CN101221993A - 纳米壁太阳能电池和光电子器件 - Google Patents

纳米壁太阳能电池和光电子器件 Download PDF

Info

Publication number
CN101221993A
CN101221993A CNA2008100029729A CN200810002972A CN101221993A CN 101221993 A CN101221993 A CN 101221993A CN A2008100029729 A CNA2008100029729 A CN A2008100029729A CN 200810002972 A CN200810002972 A CN 200810002972A CN 101221993 A CN101221993 A CN 101221993A
Authority
CN
China
Prior art keywords
photovoltaic device
nanometer wall
substrate
layer
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100029729A
Other languages
English (en)
Other versions
CN101221993B (zh
Inventor
B·A·科里瓦尔
L·察卡拉科斯
J·鲍尔奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101221993A publication Critical patent/CN101221993A/zh
Application granted granted Critical
Publication of CN101221993B publication Critical patent/CN101221993B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/712Integrated with dissimilar structures on a common substrate formed from plural layers of nanosized material, e.g. stacked structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/954Of radiant energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

包含衬底(102)和设置在衬底(102)表面上的纳米壁(101)结构的光生伏打器件(100)。该器件(100)还包含共形地沉积在纳米壁(101)结构上的至少一层(103)。一层或多层共形层是光生伏打器件的至少一部分。制造光生伏打器件(100)的方法包括在衬底(102)表面上产生纳米壁(101)结构和在纳米壁(101)结构上共形地沉积至少一层(103),以形成至少一个光活性结。太阳能电池板包含至少一个基于纳米壁(101)结构的光生伏打器件(100)。太阳能电池板把这些器件(100)与其周围的大气环境隔开并能产生电力。光电子器件还可加进基于纳米壁(101)结构的光生伏打器件(100)。

