CN101228419A - 用于激光校准的系统和方法 - Google Patents

用于激光校准的系统和方法 Download PDF

Info

Publication number
CN101228419A
CN101228419A CNA2006800270733A CN200680027073A CN101228419A CN 101228419 A CN101228419 A CN 101228419A CN A2006800270733 A CNA2006800270733 A CN A2006800270733A CN 200680027073 A CN200680027073 A CN 200680027073A CN 101228419 A CN101228419 A CN 101228419A
Authority
CN
China
Prior art keywords
laser
calibration
bang path
power
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800270733A
Other languages
English (en)
Inventor
马里奥·安东尼奥·史蒂芬尼
扎巴斯·凯亚都-德-卡斯特罗-奈托
亚历山德罗·达米阿尼·莫特
朱里安诺·罗斯伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opto Global Holdings Pty Ltd
Original Assignee
Opto Global Holdings Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005902720A external-priority patent/AU2005902720A0/en
Application filed by Opto Global Holdings Pty Ltd filed Critical Opto Global Holdings Pty Ltd
Publication of CN101228419A publication Critical patent/CN101228419A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • G01J1/30Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
    • G01J1/32Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing

Abstract

本发明公开了一种用于激光单元(10)的激光校准系统和方法,该激光单元(10)可操作来发射沿光传递路径(310)被引导到光传递路径远端的输送点的激光束。该激光校准系统包括激光控制器,其可操作来驱动激光单元(10)根据期望的激光功率和与光传递路径相关的补偿因子发射激光束。检测器(70)生成关于输送点处功率的测量信号;激光校准器(802)根据对期望的激光功率和测量信号的比较生成误差信号,以根据误差信号调整补偿因子。

