽发生器的优化结构
US8887503B2 (en) * 2011-12-13 2014-11-18 Aerojet Rocketdyne of DE, Inc Recuperative supercritical carbon dioxide cycle
WO2013094196A1 (ja) * 2011-12-20 2013-06-27 日本ネイチャーセル株式会社 小型原子力発電システム
CN102563867B (zh) * 2012-01-17 2014-05-07 杭州锅炉集团股份有限公司 太阳能辅助加热熔盐系统
US9540999B2 (en) 2012-01-17 2017-01-10 Peregrine Turbine Technologies, Llc System and method for generating power using a supercritical fluid
US20130228163A1 (en) * 2012-03-01 2013-09-05 David Wait Thermal transfer apparatus and method therefor
WO2013131142A1 (en) * 2012-03-08 2013-09-12 Graphite Energy N.V. Solar and renewable/waste energy powered turbine with two stage heating and graphite body heat exchanger
CA2870310C (en) 2012-04-18 2021-03-30 Martin A. Stuart Polygon oscillating piston engine
BR112015003646A2 (pt) 2012-08-20 2017-07-04 Echogen Power Systems Llc circuito de fluido de trabalho supercrítico com uma bomba de turbo e uma bomba de arranque em séries de configuração
KR101594902B1 (ko) * 2012-09-11 2016-02-29 재단법인 포항산업과학연구원 가열로의 열회수장치
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
KR101239773B1 (ko) * 2012-10-17 2013-03-06 한국지질자원연구원 작동가스와 용융염의 열 교환을 이용한 지열 발전 시스템 및 방법
CN103821680A (zh) * 2012-11-19 2014-05-28 杨建军 一种新型城市热电站
US9541071B2 (en) 2012-12-04 2017-01-10 Brightsource Industries (Israel) Ltd. Concentrated solar power plant with independent superheater
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
JP6038671B2 (ja) 2013-02-01 2016-12-07 三菱日立パワーシステムズ株式会社 火力発電システム
WO2014138035A1 (en) 2013-03-04 2014-09-12 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
US9593597B2 (en) 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
US9260982B2 (en) * 2013-05-30 2016-02-16 General Electric Company System and method of waste heat recovery
US9587520B2 (en) * 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
CN103306885A (zh) * 2013-06-30 2013-09-18 苏州市牛勿耳关电器科技有限公司 一种物联网城市供热
CN103542552B (zh) * 2013-09-29 2016-01-20 刘鸿章 储热剂加热器及太阳能布莱顿储能热发电装置
KR102073736B1 (ko) * 2013-09-30 2020-02-05 한국전력공사 복합화력발전 및 지역난방발전 시스템
SE1400492A1 (sv) 2014-01-22 2015-07-23 Climeon Ab An improved thermodynamic cycle operating at low pressure using a radial turbine
CN104948400B (zh) * 2014-03-31 2018-06-08 张建城 采用独立循环储热蓄电和梯级换热蒸发的太阳能热发电站
US10488079B2 (en) 2014-05-13 2019-11-26 Massachusetts Institute Of Technology Low cost parabolic cylindrical trough for concentrated solar power
US9945585B2 (en) 2014-05-15 2018-04-17 Alliance For Sustainable Energy, Llc Systems and methods for direct thermal receivers using near blackbody configurations
US9885283B2 (en) 2014-06-05 2018-02-06 Rolls-Royce Corporation Gas turbine engine driven by supercritical power generation system
US9500185B2 (en) 2014-08-15 2016-11-22 King Fahd University Of Petroleum And Minerals System and method using solar thermal energy for power, cogeneration and/or poly-generation using supercritical brayton cycles
EP3183433B1 (en) 2014-08-22 2019-10-09 Peregrine Turbine Technologies, LLC Power generation system and method for generating power
KR101609566B1 (ko) * 2014-08-26 2016-04-06 대우조선해양 주식회사 선박의 동력 생산 시스템 및 방법
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
ES2575352B1 (es) * 2014-11-28 2017-04-11 Abengoa Solar New Technologies, S.A. Planta híbrida solar-fósil de alto rendimiento