Description

纳米壁太阳能电池和光电子器件
相关申请
[0001]本申请与2006年11月15日提交的题为“梯度混杂无定形硅纳米线太阳能电池”的共同转让共同未决申请USSN 11/599,722和2006年11月15日提交的题为“无定形-结晶串列式纳米结构太阳能电池”的共同未决申请USSN 11/599,677相关。
技术领域
[0002]本申请一般地涉及太阳能电池和光电子器件,更具体地,涉及包含共形地组装在纳米壁结构上的光活性结的这类器件,其中纳米壁结构可以是光活性结的一部分。
背景技术
[0003]目前,硅(Si)是制造太阳能电池中最常用的材料,这类太阳能电池正在用来把阳光转化为电。为此,使用单-或多-结p-n太阳能电池,但其无一足以明显降低生产和应用这类技术中所包含的成本。因此,与传统电源的竞争阻碍了这类太阳能电池技术的广泛应用。
[0004]大多数电子和光电子器件都需形成结。例如,把一种导电型材料放置到与相反导电型的不同材料接触而形成异质结。或者,可以把单种材料制成的不同掺杂层配对而形成p-n结(或同质结)。在异质结处因导电类型的变化和/或带隙的变化而出现的突变能带弯曲可导致高密度界面状态,使载流子重新结合。制造期间在结处引进的缺陷还可起载流子重新结合点的作用,这会降低器件性能。
[0005]虽然太阳能转换器的理想热力学效率是~85%,但因下述事实而损失效率:不吸收太阳光谱中次带隙能量的光子。这种损失本身,当应用于黑体辐射时,就把单结电池的转换效率限制到约44%(所谓的极限效率)。进一步考虑规一化到黑体温度的太阳光谱、太阳能电池的温度、太阳能电池的形状、电池的折射率和二极管方程,Shockley和Queisser能证明,对于带隙为1.45电子伏特(eV)的优化电池并在1阳光照射下,单-结电池的性能被限制到略高于30%的效率,且对于最大浓度,仅略高于40%(Shockley和Queisser,“p-n结太阳能电池效率的细致平衡极限(Detailed Balance Limit of Efficiency of p-n Junction SolarCells)”,J.Appl.Phys.,1961,32(3),pp.510-519)。更新近的计算已证明,该单结的“细致平衡极限效率”为29%(Kerr等,“结晶硅太阳能电池的极限寿命和效率(Lifetime and efficiency of limits of crystalline siliconsolar cells)”,Proc.29th IEEE Photovoltaic Specialists Conference,2002,pp.438-441)。此外,光生电子和半导体晶体内具有陷阱态的空穴的重新结合会进一步降低效率,所述空穴与点缺陷(间隙杂质)、金属团簇、线缺陷(位错)、面缺陷(堆垛层错)和/或晶粒间界相关。虽然后一类效率降低可通过使用具有适当性能(尤其光生载流子的长扩散程)的其它材料而得以克服,但仍然不能使该技术的成本达到与更传统的电源相当的水平。
[0006]因结构不完善或杂质原子所引起的缺陷态可常驻在单晶半导体的表面或本体内。此外,多晶半导体材料由具有晶粒间界的无序取向的晶粒构成,该晶粒间界包括大量本体和表面缺陷态。由于载流子可在缺陷处重新结合并因此而失去载流子,所以缺陷对电子和/或光电子器件如太阳能电池的操作或性能一般都具有不利影响。因此,在器件制造期间,单晶或多晶半导体衬底的表面常要经过钝化,以尽量减少表面缺陷的负面影响。表面钝化的一种方法是在单晶或多晶半导体衬底上形成一层本征(未掺杂)无定形半导体材料。这会减少载流子在衬底表面的重新结合并改进器件的性能。
[0007]制造PV器件的材料的吸收本领也可影响电池的效率。已描述过含有由可变带隙材料形成的i-型半导体吸收层的p-i-n薄膜太阳能电池,所述i-层位于p-型半导体层与n-型半导体层之间。见US专利5,252,142。可变带隙i-层吸收体有利于提高光电转换效率。
[0008]已经证明多-结太阳能电池也具有更高的效率。性能提高可通过加入具有不同带隙的堆垛结来捕获较宽的光谱区而实现。这类器件一般由堆垛p-n结或堆垛p-i-n结构成。该阵列中的各组结常被称做电池。典型的多-结太阳能电池包括2或3个堆垛在一起的电池。Marti和Araujo已在理论上分析了多-结太阳能电池的优化带隙和理论效率与堆垛中电池数的关系(A.Marti和G.L.Araujo,Sol.Ener.Mater.Sol.Cells,1996,43(2),pp.203-222)。
纳米结构
[0009]硅纳米线已在关于p-n结二极管阵列中描述过(Peng等,“大面积硅纳米线p-n结二极管阵列的制造(Fabrication of large-Area SiliconNanowire p-n Junction Diode Arrays)”,Adv.Mater.,2004,vol.16,pp.73-76)。但这类阵列并非为用于光生伏打器件而设计,也未提出这类阵列怎样可以提高太阳能电池的效率。
[0010]硅纳米结构已在关于太阳能电池器件中描述过(Ji等,“用作太阳能电池发射器的金属诱导生长(MIG)的硅纳米结构(SiliconNanostructures by Metal Induced Growth(MIG) for Solar Cell Emit-ters)”,Proc.IEEE,2002,pp.1314-1317)。在这类器件内,Si纳米线可通过在镍(Ni)预制层上溅射Si而形成、包埋在微晶Si薄膜内,其厚度决定Si纳米线是否生长在膜内。但是,这类纳米线不是活性光生伏打(PV)元件;它们仅起防反射的作用。
[0011 ]包含硅纳米结构且该纳米结构属活性PV元件的太阳能电池已描述在2005年3月16日提交的共同转让共同未决US专利申请系列号11/081,967中。在该具体申请中,电荷分离结主要包含在纳米结构本身内,在这类纳米结构的合成期间一般要求掺杂变化。
[0012]纳米壁合成已用很多包括金属氧化物和碳在内的材料进行了描述。在电子器件内加进这类结构已限制在纳米壁结处生长纳米棒/线(Ng等,“在纳米壁结处生长外延纳米线(Growth of Epitaxial Nanowiresat the Junctions of Nanowalls)”,Science,2003,300,p.1249)。
[0013]综上所述,为减小表面缺陷的影响而加进本征无定形层和/或在纳米结构骨架如纳米壁上用多-结电池,可使太阳能电池具有与更传统的电源相当的效率。因此,目前仍继续需要为PV器件开发新构型。对于纳米结构器件的情况尤其如此,这可获益于吸光时更高的光捕捉作用和较短的电荷输运路程。
发明内容
[0014]在有些实施方案中,光生伏打器件包含衬底和设置在该衬底表面上的纳米壁结构。这种器件还包含共形地沉积在纳米壁结构上的至少一层。所述层是光活性结的至少一部分。
[0015]在有些实施方案中,制造光生伏打器件的方法包括在衬底表面上产生纳米壁结构并在纳米壁结构上共形地沉积至少一层,以形成至少一个光活性结。
[0016]在有些实施方案中,太阳能电池板包含至少一个基于纳米壁结构的光生伏打器件。该太阳能电池板把这些器件与其周围的大气环境隔开并能产生电力。
[0017]以上已相当宽泛地概括了本发明的特点,目的是可更好地理解随后的发明详述。本发明的其它特点和优点将在下文描述,它们形成本发明权利要求中的要旨。
附图说明
[0018]为更充分地理解本发明及其优点,下面要结合附图参考以下描述,在附图中:
[0019]图1a示意按照本发明一个实施方案的光生伏打器件的部分视图。
[0020]图1b示意图1a的代表性部分截面图。
[0021]图2示意按照本发明一个实施方案的具有梯度组成的无定形层的纳米壁结器件的部分截面图。
[0022]图3示意按照本发明一个实施方案的含有2个p-n结的纳米壁结器件的部分截面图,其中纳米壁是下结的一部分。
[0023]图4示意按照本发明一个实施方案的含有3个p-n结的纳米壁结器件的部分截面图,其中纳米壁是下结的一部分。
[0024]图5示意按照本发明一个实施方案的含有2个p-n结的纳米壁结器件的部分截面图,其中纳米壁是导体。
[0025]图6示意按照本发明一个实施方案的含2个p-i-n结的纳米壁结器件的部分截面视图,其中纳米壁是导体。
[0026]图7示意按照本发明一个实施方案的纳米壁结构的截面图,在其中光活性结是壁结构的一部分。
[0027]图8示意按照本发明的一个实施方案制造纳米壁基光生伏打器件的方法的流程图。
[0028]图9示意按照本发明一个实施方案的硅纳米壁结构的俯视图。
[0029]图10示意按照本发明一个实施方案的硅纳米壁结构的侧视图。
[0030]图11示意图9的特写镜头。
[0031]图12示意按照本发明一个实施方案的在硅上的ZnO纳米壁。
具体实施方式
[0032]在有些实施方案中,本发明涉及光生伏打(PV)器件,它们可包含纳米壁结构和共形地沉积在纳米壁上的至少一层。各层都可以是光活性结的至少一部分。
[0033]在有些实施方案中,无定形单层可在其厚度方向上呈组成梯度:从与纳米结构的界面处基本本征至对边基本导电。当无定形层在组成上梯度变化到对面与纳米壁一样为导电型时,可形成异质结。
[0034]在另一些实施方案中,纳米壁结构上可共形地涂布多层。在这种布置中,组合多层可包含多个光活性结,如p-n和p-i-n结。这些光活性结可堆垛起来,用隧道结把多-结阵列中的各电池隔开。在多-结阵列中,各电池可以串列排布并可包含p-n结、P-i-n结及其组合。在有些实施方案中,纳米壁可以是第一光活性结的一部分并可适当地掺杂为p-层或n-层。在另一些实施方案中,纳米壁可以是导电的,且因此而不是光活性结的一部分。在这类实施方案中,纳米壁可起接头的作用。
[0035]在以下的叙述中,列举了具体细节,如具体量、尺寸等,以便彻底理解本发明的实施方案。但对于本领域的技术人员来说,显然本发明可以在无这类具体细节时实践。在很多情况下,已略去有关这类考虑等的细节,因为这些细节对充分理解本发明是不必要的,而且在相关领域内一般技术人员的技术范围内。
[0036]一般地参考附图,将会理解这些说明是为了描述本发明的具体实施方案而无意以此来限制本发明。
[0037]尽管本文中所用的大多数术语是本领域技术人员所公认的,但还是给出下述定义,以有助于理解本发明。但应理解,当未明确定义时,术语应解释为采用本领域技术人员目前所接受的意义。
[0038]“光生伏打器件”,如本文所定义,是包含至少一个光电二极管并利用光生伏打效应来产生电动势(e.m.f.)的器件。见PenguinDictionary of Electronics,第3版,V.Illingworth编,Penguin Books,London,1998。这类器件的一个例子是“太阳能电池”,其中太阳能电池是光电二极管,其光谱响应已被优化过用于来自阳光的辐照。
[0039]“纳米尺度”,如本文所定义,一般是指小于1μm的尺寸。
[0040]“纳米结构”,如本文所定义,一般是指在至少一个维度上是纳米尺度的结构。
[0041]“纳米壁”,如本文所定义,是至少一个维度为纳米尺寸的纳米结构。它们一般都包含生长自衬底表面或从晶片状衬底刻蚀成的闭孔状结构的无序阵列。所述壁可以与衬底平面成不同的角度生成,不论以刻蚀或自下而上的方式生长。因此所述壁可以从基本垂直于衬底平面到与衬底平面成约5~30°角度的范围内排列。例如,从ZnO或碳合成的这类结构的实例是本领域已知的。
[0042]“共形的”,如本文所定义,涉及涂层,它们很大程度上采用(即遵循)它们所涂结构的形状。但该术语应作宽泛的解释,允许基本充满被涂布结构之间的空隙空间一至少在有些实施方案中。共形单层的厚度可以沿被涂布结构的不同部位变化。
[0043]“半导体材料”,如本文所定义,是导电率一般介于金属与绝缘体之间的材料,以及其中,这类材料在其价带与导带之间有能隙或“带隙”。这类半导体材料,在其未掺杂的纯态时,一般被称为“本征的”。
[0044]“p-掺杂”,如本文所定义,是指用杂质掺杂半导体材料,所述杂质引进能有效地提高本征半导体材料的导电率且使费米能级移向价带的空穴,从而可形成结。这类p-掺杂的示例是在硅(Si)中加入少量硼(B)。
[0045]“n-掺杂”,如本文所定义,是指用杂质掺杂半导体材料,所述杂质引进能有效地提高本征半导体材料的导电率且使费米能级移向导带的电子,从而可形成结。这类n-掺杂的示例是在硅(Si)中加入少量磷(P)。
[0046]“梯度组成”,如本文所定义且涉及本文所述的PV器件的共形无定形层,是指本体半导体材料包含的掺杂剂浓度沿该层的厚度方向变化,从而在与伸长纳米结构(具有第一类掺杂,例如,p-掺杂)的界面上基本是本征的,而且掺杂剂(用第二类掺杂剂,例如,n-掺杂)浓度沿该层的厚度方向渐增,因而到达对面时,掺杂水平足以在其驻留的PV器件内形成电荷分离结。“组成梯度混杂”,如本文所定义且涉及本文所述的PV器件,是指组成上梯度变化的无定形层与底下的硅纳米结构共同存在。
[0047]“电荷分离结”,如本文所定义,包含不同类材料(例如,不同掺杂剂和/或本体组分)之间的界面,该界面因存在位垒和电场梯度而允许分离电子和空穴。
[0048]“异质结”,如本文所定义且涉及光生伏打器件,是通过两种具有不同带隙的不同半导体材料的接触而形成的电荷分离结。
[0049]“活性PV元件”,如本文所定义,是用于电荷产生和电荷分离从而形成电荷分离结的PV器件的那些元件。
[0050]“p-n光生伏打器件”,如本文所定义,是包含至少一个光电二极管的器件,所述光电二极管包含由p-掺杂半导体和n-掺杂半导体的接触而形成的电荷分离结。
[0051]“p-i-n光生伏打器件”,如本文所定义,是3种材料的堆垛,一层为p-型掺杂(空穴导电为主),一层为未掺杂(即本征的)和另一层为n-型掺杂(电子导电为主)。
[0052]“多-结”,如本文所定义,是可包含p-n和/或p-i-n结的堆垛光活性结的串列阵列。各光活性结都可以被隧道结与其相邻电池隔开。
[0053]“太阳能电池”,如本文所定义,主要是用来从太阳辐照转换能量的光生伏打器件。
[0054]“纳米模板”,如本文所定义,是包含纳米尺寸的孔或柱阵列的无机或有机薄膜。该孔一般在基本垂直于薄膜平面的方向上贯穿薄膜。
器件
[0055]参考图1a和1b的截面图,在有些实施方案中,本发明涉及纳米壁基光生伏打器件100,它可包含:
[0056](a)设置在衬底102上的纳米壁101。纳米壁101可以是半导体材料。在一个实施方案中,它们可以是p-掺杂半导体,而在另一个实施方案中,它们可以是n-掺杂半导体。或者,它们也可以是简并掺杂硅(degenerately doped silicon)和起导体作用的其它金属材料。在有些实施方案中,它们可以是透明导电氧化物;和
[0057](b)共形地设置在纳米壁101周围的至少一层103。在一个实施方案中,层103可构成光活性结的至少一部分。在有些实施方案中,光活性结可以是p-n结,而在另一些实施方案中,光活性结可以是p-i-n结。因此,在有些实施方案中,层103可包含p-层、i-层、n-层中的任何一层和隧道结。