Description

用于激光校准的系统和方法
技术领域
本发明涉及激光校准,并且特别涉及激光系统的校准,该激光系统具有关联的光学传递路径以为治疗患者的眼角膜提供激光束。
背景技术
激光在包括外科手术、纹身去除和与视力有关的应用的医疗程序中具有很重要的用途。
例如,在WO 02/094260(其全部内容并入本文作为参考)所描述的程序中,810nm的眼科激光被用于对患者的眼睛执行称为吲哚青绿介导的光栓疗法(i-MP)的程序。这需要非常精确地将激光束的输出功率传送到眼睛上。如果输出功率与治疗眼睛所需的期望输出功率偏差超过5%,则可能导致不充分曝光或过度曝光,并因而使该程序的治疗效果无效。
因此,用于治疗目标组织的激光通常配备称为“功率监视器”的反馈装置,以解决输出功率的任何偏差。另外,切断式(cut-out)安全机构可确保将激光功率维持在对于人类治疗安全的范围内。
激光控制台的组件通常在售出之前在工厂中进行校准。随着时间的流逝,这些组件可能会变得不准并且还会加剧激光控制台自身的输出功率的不精确性。这样的组件包括激光源、感光二极管和其它监视激光源输出能量的功率监视器组件。这些组件造成的功率偏差被激光控制台内的功率监视器检测到,但由于根据国际电子技术协会(IEC)的要求将可容许偏差的水平设置在±20%的精确度,传递到患者眼睛处的激光束的功率偏差可能会远远超出如i-MP等一些程序的最小安全水平。
在治疗患者眼睛的典型程序(如WO 02/094260中所描述的程序)中,将多个附加组件放置在激光和患者眼睛之间的激光束路径中。
参考图1,一旦激光束离开激光控制台10,激光束就传播通过光传递系统。该光传递系统包括,例如,通向裂隙灯适配器30的光纤,而裂隙灯适配器30又与裂隙灯显微镜40和激光接触透镜60相连。裂隙灯适配器30是标准单元,其自身包括:纤维光缆、设计成控制激光束的光点大小的伽利略(Galileo)型显微镜(未示出);将装置连到裂隙灯显微镜40的机械系统(未示出),和将激光束同轴地置于裂隙灯显微镜40的光路中的分光镜50。根据要检查和治疗的眼睛100特征的尺寸,可使用裂隙灯适配器30调节激光的光点尺寸。
此外,如图1所示,另一个公知为激光接触透镜60的光学组件被眼科专家放置在光传递路径中,并用于增加患者眼睛100的视网膜结构的可见性。
光传递路径中的所有这些组件可能会对产生的实际接触眼睛的激光束进一步造成不可控制且不可预测的输出能量损耗。这些损耗可能由例如以下的原因造成:
分光镜、光纤末端、物镜和接触透镜的光学器件上的灰尘或污物的累积;
光纤的降解或“磨损或裂缝”;
光纤的微裂隙;
光纤耦合未对齐;和
激光二极管的老化。
在当前激光系统的激光控制台10中的标准能量控制和监视功能并不会考虑这些损耗。本申请的发明人估计光传递路径可能造成的损耗大于10%,这被认为超过了i-MP临床协议规定的限制。
对本说明书中任何背景技术的参考不是确认或暗示该背景技术形成了澳大利亚或任何其它范围内的公知常识,或可以合理地预期本领域技术人员将确定、理解和认为该背景技术是相关的。
发明内容
根据本发明的第一方面,提供了校准激光系统的方法,在该激光系统中,激光单元可操作来发出沿光传递路径被引导到位于该光传递路径远端的输送点(delivery point)的激光束,该方法包括:
为光传递路径定义期望的激光功率;
初始化光传递路径的补偿因子;
根据期望的激光功率和补偿因子驱动激光单元发出激光束;
在输送点接收关于激光功率的测量信号;
比较测量信号和期望的激光功率以生成误差信号;和
根据误差信号调节补偿因子。
根据本发明的第二方面,提供了激光单元的激光校准系统,该激光单元可操作来发出沿着光传递路径被引导到位于该光传递路径远端的输送点的激光束,所述激光校准系统包括:
激光控制器,其可操作来根据期望的激光功率和与光传递路径相关的补偿因子驱动激光器单元发出激光束;
检测器,其可操作来生成关于输送点处的激光功率的测量信号;和
激光校准器,其被调节成根据期望的激光功率与所述测量信号的比较生成误差信号,并根据该误差信号调整补偿因子。
根据本发明的另一方面,提供了一种激光系统,其包括:
用于产生激光束的激光器;
由至少一个为给定程序选择的组件提供的光传递路径;
设置在光传递路径的一端处的检测器,用于测量该光传递路径该端处的激光束功率;
用于依照所述检测器所获得的测量结果修正激光束功率的激光功率修正装置。
根据本发明的又一方面,提供了一种包括记录在机器可读记录介质上的机器可读程序代码的计算机程序产品,其用于控制数据处理设备的运行,在该数据处理设备上执行程序代码以执行校准激光系统的方法,在该激光系统中操作激光单元以发出沿光传递路径被引导到该光传递路径远端的输送点的激光束,所述方法包括:
定义光传递路径的期望激光功率;
初始化光传递路径的校准因子;
根据期望激光功率和校准因子驱动激光单元以发出激光束;
接收关于输送点处的激光功率的测量信号;
比较测量信号和期望激光功率以产生误差信号;和
根据误差信号调节校准因子。
根据本发明的又一方面,提供了一种用于控制数据处理设备的操作的包括机器可读代码的计算机程序,在该数据处理设备上执行程序代码以执行校准激光系统的方法,在该激光系统中激光单元可操作来发出沿光传递路径被引导到该光传递路径远端的输送点的激光束,所述方法包括:
定义光传递路径的期望激光功率;
初始化光传递路径的校准因子;
根据期望的激光功率和校准因子驱动激光单元发出的激光束;
接收关于输送点处的激光功率的测量信号;
比较测量信号和期望的激光功率以产生误差信号;和
根据误差信号调节校准因子。
附图说明
现将参考附图描述本发明的实施例,在附图中:
图1显示了包括激光单元和光传递路径的现有技术的激光系统;
图2显示了具有置于光传递路径中的检测器并提供反馈信号以校准激光单元的激光系统;
图3是非常详细地显示图1和图2中的激光单元的示意性框图;
图4是本文中所述系统使用的激光控制器的功能性框图;
图5显示了图4所示激光控制器的子系统的功能性框图;
图6显示了由于激光二极管的非线性而产生的误差的曲线图;
图7显示了具有自动反馈路径的激光控制器的功能性框图;
图8示出了用于调节激光控制器的校准因子的激光校准器;
图9示出了在自动校准例行程序期间激光控制台的显示;
图10A是在图2所示系统中使用的检测器的示意图;
图10B是检测器的立体图;
图10C是图10B的检测器的内部组件视图;
图11是校准激光控制器的方法的流程图。
具体实施方式
图1中所示的现有技术激光系统是激光凝固器激光系统(photo-coagulator laser system)的举例。标准的激光凝固器激光系统包括激光凝固器激光单元10,其后跟随有光传递路径。只要存在激光单元10,激光束就会传播通过光传递路径,而光传递路径会准备激光束并将该激光束输送至光传递路径远端的输送点。在治疗期间,输送点被应用到患者眼睛100。光输送系统通常包括纤维光缆20、裂隙灯适配器30、裂隙灯显微镜40、分光镜50和输送端(接触透镜60)。接触透镜60通常(在治疗期间)接触需要治疗的眼睛区域,并允许激光束穿过而到达眼睛。也可使用其它类型的光传递路径,包括目镜内部探测器(endo-ocular probe)、激光间接检眼镜和外科显微镜适配器。