CN104481697B (zh) * 2014-12-05 2016-02-24 西安交通大学 一种燃气、柴油及超临界二氧化碳发电船舶动力驱动系统
US10598093B2 (en) 2015-04-02 2020-03-24 University Of Central Florida Research Foundation, Inc. Power generation system using closed or semi-closed Brayton cycle recuperator
US9644502B2 (en) * 2015-04-09 2017-05-09 General Electric Company Regenerative thermodynamic power generation cycle systems, and methods for operating thereof
BR112018003913A2 (pt) * 2015-09-01 2018-09-25 8 Rivers Capital Llc sistemas e métodos para produção de energia usando ciclos de co2 embutidos
KR101769431B1 (ko) * 2015-11-27 2017-08-21 한국기계연구원 열전달 매체 조성물 및 이를 이용한 열전달 시스템
US10422552B2 (en) 2015-12-24 2019-09-24 Alliance For Sustainable Energy, Llc Receivers for concentrating solar power generation
CN106121942A (zh) * 2016-06-14 2016-11-16 中国科学院合肥物质科学研究院 一种采用液态铅铋传热和储热的超临界太阳能电站
CN106242019A (zh) * 2016-09-14 2016-12-21 西安热工研究院有限公司 超临界二氧化碳布雷顿循环发电‑废水处理的耦合系统
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
WO2018231194A1 (en) * 2017-06-12 2018-12-20 General Electric Company Counter-flow heat exchanger
US20210088032A1 (en) * 2017-06-29 2021-03-25 Qinghai Enesoon Science & Technology Co., Ltd. Improved brayton photothermal power generation method and system
CN111094720B (zh) 2017-08-28 2023-02-03 八河流资产有限责任公司 回热式超临界co2动力循环的低等级热优化
CN107355265B (zh) * 2017-09-08 2023-08-11 西安热工研究院有限公司 超临界二氧化碳高效灵活热电联产系统
CN107630726B (zh) * 2017-09-26 2023-08-29 上海发电设备成套设计研究院有限责任公司 一种基于超临界二氧化碳循环的多能混合发电系统及方法
CA3088184A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
WO2019178447A1 (en) * 2018-03-16 2019-09-19 Lawrence Livermore National Security, Llc Multi-fluid, earth battery energy systems and methods
CN109695554A (zh) * 2018-03-28 2019-04-30 中电华创(苏州)电力技术研究有限公司 一种基于超临界co2布雷顿循环的太阳能热电联供系统
US11073169B2 (en) * 2018-06-26 2021-07-27 Energy Recovery, Inc. Power generation system with rotary liquid piston compressor for transcritical and supercritical compression of fluids
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN108661731B (zh) * 2018-07-04 2024-01-23 西安热工研究院有限公司 一种带蓄冷的超临界布雷顿循环发电系统及方法
WO2020065523A1 (en) * 2018-09-24 2020-04-02 Saipem S.P.A. Heat accumulator integrated with thermodynamic cycle
CN109372604B (zh) * 2018-11-14 2024-02-02 上海发电设备成套设计研究院有限责任公司 一种镁为载体的半闭式能量转换远传及固碳系统与方法
CN109763948A (zh) * 2018-12-25 2019-05-17 西安交通大学 一种超临界二氧化碳太阳能热发电系统及运行方法
CN109974323B (zh) * 2019-03-05 2020-05-15 中国科学院力学研究所 一种带喷流降温装置的冷热电联供循环方法及系统
CN110242522B (zh) * 2019-04-12 2024-01-30 西安热工研究院有限公司 一种基于热化学储能的太阳能光热发电系统及方法
CN110242362B (zh) * 2019-06-29 2023-12-01 东莞理工学院 超临界二氧化碳布雷顿循环做功系统
CN110486107A (zh) * 2019-07-31 2019-11-22 碧流天能(北京)科技股份有限公司 联合超临界水氧化技术的超临界二氧化碳发电系统及方法
CN115485459A (zh) 2019-11-16 2022-12-16 马耳他股份有限公司 泵送热电储存系统
CN110725778A (zh) * 2019-11-27 2020-01-24 西安热工研究院有限公司 一种太阳能风能联合储能发电系统及方法
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11397030B2 (en) 2020-07-10 2022-07-26 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve
US11421918B2 (en) 2020-07-10 2022-08-23 Energy Recovery, Inc. Refrigeration system with high speed rotary pressure exchanger
CN111749862A (zh) * 2020-07-27 2020-10-09 西安热工研究院有限公司 混合物工质超临界布雷顿循环光热发电系统及发电方法
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