[0058]在有些实施方案中,在多层膜103上沉积有一层透明导电材料(TCM)104。TCM 104可以基本充满很多纳米壁之间的空间。但本领域的技术人员将会认识到,TCM 104无需形成平面而且可以共形地设置在纳米结构阵列周围。此外,TCM 104可以在多个纳米壁的顶上形成标称平面。此外,上接头105和下接头(未示出)一般都能连接器件到外电路,在其中下电极一般(但非总是)与衬底集成为一体(见下文)。
[0059]任选地,纳米壁结构可以双面布置的形式形成在衬底的两面。
纳米壁结构
[0060]纳米壁101的厚度A一般为约10nm~约1000nm和高度为数微米。在有些实施方案中,纳米壁可以基本垂直于衬底102平面的取向排布在衬底102上。在有些实施方案中,纳米壁可以与衬底102平面成非垂直角度。而且,本领域的技术人员将认识到以与衬底102平面成小于90°的角度加入纳米壁对为优化光吸收的益处。在另一些实施方案中,纳米壁101以与衬底102的平面成0~85°的主要无序方式设置在衬底102上。本领域的技术人员将认识到,图1a和1b仅是举例,而实际结构可能更复杂。例如,壁可形成蜂窝状结构,而非所示的简单圆柱状。空隙空间在尺寸和形状上可变化很大。纳米壁结构可描述为互连壁结构的网络。一般而言,纳米壁的网络可以类似于连续网状闭孔结构的方式形成(精确结构将根据下文所附的实验图赋予更多的意义)。最后,为尽量减少散射,壁间的距离小于入射光的波长。
[0061]纳米壁101可以由适于按照各种实施方案提供光生伏打器件的任何材料组成。适用半导体材料可包括,但不限于,硅(Si)、硅锗(SiGe)、锗(Ge)、砷化镓(GaAs)、磷化铟(InP)、GaInP、GaInAs、砷化铟镓(InGaAs)、氮化铟(InN)、硒(Se)、碲化镉(CdTe)、Cd-O-Te、Cd-Mn-O-Te、ZnTe、Zn-O-Te、Zn-Mn-O-Te、MnTe、Mn-O-Te、铜的氧化物、碳、Cu-In-Ga-Se、Cu-In-Se以及它们的组合。适用的导电材料包括,但不限于,简并掺杂硅;金属材料,如铝(Al)、铂(Pt)、钯(Pd)和银(Ag);掺杂ZnO和它们的组合。也可以用由其可构成纳米壁的任何其它材料。在有些实施方案中,纳米壁材料可以与衬底材料基本相同。
共形层
[0062]参考图2的横截面,在有些实施方案中,层203可以在其厚度B上形成组成梯度(就掺杂剂浓度而言),在其中,掺杂剂浓度一般从靠近纳米壁201(纳米壁是第一类掺杂的半导体)和表面202几乎为0增加到在该层的对面其量足以形成电荷分离结。这种掺杂一般是包含n-掺杂剂(例如,N、P、As等)的n-掺杂,但在纳米壁201是n-掺杂的情况下,这种掺杂也可以是p-掺杂。
[0063]在有些实施方案中,可以有多层共形沉积层。以这种排布,特定无定形层可包含p-掺杂和n-掺杂半导体的组合物。还可以加进非掺杂层,并可包含本征层和起隧道结作用的层。在一个实施方案中,无定形多层可构成堆垛p-n结的电池。在另一个实施方案中,无定形多层可构成堆垛p-i-n结的电池。在还有一个实施方案中,无定形多层可构成堆垛p-n和p-i-n结的组合。在有些实施方案中,电池可以被起隧道结作用的层隔开(见下文)。
[0064]无定形层的组成可以是,例如,无定形硅(a-Si)、无定形硅-锗(a-SiGe)、纳米晶硅(nc-Si)和无定形碳化硅(a-SiC)。在一个实施方案中,这类材料可以按带隙能增加的层顺序排在纳米壁周围。
[0065]组合沉积层的厚度一般可以为5~50,000。在含无定形多层的实施方案中,各层的厚度难以确定,但可以把厚度调节到优化不同带隙能的结之间的电流匹配。即,给定层的厚度可以选择到使各电池(即各光活性结)产生的光电流基本相等。
[0066]在有些实施方案中,多层中有一层可包含隧道结。在这种情况下,材料组成可以是金属氧化物,如氧化锌,或重掺杂的无定形硅层。
器件结构
[0067]可以制造比上述具有组成梯度的器件更复杂的结构。在有些实施方案中,纳米壁可以是具有第一类掺杂的半导体,它可以是n-掺杂,但也可以是p-掺杂。但是,为了在器件内产生光活性结,纳米壁的掺杂应该与至少一层无定形层的掺杂相反。图3示意了按照本发明一个实施方案设置在衬底302上的简单的多p-n结器件300的截面图。参考图3,纳米壁301可以是,例如,n-掺杂半导体,并集成为包含第一p-掺杂层310的第一p-n结(第一电池)的第一元件。第二p-n结可包括n-掺杂层320和p-掺杂层330,被隧道结340隔开。多层303中的各层可相继且共形地沉积在纳米壁301的周围。本领域的技术人员将认识到改变两个结之间的带隙以捕获不同波长光的益处。在有些实施方案中,在p-层和n-层之间可以有本征层,从而形成p-i-n结。
[0068]参考图4的截面图,在另一个实施方案中,可以在沉积在纳米壁401周围的多层膜403(比较图3中的303)上加上外加层以产生新的多层膜408。该外加层可包含另一个隧道结440。此外,可以有一个包括p-掺杂层450和n-掺杂层460的第三p-n结。原则上,可以加任意多层以产生任意多个p-n结,其间有隧道结。这类堆垛光活性结的数目可取决于各层引进的相对于在衬底402上形成的孔状结构的空隙空间的厚度和保证电流匹配的能力。因此,各光活性结(即电池)可具有组分层,其厚度取决于材料的带隙能量以确保各电池间基本相等的光电流。在有些实施方案中,也可以加入本征层来形成p-i-n结。
[0069]进一步,图4示意了按照本发明一个实施方案已掺杂结晶硅(c-Si)的多-结器件作为基础电池。下电池可包含半导体掺杂纳米壁401和在纳米壁周围具有相反掺杂的第一共形沉积层(比较图3,310)。包含层450和460的最外部(上电池)可以是基本无定形硅。最后,中间电池(比较图3,320/330)可以由具有中间带隙能的材料,如无定形硅锗(a-SiGe)制成。在另一个实施方案中,自下而上堆垛的电池可分别是c-Si、a-SiGe和无定形碳化硅(a-SiC)。
[0070]如图5截面图所示,器件500的纳米壁501可以是导体且不是堆垛多-结结构的一部分。在该实施方案中,纳米壁501可以起设置在衬底502上的电极的作用。无定形多层503可包含第一p-n结(含第一p-掺杂层510和第一n-掺杂层520)、第二p-n结(含第二p-掺杂层530和第二n-掺杂层540)和介于第一p-n结与第二p-n结之间的隧道结550。虽然该实施方案描述了含有2个p-n结的器件500,但本领域的技术人员将认识到,在纳米壁501周围可堆垛3个或更多个p-n结(和介于其间的适当隧道结)。在另一些实施方案中,可以堆垛任意多个p-n结。又一次,在决定可以加进的p-n结精确个数中,空间限制和电流匹配可能是限制因素。正如在以上实施方案中,在p-和n-层之间可以加进本征层以产生相应的p-i-n结。
[0071]为说明起见,在按照纳米壁501是导电的实施方案中,3-电池(各电池包含光活性结)器件可以用以下材料构成。包含510和520的下电池(比较图5)可以是a-SiGe。包含530和540的中间电池可以是Si与Ge之比不同的a-SiGe,以获得中间带隙能量。最后,共形地设置在中间电池周围的上电池(未示出)可以是a-Si。另一种3材料构型,自下电池至上电池表示,可包括,例如,纳米晶硅(nc-Si)、a-Si层(通过改变氢含量得到中间带隙能)和a-Si。在又一个构型中,下电池可以是nc-Si,中间电池是a-SiGe以及上电池是a-Si。本领域的普通技术人员将认识到,任何有助于其本身适当掺杂以生成光活性结的3材料组都可形成堆垛电池。例如,上述各上电池可以含有a-SiC来代替a-Si作为本体材料。