图2显示了结合本文所述的自动校准系统的激光系统的总体视图。
用于测量激光束的功率的检测器70被置于整个光传递路径的输送点处。这有助于正确测量对实际传递到患者眼睛处的光束功率。然后将输送端处检测器对光束功率作出的测量结果与输送所期望的或规定的功率水平相比较。如以下更详细的描述的那样,该信息被用于调节控制激光控制台10生成的激光束的功率时所用的校准因子。因此,功率生成补偿了光传递路径的效果。
这就使所生成光束的功率能被控制以向患者提供期望的激光功率水平,即使不同程序的光传递路径可能会发生显著的变化。所描述的自动校准也考虑传递路径以及激光控制台自身内的组件变化和衰退造成的功率偏差。
激光系统校准方法是根据操作者的判断来执行的,但优选地在用于每个患者之前进行校准。在一种结构中,激光系统会锁定以防止执行了十次以上的程序还不进行自动校准。一旦激光系统得到校准,检测器70从输送点移开以允许治疗患者的眼睛100。
通常,传递系统的传输因子的偏差会导致激光束功率的损耗,然而,如果激光系统被校准而考虑损耗,并且,例如激光系统组件被清洁或者在后期阶段被替换,那么在输送端处传递的激光的功率可能会变得比校准过的大,从而可能对患者产生伤害。
如图2所示,根据本发明的系统包括检测器70,其如上所述设置在接触透镜60的后面以测量输送路径端的激光束功率。检测器70对激光束功率的测量转换成电子信号,然后经由通信链路71将该电子信号供应给激光控制台10的输入端11。该电子信号被转换成数字信号(除非信号已经是数字信号),该数字信号又被提供给激光控制台10中的处理器。然后该处理器计算检测器70测量出的功率与输送端的期望功率的偏差,并执行适当步骤以补偿期望的和测量出的功率之间的差异。由于这种补偿,在治疗期间输送到患者的最终功率会等于或接近治疗的期望功率。
对激光控制台的描述
图3更详细地显示了激光控制台10。主激光电源310供应规定的电流以产生激光。主激光功率控制器302是控制供应给主激光器的电流使得输出功率等于期望的功率的模块。激光二极管303被用于产生所述程序所用的激光束。激光的波长为810nm,其是红外线不能被人眼看到。二极管303产生的激光传播通过主激光瞄准仪透镜组304,其调整激光束的形状,使得光束能够聚焦到纤维光缆上。
在透镜组304之后,光束传播通过分光镜305,分光镜305是将激光束分裂开的部分反射镜,从而将激光束的一部分提供给形成安全系统的部分的光传感器(photo sensor)312。
未被分光镜305转向的部分光束到达瞄准光束组合器306,其是将来自二极管303的主要激光束和从激光二极管313接收的瞄准激光束组合起来的专用镜。瞄准激光束具有可见光束(红色的),其被医师用来瞄准激光。在一种结构中,瞄准激光束的波长为630nm,最大功率为1mW。而主要光束的最大功率为2.4W。
在瞄准光束组合器306之后,组合后的光束传播通过光纤耦合器透镜组307,其将激光束聚焦到光传递路径的纤维光缆上。
激光谐振腔(laser cavity)311是装有主要激光二极管303和用于调节激光的形状、焦点和方向的光学组件304、305、306和307的金属盒。瞄准激光二极管313也可以包括在该激光谐振腔中。所述光传递路径310与该激光谐振腔的输出管口连接。该谐振器311被密封住以保护光学系统不受到灰尘和潮湿的影响。在激光谐振腔311的输出管口处,具有光学耦合光纤锁定传感器308,其向控制器指示是否存在连接到激光控制台10上的纤维光缆。机械的激光遮光器309通过铰链连接到激光控制台10上,以便在没有传递装置连接到激光控制台10上时覆盖住输出管口。
激光控制台10可连接到光传递路径310上,光传递路径310包括用于将激光束传递到患者眼睛处的纤维光缆。光传递路径的实例包括目镜内部探测器、裂隙灯适配器、激光间接检眼镜和外科显微镜适配器。
分光镜305分裂的光束部分被提供给主要激光安全光学传感器312,其是读取功率水平和提供用于保证安全激光操作的电子信号的光电二极管。
处理器314控制所有激光设备的功用,并与激光控制台10的大多数组件电子相通。在一种结构中,处理器314包括来自8032族的微型处理器、闪存、e2prom和watchdog单元。连接到处理器314上的蜂鸣器314用于产生警报、嘟嘟声和其它听得见的信号。
键盘316被用作医师或操作者用来控制治疗的操作模式和参数的界面,并且文字数字显示器317被用作向使用激光控制台10的医师显示治疗数据和参数的界面。
激光功率旋钮318优选是使医师能设置主要激光功率的旋钮。该功率旋钮包括编码器,来自该编码器的输出信号被处理器314读取和解释,并显示给医师。
脉冲持续时间选择拨盘电钮319是允许医师设置激光发射持续时间的旋钮。电钮319包括编码器,来自该编码器的输出信号被处理器314读取和解释,并例如在显示器317上显示给医师。
脉冲间隔选择拨盘电钮320是允许医师设置重复间隔的旋钮。二极管电钮320包括编码器,来自该编码器的输出信号被处理器板314读取和解释。
脚踏开关321被用于发射激光束。该脚踏板321被光学偶合到激光控制台10上以提供电气上的安全性。
互锁单元322是用于提供附加激光安全性的任选装置。互锁输入322允许开关连接到激光控制台10,以便在外门被无意中打开时使激光器无效。如果用户选择不使用远端互锁,那么必须将旁通(by-pass)连接器插入到互锁单元322中以便使激光器能操作。
“自动键控器”连接器323含有用于向激光控制台10提供信息以指示什么样的光传递路径310连接到激光控制台10上的电子电路。每个光传递路径310具有不同的传输特性,其会影响到达患者眼睛100的激光功率。经由自动键控器连接器323提供给激光控制台10的信息使控制台10能够识别出使用的传递装置,使得处理器314能够计算出传输因子(FAT)以补偿沿着光传递路径310的激光功率的衰减。
电子电源324将所需功率提供给功率控制器302和处理器板314的电路。EMI/EMC线路滤波器325是将电子噪声从主要线路中滤除以便保护激光不会由于可能的功率振荡而产生故障和损害的模块。主要电缆326将激光控制台10连接到电子引出线。开关327是使用户能打开或关闭激光控制台10的打开/关闭开关。
图4显示了用在激光控制台10中的功率控制系统400的功能性框图。图4显示了没有图7中所示的自动校准功能的功能性框图。
微控制器314控制安全电路414,安全电路414在检测到故障时向激励器(actuator)406发送信号以便关闭激光二极管303,这样就能在功率水平不在规定限制中时避免激光被发射。微控制器314是在其中存储和执行操作软件的单元。当接收到用于激励激光的命令时,参考功能块402生成与光传递路径310一端的输送点处的期望功率水平有关的参考信号。参考功能块402可以是微处理器314的模块。
参考功能块402提供的参考信号被D/A转换器403转换成模拟电压。之后,该模拟信号被提供给相减功能块404。相减功能块404具有另一个输入信号,该另一个输入信号与激光二极管303在激光谐振腔中发出的功率的量相对应。相减功能块404比较它的两个输入以生成提供给PID控制器405的误差信号。这样PID控制器405的输入信号就是期望功率与激光谐振腔311中产生的实际功率之间的差异。考虑到系统的动态因素,PID控制器405放大该误差信号,并将放大后的信号发送给直接控制激光二极管303的电流的激励器406。