EP4193041A1 (en) 2020-08-12 2023-06-14 Malta Inc. Pumped heat energy storage system with district heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
CN111878330B (zh) * 2020-09-02 2024-04-26 西安热工研究院有限公司 一种带蓄热的双布雷顿联合循环太阳能发电系统及方法
US20230366350A1 (en) * 2020-10-06 2023-11-16 King Abdullah University Of Science And Technology Waste heat recovery system
US11492964B2 (en) 2020-11-25 2022-11-08 Michael F. Keller Integrated supercritical CO2/multiple thermal cycles
US11913361B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Energy storage system and alumina calcination applications
CN112696242B (zh) * 2020-11-30 2023-02-28 合肥通用机械研究院有限公司 一种用于超临界二氧化碳再压缩循环的分流调控系统
US11913362B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Thermal energy storage system coupled with steam cracking system
IL303311A (en) 2020-11-30 2023-07-01 Rondo Energy Inc Energy storage system and applications
AU2021397292A1 (en) 2020-12-09 2023-07-06 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
CN112683093B (zh) * 2020-12-25 2022-10-18 上海电力大学 一种阀门切换的蓄热式回热超临界二氧化碳循环系统
CN113756892B (zh) * 2021-08-30 2022-10-28 西安交通大学 模块化多用途小型氟盐冷却高温堆能量系统
CN113756891B (zh) * 2021-08-30 2023-03-21 西安交通大学 舰船用一体化氟盐冷却高温堆动力系统
US11852382B2 (en) 2021-11-19 2023-12-26 King Fahd University Of Petroleum And Minerals Heating and cooling system powered by renewable energy and assisted by geothermal energy
CN114837760A (zh) * 2022-03-31 2022-08-02 西安交通大学 一种基于小型氟盐冷却高温堆的高效制氢与发电耦合系统
CN115274170B (zh) * 2022-08-01 2023-05-23 哈尔滨工程大学 一种高热效率布雷顿与朗肯联合循环发电的核反应堆系统
CN115306507B (zh) * 2022-10-11 2023-01-20 中国核动力研究设计院 移动式车载电源系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1245007A (en) * 1967-10-13 1971-09-02 Siemens Ag Nuclear reactor installations
US3971211A (en) * 1974-04-02 1976-07-27 Mcdonnell Douglas Corporation Thermodynamic cycles with supercritical CO2 cycle topping
US4265223A (en) * 1978-09-18 1981-05-05 The Badger Company, Inc. Method and apparatus for utilizing solar energy
US4433673A (en) * 1979-10-04 1984-02-28 Vierling Donald E Method and apparatus for continuously supplying a load
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
EP0469852B1 (en) * 1990-07-31 1999-06-23 Canon Kabushiki Kaisha Image processing method and apparatus
JPH0640759U (ja) * 1992-03-10 1994-05-31 中国電力株式会社 蓄熱式暖房装置
US6668554B1 (en) * 1999-09-10 2003-12-30 The Regents Of The University Of California Geothermal energy production with supercritical fluids
JP3407037B2 (ja) * 2000-05-19 2003-05-19 東京工業大学長 直接サイクル高速炉
JP3530939B2 (ja) * 2001-08-09 2004-05-24 東京工業大学長 原子炉プラント
US6877508B2 (en) * 2002-11-22 2005-04-12 The Boeing Company Expansion bellows for use in solar molten salt piping and valves
US6957536B2 (en) * 2003-06-03 2005-10-25 The Boeing Company Systems and methods for generating electrical power from solar energy
US7055519B2 (en) * 2003-12-10 2006-06-06 United Technologies Corporation Solar collector and method
US7296410B2 (en) * 2003-12-10 2007-11-20 United Technologies Corporation Solar power system and method for power generation
JP5011462B2 (ja) * 2004-08-31 2012-08-29 国立大学法人東京工業大学 太陽光集熱器、太陽光集光用反射装置、太陽光集光システムおよび太陽光エネルギ利用システム
US8365529B2 (en) * 2006-06-30 2013-02-05 United Technologies Corporation High temperature molten salt receiver