[0072]如前所述,器件可含有堆垛p-n结。如图6中的截面图所示,器件也可包含在衬底602上的导电纳米壁601,它也为共形沉积在堆垛p-i-n结上起骨架作用。器件600可包含形成2个堆垛p-i-n结的无定形多层603。第一个这种结包含第一n-掺杂层610、第一本征层625和第一p-掺杂层620。同样,第二结包含第二n-掺杂层630、第二本征层635和第二p-掺杂层640。第一和第二p-i-n结被隧道结650隔开。虽然器件600示意了含2个堆垛p-i-n结的器件,但本领域的普通技术人员将认识到,在上述约束条件内,伸长纳米结构601的周围可堆垛任意多个p-i-n结。
[0073]虽然大多数实施方案描述了用共形层的相继沉积自下而上形成的方法,但图7中所示的另一个实施方案表示活性结是壁本身一部分的纳米壁结构。例如,这类结构可以用刻蚀多层膜的方法实现。衬底702在结构的底部。图中示意了简单的串列式p-n结,在其中,第一层704具有第一掺杂和706相反型的第二类掺杂。708是隧道结层。最后,层710和712形成又一个p-n结。在另一些实施方案中,可以这种方式构成任意个数的结。此外,p-层和n-层可以被本征层隔开,以形成p-i-n型结。最后,本领域的技术人员将认识到各电池应具有不同的带隙能量,以优化对不同波长光的吸收。本领域的技术人员将认识到,在壁内放置不同的结型从而在壁网内产生串列式多结阵列的能力。
[0074]在还有一个实施方案中,纳米壁结构可置于至少一个光活性结之上。这可以通过加进设置在纳米壁和衬底之间的多层膜来实现。该多层膜能以类似于纳米壁上相继共形层的方式包含至少一个p-n结、p-i-n结或它们的组合的元件。仅有的差别是这些层要在衬底上形成后再放置纳米壁。
[0075]在使用一层透明导电材料的器件实施方案中,该透明导电材料可以是透明导电氧化物(TCO)。在有些实施方案中,该透明导电氧化物是铟-锡-氧化物(ITO)。在另一些这类实施方案中,该透明导电氧化物是掺杂ZnO。该透明导电材料的厚度一般为约0.05μm~约1μm。
[0076]在有些实施方案中,衬底提供下接头。在有些实施方案中,透明导电材料层上有上接头。取决于所拟的应用,器件可为上照明和/或下照明设计。
器件制造
[0077]在有些实施方案中,本发明涉及图8中所示的按照本发明的一个实施方案制造上述纳米壁基光生伏打器件的方法800。参考图8,结合图2~6,在步骤801中在衬底上生成纳米壁。在有些实施方案中,纳米壁是半导体(图2~4),在另一些实施方案中,纳米壁是导体(图5~6);(步骤802)在纳米壁上共形地沉积至少一层,在有些实施方案中,各层材料都有合适的掺杂。在另一些实施方案中,它们也可以是本征的或起隧道结作用的;这类层叠产生一个或多个p-n、p-i-n和隧道结。(步骤803)在多层膜上沉积一层透明导电材料(TCM);以及(步骤804)形成上下接头,该接头可以连接器件到外电路。上接头可以设置在TCM上,而下接头可以设置在纳米壁对面的衬底表面上或集成在衬底内。
纳米壁合成
[0078]在有些实施方案中,纳米壁可以用包括湿和干刻蚀技术的方法提供。例如,在设置在衬底上的材料上进行湿刻蚀可以提供具有第一纳米结构的材料。湿刻蚀技术包括,但不限于,电化学刻蚀(用AgNO3/HF),由此可产生高密度纳米结构。湿刻蚀之后,可以在已刻蚀材料上沉积氧化物层,然后在氧化物层上沉积镍层。下一步,可以进行干刻蚀,以形成带涂层纳米壁结构。最后,可以除去残留的镍和氧化物层,以得到纳米壁结构。
[0079]在有些实施方案中,提供纳米壁的方法是,用选自下列一组的方法生长它们:化学气相沉积(CVD)、金属-有机化学气相沉积(MOCVD)、等离子体增强化学气相沉积(PECVD)、热丝化学气相沉积(HWCVD)、原子层沉积、电化学沉积、溶液化学沉积和它们的组合。在有些实施方案中,纳米壁靠自金属纳米颗粒的催化生长它们而提供,在这里,金属纳米颗粒要设置在衬底表面上,以及在其中金属纳米颗粒可包括选自下列一组的金属:金(Au)、铟(In)、镓(Ga)、铂(Pt)、银(Ag)和铁(Fe)。
[0080]在有些实施方案中,可以在直接离子刻蚀中用模板。例如,可以把含界定孔阵列的氧化铝纳米模板或光刻模板放在硅之类的材料上,硅设置在衬底表面(例如,玻璃或陶瓷)上。刻蚀工艺可提供纳米壁结构的控制形成,从其可以自下而上的方式沉积共形层(在用湿或干刻蚀法除去模板之后)。在另一些实施方案中,堆垛多-结器件的所有层都可在刻蚀之前相继置于衬底上。然后可对各堆垛层实施刻蚀,以得到最后的纳米壁多-结器件。
[0081]在有些这类上述方法的实施方案中,共形沉积多层膜的步骤用选自下列一组的方法进行:CVD、MOCVD、PECVD、HWCVD、逐层法、溅射法以及它们的组合。
太阳能电池板和光电子器件
[0082]在有些实施方案中,本发明涉及太阳能电池板,它可包含至少一个多-结纳米结构-基光生伏打器件,如本文所公开。太阳能电池板把各器件与它们周围的大气环境隔开并能产生电力。在有些实施方案中,光生伏打器件可以水平地安装并因此无需跟踪太阳的跟踪系统。在有些实施方案中,太阳能电池板可以在用户电子设备或太阳能电站的集成动力系统中(住宅或工业)。要注意的是,太阳能电池板的制造是本领域熟知的,因此为扼要起见,在此不再赘述。
[0083]虽然本文所公开的实施方案涉及PV器件在太阳能电池中的应用,但本领域的技术人员将理解,这类器件也可加进光电子器件。例如,可以把具有适当组成的p-n或p-i-n结器件加进光学探测器、发光二极管(LED)或激光器中,用于生物传感、安全性和其它应用。
[0084]最后,本发明的实施方案提供可显示出高效并可耐光诱导降解的多-结纳米结构光生伏打器件。按照本文公开的实施方案构成的PV电池可优化光吸收并可最小化异质结界面处的重新结合。其它益处可包括低成本和易制造,尤其在包含硅基电池为主的实施方案中。纳米壁是导电的实施方案可提供更易电流匹配的电池。
[0085]包括进下列实施例是为了展示本发明的具体实施方案。本领域的技术人员应理解,在下列实施例中公开的方法仅代表本发明的典型实施方案。但本领域的技术人员根据本公开内容会理解,在所述的具体实施方案中可以在不偏离本发明的精神和范围下作很多改变而仍能获得相同或类似的结果。
[0086]实施例:包括进下列实验性实施例是为了展示如本文所公开的生长纳米壁的实施方案。意在把它们作为本发明的典型并因此是非限定性的。
[0087]实施例1:图9~11给出了按照其中利用干和湿刻蚀法的组合的实施方案所制成的纳米壁结构的不同视图。图9是硅纳米壁的俯视图。所述壁用硅表面的电化学腐蚀、氧化物和镍层的沉积以及离子束刻蚀等步骤生成。残留的镍和氧化物涂层用对Ni(例如,HNO3(70%)∶CH3COOH∶DI=1∶1∶1)和氧化硅(缓冲HF)的标准湿刻蚀除去。图10给出硅纳米壁的侧视图和图11给出由该组合刻蚀法形成的峡谷状结构的特写镜头。
[0088]实施例2:图12给出了硅上的氧化锌(ZnO)纳米壁。
[0089]应该理解,上述实施方案的某些上述结构、功能和操作对实践本发明并非必要,包括在本说明书中仅是为了一个或多个典型实施方案的完整性。此外,应理解,上述参考专利和出版物中所提出的具体结构、功能和操作可以与本发明结合起来实践,但对于其实践并不是非要不可的。因此,应理解,本发明可以在实际上不偏离如所附权利要求所定义的本发明精神和范围的前提下不按具体所述进行实践。