如上所述,激光二极管303的输出可由光传递路径(例如,光纤20和裂隙灯适配器30)来传输。
双重光电二极管312监视激光二极管303的输出以提供关于功率控制和安全功能的反馈信号。其中一个光电二极管312向相减功能块404发送与激光谐振腔311中的功率水平相对应的电压信号。另一个光电二极管312向A/D转换器413发送电压信号,其中A/D转换器413向微控制器314提供指示实际功率水平的数字信号。经由A/D转换器413通过的信号不会用在功率反馈回路中但会用在安全电路414中。如果激光谐振腔311中的功率超过设定功率的部分高于20%,则激光二极管303立即关闭并且在文字数字显示器317上显示出错消息。
当激光束传输通过光传递路径时,该光束被衰减并且在传输中丢失了一些激光能量。有必要估计每个光传递路径的衰减和光点尺寸并有必要在对激光控制台10的功率控制中使用该信息。例如,如果选定光点尺寸为200微米的裂隙灯适配器30的估计衰减为20%,则在激光谐振腔311中产生的能量必须增加20%,使得击中患者眼睛100的功率匹配医师设置的功率。
衰减的量在制造厂于生产光传递路径期间得以注意。基于该衰减,计算修正因子,即传输因子(FAT),也称为补偿因子。对于激光控制台10使用的每种类型的传递路径和光点尺寸的传输因子记录在激光控制台10的存储器中。
以下段落描述了激光控制台10如何使用传输因子来调节使用裂隙灯适配器30时的功率。相同的系统被用于其它传递装置,尽管目镜内部探测器和激光间接检目镜仅具有一个固定的光点尺寸。
用于i-MP程序的裂隙灯适配器30具有放大变换器,其产生五个不同的激光光点尺寸。在一种结构中,光点尺寸是:0.8mm、1.0mm、1.5mm、2.5mm和4.3mm。这些值代表了在裂隙灯适配器30的聚焦点处的激光束的直径。
对于每个选定的光点尺寸,激光束经过不同的透镜组。因此,激光束的衰减对于每个光点尺寸都不同。为了补偿该衰减,激光控制台10必须知道选定的光点尺寸,使得在计算中使用正确的传输因子(FAT)。图5示出了用于调节关于不同光点尺寸的功率的参考功能块402的操作。参考功能块402可以被实现为微控制器314的子系统。
功能块402从自动控键323接收输入,该自动控键323使裂隙灯适配器光束宽度检测器508能够识别所用的光路类型和选定的光点尺寸。检测器508因此是光路识别器。功能块402使用该信息来从存储在存储器中的一组传输因子506中选择适当的FAT(例如,对于4.7mm的光点宽度的FAT504)。功能块402的另一个输入使医师能够例如通过功率旋钮318来规定期望的光功率。功能块402将期望的光功率502乘上选定的FAT 504,以生成期望的光功率输出,其被提供给D/A转换器403。
这种控制系统带来的结果是,对于任何功率水平,传递给患者眼睛100的功率在理论上等于医师设置的功率。如果PID控制器405的参数选择得很好,则激光二极管303生成的功率不会产生振荡。然而,还存在着一些可能影响传递到患者眼睛的功率而不能由图5中所示的系统检测出的因素。图7所示的自动校准装置被设计成解决图5所示结构的某些限制,从而增加功率控制的准确度。
对功率控制系统的一种限制是激光二极管303的非线性。图6示出了响应给定参考电压的激光二极管303的功率输出。曲线图600示出了功率604与电压602之间的相对关系。光二极管303的理想响应608在最小点612与最大点610之间是线性的。在实际中,实际的响应码606是图6所示那样非线性的。
功率传输中的其它误差可能由光纤耦合造成。光纤耦合包括高精度连接器,在该连接器中,医师或操作者将传输装置通过光缆插入到接收端口中并顺时针扭动光纤直到末端连接器到达程序的末端。然而,位置的较小移动可能由简单地移除纤维光缆和将其插回到端口中造成。这可能造成最大为5%的传输功率误差。由于功率控制器400在激光谐振腔311内运行,该功率误差不能被系统检测到,因此不能被修正。
此外,裂隙灯适配器30透镜上的任意种灰尘或污物都可能造成系统传递的功率的衰减。而且,因为这在激光谐振腔311的外部发生,误差不能被图4所示系统所修正。
激光二极管303的老化是造成功率控制系统中的误差的主要因素。在制造厂校正期间,激光二极管303会呈现出例如图6中所示的特征曲线。然后在最小点612和最大点610之间校准该系统,使得在激光二极管303的动态范围内误差是可能的最小值。随着二极管303的老化,曲线的形状发生改变,因此最小点和最大点可能会变化。如果激光二极管303仅仅在生产期间被校准,该误差趋向于随着激光器使用时间的增长而增大。
对系统中的误差有贡献的其它因素包括纤维光缆中出现微小的裂缝或光纤耦合的不对齐。
自动校准系统
使用自动校准设备的功率控制系统增加了另一个补偿因子(ACFAT),其是由自动校准系统产生的。医师选定的期望功率被乘以FAT和ACFAT,以产生提供给D/A转换器403的参考电压。
图7所示的功能框图与图4所示的功能框图相似,只是增加了检测器70,其读取光传递路径输送点处的激光功率和向微控制器314返回指示激光功率的电信号。检测器70包括精确的光衰减器75、用于测量入射功率的光电二极管72、和用于提供可经由通信链路71反馈回给微控制器314的数字信号的A/D转换器74。衰减器75使入射激光功率(对于某些程序,其例如可能是1W)衰减到光电二极管的操作范围内,使得光电二极管72不会饱和或受到伤害。
对于激光控制台10的功率可以设置成的每个功率范围,存在着特定ACFAT,其在每次执行自动校准例程时都要计算。当自动校准完成时,激光控制系统返回其如图4所示的正常操作模式。
图8显示了使用激光校准器802的自动校准。激光校准器802取代了图7所示功能性框图的功能块402。
如上所述,校准器802从自动控键323接收输入,该自动控键323使光束宽度检测器508能够检测选择了哪条光传递路径和哪个光点尺寸。根据选择的光点尺寸,激光校准器802检索与所选的光点尺寸相应的FAT806a-c。校准器也从集合808a-c中选择与所选的光点尺寸相应的ACFAT。此外,激光校准器802选择与所选的光点尺寸相应的参考输入804a-c。例如,对于4.3的光点宽度,能在校准程序中使用的参考输入为1000mW。
ACFAT 808a被初始化成值为1.0。然后(通过操作脚踏开关321)发射激光并且检测器70读取在输送点处的接收功率并向微控制器314发送信息。减法器功能块810比较接收到的测量和所选的参考值804a并产生误差信号。该误差信号被提供给PI控制器812并且PI控制器812的输出被加到ACFAT 808a上。要注意的是,如果测量出的功率与参考功率相同,那么误差信号为0且不用调节ACFAT 808a。如果在裂隙灯适配器30输出端处的功率小于参考功率,则与误差和外部控制环的动态响应成正比地向ACFAT添加正值。相反,如果测量出的功率大于参考值,则向ACFAT 808a添加负值。在许多次反复之后,ACFAT 808a趋向于固定值,从而使参考信号和测量出的功率接近于相等。
根据i-MP协议,功率水平与激光光点尺寸成正比并且需要确保传递的功率产生的偏差小于5%。