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245978A (zh) * 2008-12-11 2011-11-16 学校法人同志社 太阳能的聚热方法及聚热装置
CN102318096A (zh) * 2009-02-15 2012-01-11 黑利福卡斯有限公司 太阳能热系统
CN102318096B (zh) * 2009-02-15 2015-03-11 黑利福卡斯有限公司 太阳能热系统
CN102400867A (zh) * 2010-09-08 2012-04-04 中国科学院工程热物理研究所 带蓄热的超临界co2太阳能热发电系统
CN102400867B (zh) * 2010-09-08 2013-11-06 中国科学院工程热物理研究所 带蓄热的超临界二氧化碳太阳能热发电系统
CN104854315A (zh) * 2012-09-26 2015-08-19 超临界技术有限公司 模块化功率基础设施网络以及相关的系统和方法
CN104884768A (zh) * 2012-09-26 2015-09-02 超临界技术有限公司 具有压缩机恢复的热力循环以及相关的系统和方法
CN104153954B (zh) * 2013-05-16 2016-09-21 张建城 多模式塔式太阳能热发电装置
CN104153953B (zh) * 2013-05-16 2016-10-12 张建城 多模式槽式太阳能布雷顿热发电装置
CN105637184B (zh) * 2013-05-30 2018-09-21 通用电气公司 废热回收的系统和方法
CN105637184A (zh) * 2013-05-30 2016-06-01 通用电气公司 废热回收的系统和方法
CN106574552A (zh) * 2014-02-26 2017-04-19 派瑞格恩涡轮技术有限公司 具有部分回收流动路径的动力生成系统和方法
US11047264B2 (en) 2014-02-26 2021-06-29 Peregrine Turbine Technologies, Llc Power generation system and method with partially recuperated flow path
US10385735B2 (en) 2014-02-26 2019-08-20 Peregrine Turbine Technologies, Llc Power generation system and method with partially recuperated flow path
CN106574552B (zh) * 2014-02-26 2018-08-14 派瑞格恩涡轮技术有限公司 具有部分回收流动路径的动力生成系统和方法
CN103939306A (zh) * 2014-04-11 2014-07-23 中国华能集团清洁能源技术研究院有限公司 一种两回路式太阳能热发电系统
CN104728823A (zh) * 2015-03-17 2015-06-24 西安热工研究院有限公司 一种新型超临界二氧化碳燃煤锅炉
CN105201579A (zh) * 2015-10-16 2015-12-30 上海晶电新能源有限公司 基于二次反射聚光吸热技术的超临界二氧化碳发电系统
CN105261404A (zh) * 2015-11-19 2016-01-20 中国核动力研究设计院 采用超临界二氧化碳工质的钠冷快堆发电系统
CN105355247A (zh) * 2015-11-19 2016-02-24 中国核动力研究设计院 采用超临界二氧化碳的新型熔盐堆能量转换系统
CN106098122A (zh) * 2016-05-31 2016-11-09 哈尔滨工程大学 一种基于超临界二氧化碳布雷顿循环的核能发电系统
CN108643982A (zh) * 2018-07-04 2018-10-12 西安热工研究院有限公司 一种带制冷冷却的超临界布雷顿循环发电系统及方法
CN110863961A (zh) * 2019-11-28 2020-03-06 西安石油大学 一种超临界co2再压缩布雷顿和lng联合循环发电系统
CN110905747A (zh) * 2019-11-28 2020-03-24 西安石油大学 一种利用高温太阳能和lng冷能的联合动力循环发电系统
CN110905747B (zh) * 2019-11-28 2021-07-13 西安石油大学 一种利用高温太阳能和lng冷能的联合动力循环发电系统
CN111911371A (zh) * 2020-06-29 2020-11-10 东方电气集团东方汽轮机有限公司 一种高效紧凑多功能碟式聚光发电系统