Claims (17)

1.光生伏打器件(100),其包含:
有至少2个表面的衬底(102);
设置在衬底(102)至少2个表面中至少之一上的纳米壁(101)结构,其中纳米壁(101)结构包含连接壁结构的网络;和
共形地沉积在纳米壁(101)结构上的至少一层(103),其中该至少一层(103)是光活性结的至少一部分。
2.权利要求1的光生伏打器件(100),其中纳米壁(101)结构以双面布置存在于衬底(102)上。
3.权利要求1的光生伏打器件(100),其中纳米壁(101)结构是导电的。
4.权利要求1的光生伏打器件(100),其中纳米壁(101)结构包含光活性结的元件。
5.权利要求1的光生伏打器件(100),其中纳米壁(101)结构置于光活性结的上面,其中光活性结包含设置在纳米壁(101)与衬底(102)之间的多层膜。
6.权利要求1的光生伏打器件(100),其中纳米壁(101)结构与衬底(102)平面成约0~85°角。
7.权利要求1的光生伏打器件(100),其中纳米壁(101)结构包含与衬底(102)成无规角度的无规非-互穿纳米壁(101)。
8.权利要求1的光生伏打器件(100),其中纳米壁(101)结构是具有第一类掺杂的半导体。
9.权利要求1的光生伏打器件(100),其中至少一层(103)是半导体材料的无定形层,在无定形层与纳米壁(101)结构之间有界面,其中无定形层在组成上具有梯度:自界面上基本本征至无定形层对面基本导电,其中无定形层的梯度组成靠第二类掺杂提供。
10.权利要求1的光生伏打器件(100),其中至少一层(103)选自下列一组:纳米结晶层和无定形层。
11.权利要求1的光生伏打器件(100),其中至少一层(103)是包含多个光活性结的多层膜(403,303)。
12.权利要求11的光生伏打器件(100),其中多层膜还包含至少1个隧道结(440)。
13.权利要求1的光生伏打器件(100),还包含:
共形地设置在至少一层(103)上的透明导电材料(TCM)(104)。
14.权利要求13的光生伏打器件(100),还包含:
可将光生伏打器件(100)连接到外电路的上、下接头,其中上接头设置在TCM(104)上,而下接头设置在纳米壁(101)结构对面的衬底(102)表面上或集成在衬底(102)内。
15.权利要求1的光生伏打器件(100),还包含:
可将光生伏打器件(100)连接到外电路的上、下接头,其中上接头直接设置在至少一层(103)的上层上,而下接头设置在纳米壁(101)结构对面的衬底(102)表面上或集成在衬底(102)内。
16.包含权利要求1的至少一个光生伏打器件(100)的太阳能电池板,其中太阳能电池板把这类器件(100)与其周围的大气环境隔开并能产生电力。
17.包含权利要求1的至少一个光活性纳米壁基结构的光电子器件。
CN2008100029729A 2007-01-11 2008-01-11 纳米壁太阳能电池和光电子器件 Expired - Fee Related CN101221993B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/622,295 US8003883B2 (en) 2007-01-11 2007-01-11 Nanowall solar cells and optoelectronic devices
US11/622295 2007-01-11