根据i-MP协议,裂隙灯适配器30的传输端末端处的功率取决于3个主要因素,即损伤的最大线尺寸、患者的体重和患者的皮肤色素沉积水平。为了使由于激光二极管303的非线性造成的误差最小化,使用了三个参考点并且自动校准装置读取在以下3点中的每一点处的实际传输功率:
损伤尺寸小于1.5mm,用户激光光点尺寸为1.5mm;
损伤尺寸在1.5mm和3.0mm之间,用户激光光点尺寸为2.5mm;和
损伤尺寸大于3.0mm,用户激光光点尺寸为4.3mm。
图11示出了用于自动校准的方法。在步骤202中,确定将被校准的光传递路径的类型。这种确定可根据光束宽度检测器508的输出来进行。在步骤204中,获得与当前光传递路径相对应的期望激光功率。
在步骤206中,当前光传递路径的补偿因子ACFAT被初始化成1.0。然后,在步骤208中,激光控制器400驱动激光器根据期望激光功率进行发射。在步骤210中,检测器70测量在光传递路径端点处的功率输出,并将测量出的功率提供给微控制器314。然后,在步骤212中,相减功能块810比较测量出的功率和期望功率以产生误差信号。在步骤214中PI控制器812调节ACFAT以便减小误差信号。
步骤216检查误差信号是否低于阈值。如果误差信号仍过高(步骤216的否选项),那么控制流程返回到步骤210以继续自动校准。如果误差信号足够小(步骤216的是选项),那么就已经为当前的光传递路径确定了ACFAT并且在步骤218中激光校准器802检查是否还有光传递路径要校准(即,其它光点尺寸是否已经被校准)。如果不再有光点尺寸那么校准结束(步骤220)。否则,处理流程返回到步骤202以为其它传递路径执行自动校准。
如可在图10A中看到的那样,检测器70包含精确度高的光电二极管72,其将光电二极管72接收的激光的功率测量转换成电子信号,然后该电子信号被放大器73放大并且然后被ADC 74转换成数字信号。然后该信号经由通过输入端口11连接到控制台10的电缆71传输到激光控制台10。当然,可以理解,可替换地在激光控制台10自身内或任意其它便利的位置内执行ADC转换。传感器70具有光滤波器75,其堵塞可见波长的光,以便仅允许接近红外的波长的光到达光电二极管72。过滤器75将激光功率衰减成防止光电二极管72饱和。
图10B显示了设计成通过机械耦合系统76、77连接到裂隙灯适配器的特定检测器70。检测器70和裂隙灯适配器30体部上具有标记,以便引导检测器70的适当定位。
在开始自动校准以前,医师或操作者将检测器70连接到裂隙灯适配器的体部上。安装支柱(mounting post)76和引导支柱77帮助操作者将检测器70连接到裂隙灯适配器体部上。如图10C所示,检测器70的组件也包括激光束衰减过滤器75、光电二极管电子电路板73、精确的光电二极管72、电路板固定装配79、和电源和信号电缆保护套80。
在一种结构中,自动校准的调整间隔大约为制造厂设置的3%。这就避免了设备在校准的和标定的操作条件之外使用。在一种结构中,系统允许在两次校准之间执行10次治疗。如果治疗的次数超过10次,则激光控制台将进行自锁并且向医师显示需要校准的消息,以防止在成功执行新的自动校准之前医师执行新治疗。推荐在每当激光控制台10在3-5天的时期内不使用时或者当传递装置已经被断开时都执行自动校准。
操作者按下模式按钮直到显示器317显示消息“自动校准模式”。操作者按下选择/确认按钮以进入这种模式,之后操作者被提示来确认他或她是否希望进入自动校准程序。确认之后,消息将提示用户带上安全护目镜并且确认护目镜已经被带上。然后用户将检测器70置于裂隙灯适配器30上。瞄准激光器可被自动打开以帮助用户放置检测器70。下一个显示的消息将询问用户检测器70和裂隙灯适配器30处的标记是否对齐。操作者必须按下选择/确认按钮来确认。此时,程序要求用户选择光点尺寸,例如1.5mm,并且系统将显示用于确认设置光点尺寸的拇指轮何时处于正确位置的消息。然后系统提醒用户通过按下脚踏开关321来发射激光。只要脚踏开关被按下,显示器显示校准参数以允许用户监视校准。图9显示了一个实例。其中,显示器317显示所选的光点尺寸为1.5mm,指定的输出功率为348mW。实际的输出功率也会显示,同时还显示规定功率和实际功率之间的误差百分比。在该实例中,误差百分比是0.2%。定义的最大接受误差的阈值是1%。校准计数器对校准所花的时间进行倒计时。
如果在校准期间误差超过0.5%或者脚踏开关321被松开,则校准计数器重新开始计数。允许校准每个光点尺寸花费的最大时间为120秒。如果激光校准器802在该时限内不能校准输出功率,则在它们的显示器317上显示出错消息并且放弃自动校准程序。
在脚踏开关321被保持按下的同时,激光器被激活并且蜂鸣器315持续发出蜂鸣音。当校准计数器到达0时,激光器被关闭并且显示器提示用户将光点尺寸改变成2.5mm。然后系统重复关于2.5mm和4.3mm光点尺寸的程序。一旦4.3mm的校准步骤完成,显示器317显示确认成功完成自动校准的消息。
为了执行所述程序,用户将传感器70经由输入端口11和电缆连接器71连接到激光控制台10。操作者然后从菜单启动自动校准程序。
显示菜单然后将提示用户遵循所述自动程序,其中他或她将:
在裂隙灯适配器30上选择1.5mm的光点尺寸的激光,并发射激光;
切换到2.5mm的光点尺寸并再次发射;
切换到4.3mm的光点尺寸并再一次发射。
每当激光被发射时,自动校准装置测量光电二极管检测到的输出功率并将其返回给激光控制台10。然后操作软件比较传输装置端部处的功率和激光谐振腔传递的功率并通过正比积分(PI)控制器将差异反馈回到操作软件中。结果产生的数字功率差异信号用于为裂隙灯适配器计算新的补偿因子,其将补偿从激光谐振腔到患者眼睛的光路中的所有损耗。可以理解,也可使用正积分导数(PID)控制器。
作为一个实例,如果对于特定的光点尺寸,裂隙灯适配器的确定传输因子(FAT)被计算为75%,则2.5W的激光控制台在患者眼睛处的最大输出功率将为1875mW,因此,这将是当使用裂隙灯作为那个特定光点尺寸的传送装置时用户能够把激光调节成的最大功率。在总值的最大值处,传输因子为来自自动校准装置的确定补偿因子(ACFAT),其可增加最多20%的功率补偿。如果在以上实例中,自动校准程序被执行并且确定的补偿因子被计算为10%,则最大可调整功率将为1687mW。
本领域技术人员将理解,该实施例提供了这样一种激光系统,其能提高传送到患者眼睛的激光的期望功率的精确度。本发明并不被限制于只用于这种特定应用情况。本发明也可应用于诸如光凝结器系统和光力学治疗激光的其它视网膜激光系统。本发明也不限于其关于本文描述和解释的特定元件和/或特征的优选实施例。应该理解,在不脱离本发明的原理的情况下可作出各种修改。例如,检测器作出的测量结果可转换成适于无线传输到激光控制台10的数字信号。此外,包含操作软件的CPU可配置成与激光控制台相分离,并且从远程控制适当的控制函数。此外,当传送到患者眼睛的激光束功率可由传递路径内的适当组件控制时,可通过修改激光控制台自身的操作来等价地控制功率。因此,本发明应被理解为包括所有在其范围内的这种修改。
应理解,在该说明书中公开和定义的发明可延伸到本文或附图所提到的或易于推出的两个或多个单个特征的所有其它组合。所有这些不同组合构成了本发明的各种其它方面。