Also Published As

Publication number Publication date
CN101240780B (zh) 2012-01-11
US7685820B2 (en) 2010-03-30
US20100024421A1 (en) 2010-02-04
EP1930587A3 (en) 2013-03-06
JP5311366B2 (ja) 2013-10-09
JP2011017449A (ja) 2011-01-27
EP1930587A2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
CN101240780B (zh) 用于太阳能装置的超临界二氧化碳涡轮
AU2010326107B2 (en) Utilizing steam and/or hot water generated using solar energy
US8661777B2 (en) Solar combined cycle power systems
US6957536B2 (en) Systems and methods for generating electrical power from solar energy
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
CN104603570B (zh) 用于能量生产的装置
US5417052A (en) Hybrid solar central receiver for combined cycle power plant
US7171812B2 (en) Electric generation facility and method employing solar technology
WO2010147003A1 (ja) 太陽熱ガスタービン発電装置
US20140352304A1 (en) Hybrid solar field
EP3006732A1 (en) Hybrid fossil fuel and solar heated supercritical carbon dioxide power generating system and method
US8881528B2 (en) System for the generation of mechanical and/or electrical energy
US20100295306A1 (en) System for converting solar radiation into electricity
CN110206602B (zh) 一种基于核电站的热电系统及其控制方法
US8584465B2 (en) Method for increasing the efficiency of a power plant which is equipped with a gas turbine, and power plant for carrying out the method
EP2757259B1 (en) Solar Thermal Power System
AU2010238418A1 (en) Method for increasing the net electric power of solar thermal power plants
US20140216032A1 (en) Solar direct steam generation power plant combined with heat storage unit
CN105986954B (zh) 一种功冷联供系统
US20150001854A1 (en) Energy recovering equipment as well as a method for recovering energy
CN105247208B (zh) 具有蓄热器的太阳能集热器厂
EP2899399A1 (en) Solar power plant
SU1726922A1 (ru) Солнечна комбинированна электрическа станци
Litwin et al. Supercritical CO2 turbine for use in solar power plants
CN114382564A (zh) 一种新型超临界二氧化碳涡轮机及向其提供热能的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HAMMILLTONSONDESTLAND INC.

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (US) 1, FINANCIAL PLAZA HARTFORD, CONNECTICUT 06101 U.

Effective date: 20130217

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130217

Address after: American Connecticut

Patentee after: Hammilltonsondestland Inc.

Address before: American Connecticut

Patentee before: United Technologies Corporation

ASS Succession or assignment of patent right

Owner name: PRATT + WHITNEY ROCKETDYNE, INC.

Free format text: FORMER OWNER: HAMMILLTONSONDESTLAND INC.

Effective date: 20141029

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141029

Address after: American California

Patentee after: PRATT & WHITNEY ROCKETDYNE, INC.

Address before: American Connecticut

Patentee before: Hammilltonsondestland Inc.

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160224

Address after: American California

Patentee after: Sunlight Reserve Technology Co., Ltd.

Address before: American California

Patentee before: PRATT & WHITNEY ROCKETDYNE, INC.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20191207