Publications (2)

Publication Number Publication Date
CN101221993A true CN101221993A (zh) 2008-07-16
CN101221993B CN101221993B (zh) 2012-05-09

Family

ID=39304763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100029729A Expired - Fee Related CN101221993B (zh) 2007-01-11 2008-01-11 纳米壁太阳能电池和光电子器件

Country Status (4)

Country Link
US (2) US8003883B2 (zh)
EP (1) EP1944812A3 (zh)
CN (1) CN101221993B (zh)
AU (1) AU2007254673B8 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656700A (zh) * 2009-10-22 2012-09-05 索尔伏打电流公司 纳米线隧道二极管及其制造方法
CN103620785A (zh) * 2011-05-20 2014-03-05 立那工业股份有限公司 钝化直立纳米结构和其制造方法
CN109950358A (zh) * 2019-03-27 2019-06-28 京东方科技集团股份有限公司 光电探测结构及其制作方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294025B2 (en) 2002-06-08 2012-10-23 Solarity, Llc Lateral collection photovoltaics
US8003883B2 (en) * 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US20080264479A1 (en) * 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
EP2168167B1 (en) * 2007-06-19 2019-04-10 QuNano AB Nanowire-based solar cell structure
KR101002336B1 (ko) * 2008-02-04 2010-12-20 엘지디스플레이 주식회사 나노 디바이스, 이를 포함하는 트랜지스터, 나노 디바이스및 이를 포함하는 트랜지스터의 제조 방법
US7902540B2 (en) * 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
GB2462108A (en) 2008-07-24 2010-01-27 Sharp Kk Deposition of a thin film on a nanostructured surface
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
KR20110102322A (ko) * 2008-12-10 2011-09-16 가부시키가이샤 시나노 박막 광전 변환 소자와 박막 광전 변환 소자의 제조 방법
US7858427B2 (en) * 2009-03-03 2010-12-28 Applied Materials, Inc. Crystalline silicon solar cells on low purity substrate
US8952354B2 (en) * 2009-04-15 2015-02-10 Sol Voltaics Ab Multi-junction photovoltaic cell with nanowires
WO2010134019A2 (en) * 2009-05-19 2010-11-25 Ramot At Tel Aviv University Ltd. Vertical junction pv cells
KR101036453B1 (ko) * 2009-07-06 2011-05-24 한양대학교 산학협력단 p-i-n 나노선을 이용한 태양전지
US20110048518A1 (en) * 2009-08-26 2011-03-03 Molecular Imprints, Inc. Nanostructured thin film inorganic solar cells
DE102009039777A1 (de) * 2009-09-02 2011-03-03 Forschungszentrum Jülich GmbH Verfahren zur Herstellung und Strukturierung einer Zinkoxidschicht und Zinkoxidschicht
WO2011033464A1 (en) * 2009-09-18 2011-03-24 Oerlikon Solar Ag, Trübbach Photovoltaic cell and method for producing a photovoltaic cell
US20110146744A1 (en) * 2009-12-23 2011-06-23 General Electric Company Photovoltaic cell
US8772080B2 (en) * 2010-06-15 2014-07-08 Tel Solar Ag Photovoltaic cell and methods for producing a photovoltaic cell
US20130192663A1 (en) * 2010-09-15 2013-08-01 Stephen J. Fonash Single and multi-junction light and carrier collection management cells
EP2717322A4 (en) * 2011-05-25 2015-01-21 Hitachi Ltd SOLAR CELL
US9608144B2 (en) * 2011-06-01 2017-03-28 First Solar, Inc. Photovoltaic devices and method of making
US20130112236A1 (en) * 2011-11-04 2013-05-09 C/O Q1 Nanosystems (Dba Bloo Solar) Photovoltaic microstructure and photovoltaic device implementing same
US20130112243A1 (en) * 2011-11-04 2013-05-09 C/O Q1 Nanosystems (Dba Bloo Solar) Photovoltaic microstructure and photovoltaic device implementing same
KR20130081484A (ko) * 2012-01-09 2013-07-17 엘지전자 주식회사 박막 태양 전지
US9947816B2 (en) * 2012-04-03 2018-04-17 California Institute Of Technology Semiconductor structures for fuel generation
US9373741B2 (en) 2012-08-15 2016-06-21 International Business Machines Corporation Heterostructure germanium tandem junction solar cell
US9088020B1 (en) 2012-12-07 2015-07-21 Integrated Photovoltaics, Inc. Structures with sacrificial template
US9425240B2 (en) 2013-08-28 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensors with organic photodiodes and methods for forming the same
US10745815B2 (en) 2015-01-05 2020-08-18 Technion Research & Development Foundation Limited Non-uniform doping of photoelectrochemical cell electrodes
US11056517B2 (en) 2015-03-10 2021-07-06 The Regents Of The University Of California Monolithic thin film elements and performance electronics, solar powered systems and fabrication
EP3375017B1 (en) 2016-10-24 2021-08-11 Indian Institute of Technology, Guwahati A microfluidic electrical energy harvester
JP6782211B2 (ja) * 2017-09-08 2020-11-11 株式会社東芝 透明電極、それを用いた素子、および素子の製造方法
WO2023172600A1 (en) * 2022-03-09 2023-09-14 Nelumbo Inc. Hierarchical structures and methods of manufacture thereof