Claims (25)

1.一种校准激光系统的方法,在该激光系统中激光单元可操作来发射激光束,该激光束沿光传递路径被引导到该光传递路径的远端处的输送点,该方法包括:
定义期望的激光功率;
初始化所述光传递路径的补偿因子;
根据所述期望的激光功率和所述补偿因子驱动所述激光单元发射激光束;
接收关于所述输送点处的激光功率的测量信号;
比较所述测量信号和所述期望的激光功率,以产生误差信号;和
根据所述误差信号调整所述补偿因子。
2.如权利要求1所述的方法,还包括:
识别所述光传递路径。
3.如权利要求1或2所述的方法,其中所述激光束在所述输送点处具有可选的光点尺寸,所述方法还包括识别所选的光点尺寸的步骤,且其中,所述定义步骤检索与所述所选的光点尺寸相关的期望的激光功率。
4.如前述权利要求中任一项所述的方法,其中,所述初始化步骤包括检索与所述光传递路径相关的预定衰减因子。
5.如权利要求4所述的方法,其中,光传递路径的所述预定衰减因子被乘以自动校准因子,且其中所述调节步骤根据所述误差信号调节所述自动校准因子。
6.如前述权利要求中任一项所述的方法,其中,所述方法被重复应用来为多个光传递路径校准所述激光系统。
7.如权利要求3所述的方法,其中,所述方法被重复应用来为多个激光光点尺寸校准所述激光系统。
8.一种激光单元的激光校准系统,该激光单元可操作来发射沿光传递路径被引导到该光传递路径远端处的输送点的激光束,该激光校准系统包括:
激光控制器,其可操作来根据期望的激光功率和与所述光传递路径有关的补偿因子驱动所述激光单元发射激光束;
检测器,其可操作来产生关于所述输送点处的激光功率的测量信号;和
激光校准器,其被调整成根据所述期望的激光功率与所述测量信号的比较生成误差信号,并根据该误差信号调整所述补偿因子。
9.如权利要求8所述的激光校准系统,其还包括:
用于识别所述光传递路径的路径识别器。
10.如权利要求9所述的激光校准系统,其中所述路径识别器识别光传递路径,该光传递路径选自:a)裂隙灯适配器、b)目镜内探测器、c)激光间接检眼镜和d)外科手术显微镜适配器。
11.如权利要求9或10所述的激光校准系统,其中所述路径识别器还识别为所述光传递路径选择的光点尺寸。
12.如权利要求8至11中任一项所述的激光校准系统,其还包括数据存储器,该数据存储器存储与一个或多个光传递路径相对应的一组预定衰减因子。
13.如权利要求12所述的激光校准系统,其中,所述激光校准器可操作来调整自动校准因子,该自动校准因子与所述光传递路径的预定衰减因子相乘。
14.如权利要求8至13中任一项所述的激光校准系统,其中,所述检测器包括光电二极管,该光电二极管产生与入射到该光电二极管上的激光功率有关的信号。
15.如权利要求14所述的激光校准系统,其中,所述检测器还包括光衰减器,以衰减入射到所述光电二极管上的激光功率。
16.如权利要求8至15中任一项所述的激光校准系统,其中,所述检测器包括定位装置,以将所述检测器定位在所述光传递路径的组件上,从而使得在所述输送点处发出的激光束入射到所述光电二极管上。
17.如权利要求16所述的激光校准系统,其中,所述定位装置包括从所述检测器体部延伸出的一个或多个引导支柱。
18.如权利要求16或17所述的激光校准系统,其中,所述光传递路径的组件是裂隙灯适配器。
19.如权利要求8至18中任一项所述的激光校准系统,其还包括用于显示关于所述激光系统的校准的信息的显示器。
20.如权利要求8至19中任一项所述的激光校准系统,其中,所述激光校准器包括处理所述误差信号的正比积分(PI)控制器。
21.一种激光系统,其包括:
用于产生激光束的激光器;
由至少一个为给定程序选择的组件提供的光传递路径;
放置在所述光传递路径的端部处用于测量所述传递路径的端部处的激光束功率的检测器;和
激光功率修改装置,用于依照所述检测器获得的测量修改所述激光束的功率。
22.一种计算机程序产品,其包括记录在机器可读介质上的机器可读程序代码,该计算机程序产品用于控制数据处理设备的操作,在该数据处理设备上执行所述程序代码以执行校准激光系统的方法,在该激光系统中激光单元可操作来发射沿光传递路径被引导到该光传递路径远端处的输送点的激光束,所述方法包括:
为所述光传递路径定义期望的激光功率;
为所述光传递路径初始化校准因子;
根据所述期望的激光功率和所述校准因子驱动所述激光单元发射激光束;
接收关于所述输送点处激光功率的测量信号;
比较所述测量信号和所述期望的激光功率,以产生误差信号;和
根据所述误差信号调整所述校准因子。
23.一种计算机程序,其包括用于控制数据处理设备的操作的机器可读程序代码,在该数据处理设备上执行所述程序代码以执行校准激光系统的方法,在该激光系统中激光单元可操作来发射沿光传递路径被引导到该光传递路径远端处的输送点的激光束,所述方法包括:
为所述光传递路径定义期望的激光功率;
为所述光传递路径初始化校准因子;
根据所述期望的激光功率和所述校准因子驱动所述激光单元发射激光束;
接收关于所述输送点处激光功率的测量信号;
比较所述测量信号和所述期望的激光功率,以产生误差信号;和
根据所述误差信号调整所述校准因子。
24.一种校准实质上如本申请参考图2、7、8、10A-10C和11所描述的激光系统的方法。
25.一种实质上如本申请参考图2、7、8、10A-10C和11所描述的激光校准系统。
CNA2006800270733A 2005-05-27 2006-05-29 用于激光校准的系统和方法 Pending CN101228419A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2005902720 2005-05-27
AU2005902720A AU2005902720A0 (en) 2005-05-27 A laser calibration method and system

Publications (1)

Publication Number Publication Date
CN101228419A true CN101228419A (zh) 2008-07-23

Family

ID=37451586

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800270733A Pending CN101228419A (zh) 2005-05-27 2006-05-29 用于激光校准的系统和方法

Country Status (9)

Country Link
US (1) US20100019125A1 (zh)
EP (1) EP1883793A1 (zh)
JP (1) JP2008543030A (zh)
KR (1) KR20080017393A (zh)
CN (1) CN101228419A (zh)
CA (1) CA2608771A1 (zh)
MX (1) MX2007014700A (zh)
RU (1) RU2007149291A (zh)
WO (1) WO2006125280A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811766A (zh) * 2010-03-04 2012-12-05 莱纳医疗设备公司 光疗设备及系统
CN103017664A (zh) * 2012-11-28 2013-04-03 中国计量科学研究院 激光光束分析仪校准方法及系统
CN109141630A (zh) * 2014-05-28 2019-01-04 意法半导体股份有限公司 用于uv指数检测的半导体集成器件及校准系统和方法
CN109567930A (zh) * 2018-12-07 2019-04-05 中聚科技股份有限公司 一种基于出射激光检测校正治疗方案的激光治疗系统
CN112415763A (zh) * 2020-11-24 2021-02-26 中国科学院上海光学精密机械研究所 高功率激光系统中的级联自准直装置
CN112452953A (zh) * 2020-11-19 2021-03-09 哈尔滨工大焊接科技有限公司 智能激光清洗工作头
CN113959492A (zh) * 2021-10-22 2022-01-21 济南森峰激光科技股份有限公司 一种自适应阈值的光路保护监控系统
CN114734137A (zh) * 2022-02-17 2022-07-12 苏州创鑫激光科技有限公司 激光设备的校准方法及系统