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079124A (en) 1976-04-21 1978-03-14 Medi-Physics, Inc. Method of preparing X-ray contrast media containing ores of hafnium, tantalum and tungsten
US4332974A (en) * 1979-06-28 1982-06-01 Chevron Research Company Multilayer photovoltaic cell
US4385430A (en) * 1980-08-11 1983-05-31 Spectrolab, Inc. Method of forming an energy concentrator
DE3934351A1 (de) 1989-10-14 1991-04-18 Studiengesellschaft Kohle Mbh Verfahren zur herstellung von mikrokristallinen bis amorphen metall- bzw. legierungspulvern und ohne schutzkolloid in organischen solventien geloesten metallen bzw. legierungen
JPH03151672A (ja) * 1989-11-08 1991-06-27 Sharp Corp 非晶質シリコン太陽電池
GB9200391D0 (en) 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
US6417244B1 (en) 1993-04-13 2002-07-09 Southwest Research Institute Metal oxide compositions and methods
US6696585B1 (en) 1993-04-13 2004-02-24 Southwest Research Institute Functionalized nanoparticles
US5665331A (en) 1995-01-10 1997-09-09 Nanosystems L.L.C. Co-microprecipitation of nanoparticulate pharmaceutical agents with crystal growth modifiers
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
WO2000006244A2 (en) 1998-07-30 2000-02-10 Hainfeld James F Loading metal particles into cell membrane vesicles and metal particle use for imaging and therapy
US6198091B1 (en) * 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
US6203778B1 (en) 1998-12-08 2001-03-20 The Regents Of The University Of California Particulate radiopaque contrast agent for diagnostic imaging and microvascular characterization
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US6660248B2 (en) 2000-11-10 2003-12-09 William Marsh Rice University Fullerene (C60)-based X-ray contrast agent for diagnostic imaging
WO2003075961A2 (en) 2002-03-08 2003-09-18 James Hainfeld Gold nanoparticles used for x-rays imaging
US7594982B1 (en) * 2002-06-22 2009-09-29 Nanosolar, Inc. Nanostructured transparent conducting electrode
US7253017B1 (en) * 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
US7291782B2 (en) * 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
EP1540741B1 (en) * 2002-09-05 2014-10-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US6969897B2 (en) * 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US20050072456A1 (en) * 2003-01-23 2005-04-07 Stevenson Edward J. Integrated photovoltaic roofing system
US7901656B2 (en) 2003-03-21 2011-03-08 Wayne State University Metal oxide-containing nanoparticles
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
US7511217B1 (en) * 2003-04-19 2009-03-31 Nanosolar, Inc. Inter facial architecture for nanostructured optoelectronic devices
US7645934B1 (en) * 2003-04-29 2010-01-12 Nanosolar, Inc. Nanostructured layer and fabrication methods
US7462774B2 (en) * 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
US7563748B2 (en) 2003-06-23 2009-07-21 Cognis Ip Management Gmbh Alcohol alkoxylate carriers for pesticide active ingredients
US6987071B1 (en) * 2003-11-21 2006-01-17 Nanosolar, Inc. Solvent vapor infiltration of organic materials into nanostructures
US20070031339A1 (en) 2003-11-28 2007-02-08 Oskar Axelsson Contrast agents
US7045205B1 (en) * 2004-02-19 2006-05-16 Nanosolar, Inc. Device based on coated nanoporous structure
US7227066B1 (en) * 2004-04-21 2007-06-05 Nanosolar, Inc. Polycrystalline optoelectronic devices based on templating technique
JP4389652B2 (ja) * 2004-04-30 2009-12-24 オムロン株式会社 電磁継電器
RU2346996C2 (ru) 2004-06-29 2009-02-20 ЮРОПИЭН НИКЕЛЬ ПиЭлСи Усовершенствованное выщелачивание основных металлов
KR100604976B1 (ko) 2004-09-03 2006-07-28 학교법인연세대학교 다작용기 리간드로 안정화된 수용성 나노입자
US7772487B1 (en) * 2004-10-16 2010-08-10 Nanosolar, Inc. Photovoltaic cell with enhanced energy transfer
WO2006054240A2 (en) 2004-11-19 2006-05-26 Koninklijke Philips Electronics N.V. Ultrasound contrast agents for molecular imaging
FR2881880B1 (fr) * 2005-02-04 2008-07-04 Imra Europ Sa Sa Dispositif photovoltaique solide avec une couche monolithique de materiau semi-conducteur comprenant des pores sous forme de canaux
EP1917557A4 (en) * 2005-08-24 2015-07-22 Trustees Boston College APPARATUS AND METHODS FOR SOLAR ENERGY CONVERSION IMPLEMENTING COMPOSITE METAL STRUCTURES OF NANOMETRIC SCALE
US7649665B2 (en) * 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7893348B2 (en) * 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
US20080135089A1 (en) * 2006-11-15 2008-06-12 General Electric Company Graded hybrid amorphous silicon nanowire solar cells
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
US8003883B2 (en) * 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656700A (zh) * 2009-10-22 2012-09-05 索尔伏打电流公司 纳米线隧道二极管及其制造方法
CN103620785A (zh) * 2011-05-20 2014-03-05 立那工业股份有限公司 钝化直立纳米结构和其制造方法
CN109950358A (zh) * 2019-03-27 2019-06-28 京东方科技集团股份有限公司 光电探测结构及其制作方法

Also Published As

Publication number Publication date
US20080169019A1 (en) 2008-07-17
EP1944812A3 (en) 2014-03-19
US20110269264A1 (en) 2011-11-03
AU2007254673B8 (en) 2014-12-11
EP1944812A2 (en) 2008-07-16
CN101221993B (zh) 2012-05-09
US8003883B2 (en) 2011-08-23
AU2007254673B2 (en) 2014-11-20
AU2007254673A8 (en) 2014-12-11
US8435825B2 (en) 2013-05-07
AU2007254673A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
CN101221993B (zh) 纳米壁太阳能电池和光电子器件
CN101221992B (zh) 多层膜-纳米线复合物、双面型和串联型太阳能电池
AU2007234548B8 (en) Amorphous-crystalline tandem nanostructured solar cells
CN101183689B (zh) 分级混合式非晶硅纳米线太阳能电池
US8895350B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
CN106206780B (zh) 基于纳米线的太阳能电池结构
EP1892769A2 (en) Single conformal junction nanowire photovoltaic devices
US20060207647A1 (en) High efficiency inorganic nanorod-enhanced photovoltaic devices
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
US20090314337A1 (en) Photovoltaic devices
US20140007931A1 (en) Techniques for Enhancing Efficiency of Photovoltaic Devices Using High-Aspect-Ratio Nanostructures
CN107863400A (zh) 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
Goodnick et al. Solar cells
KR101412150B1 (ko) 탠덤 구조 cigs 태양전지 및 그 제조방법
Zinaddinov et al. Design of Cascaded Heterostructured piin CdS/CdSe Low Cost Solar Cell
Kim Morphological Study of InAs0. 75P0. 25/InP Nanowires Grown onto Si Wafer Towards Higher Efficiency
CN117321776A (zh) 多结太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120509

Termination date: 20220111