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8380126B1 (en) 2005-10-13 2013-02-19 Abbott Medical Optics Inc. Reliable communications for wireless devices
US8565839B2 (en) 2005-10-13 2013-10-22 Abbott Medical Optics Inc. Power management for wireless devices
US8414534B2 (en) 2006-11-09 2013-04-09 Abbott Medical Optics Inc. Holding tank devices, systems, and methods for surgical fluidics cassette
US9522221B2 (en) 2006-11-09 2016-12-20 Abbott Medical Optics Inc. Fluidics cassette for ocular surgical system
US9295765B2 (en) 2006-11-09 2016-03-29 Abbott Medical Optics Inc. Surgical fluidics cassette supporting multiple pumps
US8491528B2 (en) 2006-11-09 2013-07-23 Abbott Medical Optics Inc. Critical alignment of fluidics cassettes
US10959881B2 (en) 2006-11-09 2021-03-30 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US10596032B2 (en) 2007-05-24 2020-03-24 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system with a footpedal
US10363166B2 (en) 2007-05-24 2019-07-30 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system using sensed data
US10485699B2 (en) 2007-05-24 2019-11-26 Johnson & Johnson Surgical Vision, Inc. Systems and methods for transverse phacoemulsification
US10342701B2 (en) 2007-08-13 2019-07-09 Johnson & Johnson Surgical Vision, Inc. Systems and methods for phacoemulsification with vacuum based pumps
US8635042B2 (en) 2008-11-07 2014-01-21 Abbott Medical Optics Inc. Semi-automatic device calibration
US9795507B2 (en) 2008-11-07 2017-10-24 Abbott Medical Optics Inc. Multifunction foot pedal
CA2742981C (en) 2008-11-07 2017-09-12 Abbott Medical Optics Inc. Surgical cassette apparatus
CA2936454C (en) 2008-11-07 2018-10-23 Abbott Medical Optics Inc. Adjustable foot pedal control for ophthalmic surgery
CA2742978C (en) 2008-11-07 2017-08-15 Abbott Medical Optics Inc. Controlling of multiple pumps
US10219940B2 (en) 2008-11-07 2019-03-05 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
EP2376035B1 (en) 2008-11-07 2016-12-14 Abbott Medical Optics Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
EP2341840B2 (en) 2008-11-07 2019-10-09 Abbott Medical Optics Inc. Method for programming foot pedal settings and controlling performance through foot pedal variation
US9492317B2 (en) 2009-03-31 2016-11-15 Abbott Medical Optics Inc. Cassette capture mechanism
CN102353446A (zh) * 2011-07-08 2012-02-15 西安炬光科技有限公司 一种脉冲激光器功率测试方法及系统
SE536579C2 (sv) * 2011-12-19 2014-03-04 Optoskand Ab Anordning för övervakning av processprestanda hos ett lasersystem med en optisk högeffekt-fiberkabel
CA2875074A1 (en) 2012-03-17 2013-09-26 Abbott Medical Optics Inc. Surgical cassette
CN103162823B (zh) * 2013-03-07 2014-11-26 中国电子科技集团公司第十一研究所 一种多工位全自动激光功率测试方法及系统
US20150330054A1 (en) * 2014-05-16 2015-11-19 Topcon Positioning Systems, Inc. Optical Sensing a Distance from a Range Sensing Apparatus and Method
DE102014222738B4 (de) 2014-11-06 2019-07-18 Leoni Kabel Gmbh Faseroptik, insbesondere Lasersonde, sowie Lasersystem mit einer solchen Faseroptik
EP3118577B1 (en) * 2015-07-17 2019-06-26 Leica Geosystems AG Calibration device and calibration method for a laser beam horizontal trueness testing device
JP2017148230A (ja) * 2016-02-24 2017-08-31 キヤノン株式会社 被検体情報取得装置および情報処理装置
CN106204535B (zh) * 2016-06-24 2018-12-11 天津清研智束科技有限公司 一种高能束斑的标定方法
CN106932175B (zh) * 2017-04-07 2019-02-01 吉林省科英激光股份有限公司 一种激光治疗机功率/能量检测装置及方法
JP7278713B2 (ja) * 2018-04-18 2023-05-22 住友重機械工業株式会社 レーザ装置
US11389239B2 (en) 2019-04-19 2022-07-19 Elios Vision, Inc. Enhanced fiber probes for ELT
US11103382B2 (en) 2019-04-19 2021-08-31 Elt Sight, Inc. Systems and methods for preforming an intraocular procedure for treating an eye condition
US11076992B2 (en) 2019-04-19 2021-08-03 Elt Sight, Inc. Methods of transverse placement in ELT
US11672475B2 (en) 2019-04-19 2023-06-13 Elios Vision, Inc. Combination treatment using ELT
US11234866B2 (en) 2019-04-19 2022-02-01 Elios Vision, Inc. Personalization of excimer laser fibers
US11076933B2 (en) 2019-04-19 2021-08-03 Elt Sight, Inc. Authentication systems and methods for an excimer laser system
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine
US11877951B1 (en) 2022-08-30 2024-01-23 Elios Vision, Inc. Systems and methods for applying excimer laser energy with transverse placement in the eye
US11903876B1 (en) 2022-08-30 2024-02-20 Elios Vision, Inc. Systems and methods for prophylactic treatment of an eye using an excimer laser unit
US11918516B1 (en) 2022-08-30 2024-03-05 Elios Vision, Inc. Systems and methods for treating patients with closed-angle or narrow-angle glaucoma using an excimer laser unit
CN115300807B (zh) * 2022-09-27 2023-02-03 南京伟思医疗科技股份有限公司 具有能量校正及光斑调节功能的激光器控制系统、方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580557A (en) * 1983-08-22 1986-04-08 Laserscope Surgical laser system with multiple output devices
US4994059A (en) * 1986-05-09 1991-02-19 Gv Medical, Inc. Laser catheter feedback system
US5798518A (en) * 1995-07-28 1998-08-25 Laserscope Medical laser calibration system and method
WO1999024796A1 (en) * 1997-11-06 1999-05-20 Visx, Incorporated Systems and methods for calibrating laser ablations
US6559934B1 (en) * 1999-09-14 2003-05-06 Visx, Incorporated Method and apparatus for determining characteristics of a laser beam spot
US7005623B2 (en) * 2003-05-15 2006-02-28 Ceramoptec Industries, Inc. Autocalibrating medical diode laser system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811766A (zh) * 2010-03-04 2012-12-05 莱纳医疗设备公司 光疗设备及系统
CN103017664A (zh) * 2012-11-28 2013-04-03 中国计量科学研究院 激光光束分析仪校准方法及系统
CN103017664B (zh) * 2012-11-28 2015-04-29 中国计量科学研究院 激光光束分析仪校准方法及系统
CN109141630A (zh) * 2014-05-28 2019-01-04 意法半导体股份有限公司 用于uv指数检测的半导体集成器件及校准系统和方法
CN109567930A (zh) * 2018-12-07 2019-04-05 中聚科技股份有限公司 一种基于出射激光检测校正治疗方案的激光治疗系统
CN112452953A (zh) * 2020-11-19 2021-03-09 哈尔滨工大焊接科技有限公司 智能激光清洗工作头
CN112415763A (zh) * 2020-11-24 2021-02-26 中国科学院上海光学精密机械研究所 高功率激光系统中的级联自准直装置
CN112415763B (zh) * 2020-11-24 2022-08-30 中国科学院上海光学精密机械研究所 高功率激光系统中的级联自准直装置
CN113959492A (zh) * 2021-10-22 2022-01-21 济南森峰激光科技股份有限公司 一种自适应阈值的光路保护监控系统
CN113959492B (zh) * 2021-10-22 2023-01-10 苏州森峰智能装备有限公司 一种自适应阈值的光路保护监控系统
CN114734137A (zh) * 2022-02-17 2022-07-12 苏州创鑫激光科技有限公司 激光设备的校准方法及系统

Also Published As

Publication number Publication date
RU2007149291A (ru) 2009-07-10
MX2007014700A (es) 2008-04-16
US20100019125A1 (en) 2010-01-28
KR20080017393A (ko) 2008-02-26
JP2008543030A (ja) 2008-11-27
WO2006125280A1 (en) 2006-11-30
EP1883793A1 (en) 2008-02-06
CA2608771A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
CN101228419A (zh) 用于激光校准的系统和方法
EP1265059B1 (en) System and method of measuring and controlling temperature of optical fiber tip in a laser system
US6475138B1 (en) Apparatus and method as preparation for performing a myringotomy in a child's ear without the need for anaesthesia
US6312422B1 (en) Process and arrangement for monitoring and controlling the treatment parameters in an ophthalmic treatment device
US5798518A (en) Medical laser calibration system and method
JPH0531200A (ja) 光治療装置
EP0867151B1 (en) Medical laser irradiation apparatus
US7671327B2 (en) Self calibrating irradiation system
US20090306634A1 (en) Method and System for Control of Therapeutic Procedure
JP2921702B2 (ja) レーザ装置
JPS6395408A (ja) レ−ザ励起型放射用制御装置
KR101751230B1 (ko) 의료용 핸드피스 및 그 제어방법
AU2006251882A1 (en) System and method for laser calibration
CN103619289A (zh) 用于眼部外科手术治疗的系统和方法以及校准该系统的方法
JPS6034243Y2 (ja) レ−ザメスを備えた内視鏡の安全装置
US20220110793A1 (en) Beam detection with dual gain
JP2881458B2 (ja) レーザ光照射装置
CN117062587A (zh) 执行激光加工系统的系统测试的方法、控制单元和激光加工系统
JP2002345981A (ja) レーザ治療装置
JP2660524B2 (ja) 光凝固装置
US20020186366A1 (en) Apparatus and method of monitoring and controlling power output of a laser system
JPS605142A (ja) レ−ザ照射装置
AU2006279267A1 (en) Method and system for control of therapeutic procedure
JPH0574955B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080723