CN101221375A - 用于步进光刻机对准系统的机器视觉系统及其标定方法 - Google Patents

用于步进光刻机对准系统的机器视觉系统及其标定方法 Download PDF

Info

Publication number
CN101221375A
CN101221375A CNA2008100331193A CN200810033119A CN101221375A CN 101221375 A CN101221375 A CN 101221375A CN A2008100331193 A CNA2008100331193 A CN A2008100331193A CN 200810033119 A CN200810033119 A CN 200810033119A CN 101221375 A CN101221375 A CN 101221375A
Authority
CN
China
Prior art keywords
coordinate system
coordinate
image
precision
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100331193A
Other languages
English (en)
Inventor
周金明
徐兵
谢威
蔡巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Micro Electronics Equipment Co Ltd
Original Assignee
Shanghai Micro Electronics Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Micro Electronics Equipment Co Ltd filed Critical Shanghai Micro Electronics Equipment Co Ltd
Priority to CNA2008100331193A priority Critical patent/CN101221375A/zh
Publication of CN101221375A publication Critical patent/CN101221375A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

一种用于步进光刻机对准系统的机器视觉系统及其标定方法,机器视觉系统由高精度运动平台,成像镜头,两组高分辨率CCD摄像机,图像采集卡,控制计算机及对准软件系统,专用监视器,运动控制卡,高精度标定板组成。标定方法采用标定点提取算法、标定算法1、标定算法2和模板匹配算法,实现具体的对准流程。本发明使得整个机器视觉系统的精度大大提高,满足光刻机对准系统的高精度对准定位要求。

Description

用于步进光刻机对准系统的机器视觉系统及其标定方法
技术领域
本发明涉及一种机器视觉系统领域的用于步进光刻机对准系统的机器视觉系统及其标定方法。
背景技术
对准系统是光刻机系统的一个非常重要的核心分系统,对准精度往往决定了光刻机所能达到的精度。步进封装光刻机用于IC(集成电路)生产的后道封装工艺,相对于用于前道光刻的扫描光刻机,其精度要求相对较低。从成本及实现难度等角度考虑,同时机器视觉系统不会对IC产生影响,目前步进封装光刻机的对准系统采用了机器视觉系统。
通常的机器视觉系统,往往采用一个CCD摄像机,最高能达到微米级的标定板,采用能达到像素级别的图像匹配算法。在一般的工业应用中,这些机器视觉系统能发挥重要的作用,应用绰绰有余。
但是,采用上述普通的机器视觉系统,在高精度的光刻机对准系统中,存在一些不足:
1.首先,普通的CCD(电荷耦合器件)摄像机的分辨率,往往达不到光刻机对准系统的要求。再者通过一个CCD摄像机,无法完成光刻机对准系统要求的坐标系旋转的标定要求。必须要有两个一定间隔距离的CCD摄像机才能对坐标系旋转进行标定。
2.普通机器视觉系统采用的标定板,精度往往为毫米级到微米级,这些市面上常用的标定板的精度与步进光刻机所要求的精度相差了好几个数量级,远远满足不了要求。
3.普通机器视觉系统的图像匹配算法,往往采用像素级的匹配精度。没有把机器视觉的潜力挖掘出来,整个机器视觉系统的精度相应的也就比较低。
4.受到运动平台的运动精度不高的限制,使得运动平台的物理坐标系与图像坐标系(U V)之间的标定精度不可能很高。
这些使得普通的机器视觉系统,其定位精度只能是毫米级,最多也就微米级。这与光刻机对准系统要求深亚微米级测量精度,相差较多。
发明内容
本发明提供的一种用于步进光刻机对准系统的机器视觉系统及其标定方法,本发明采用了一系列提高精度的措施,实现高精度的对准定位功能,满足光刻机对准系统的纳米级定位要求。
为了达到上述目的,本发明提供一种用于步进光刻机对准系统的机器视觉系统,包含:
高精度运动平台;
成像镜头,位于高精度运动平台上方;
若干高分辨CCD摄像机,设置在成像镜头上方;
图像采集模块,电路连接所述的高分辨CCD摄像机;
控制计算机,电路连接所述的图像采集模块;
专用监视器,电路连接所述的控制计算机;
运动控制模块,电路连接所述的控制计算机和高精度运动平台;
高精度标定板,设置在所述的高精度运动平台上;
CCD摄像机获取高分辨率的图像,控制计算机通过高精度标定板及高精度的运动平台完成机器视觉系统的高精度标定,再通过亚像素模板匹配定位,实现对被测物的高精度定位。专用监视器主要用于帮助操作者观察CCD摄像机所拍摄的图像,更方便地选取模板匹配时需要用到的模板图像,监视器可以单独显示一个CCD摄像机拍摄的图像,也可以同时在屏幕上显示若干个CCD摄像机所拍的图像。
本发明还提供一种标定方法,定义了3个坐标系,分别为:
1、图像坐标系(U V),以像素为单位,以图像左上角为原点的坐标系,图像坐标表征了标志在图像中的位置;
2、标定板坐标系(Xw Yw),以标定板上标定点排列为坐标轴,人为定义坐标系;
3、外部坐标系(X Y),外部坐标表征了标志在外部坐标系(X Y)中的位置,在光刻机自动对准系统和运动平台坐标相互转换中,外部坐标系(X Y)即运动平台的坐标系;
上述三个坐标系的关系如下:
1、图像坐标系(U V)和标定板坐标系(Xw Yw)的关系:
对准成像系统将实际物体转化成为数字图像的过程包含了光学放大,镜头畸变和CCD数字化等步骤,图像坐标系(U V)和标定板坐标系(Xw Yw)之间的关系反映了这一成像过程,这一关系表示为式(1.1):
X w Y w = g 1 ( K 1 , U V ) - - - ( 1.1 )
其中K1代表这一转换中的参数组,例如光学放大倍率,畸变参数,像元大小等。
2、标定板坐标系(Xw Yw)和外部坐标系(X Y)的关系:
X Y = g 2 ( K 2 , X w Y w ) - - - ( 1.2 )
其中K2代表这一转换中的参数组,例如坐标系转换中的平移矩阵,旋转矩阵等。
3、图像坐标系(U V)和外部坐标系(X Y)的关系:
将式(1.2)代入式(1.1),即可以建立图像坐标系(U V)和外部坐标系(X Y)的关系如式(1.3):
X Y = g 2 ( K 2 , g 1 ( K 1 , U V ) ) - - - ( 1.3 )
式(1.3)可另外表示为式(1.4):
X Y = g ( K , U V ) - - - ( 1.4 )
其中,g、K为将式(1.3)中的g1、g2、K1、K2重新整理后抽取出来的参数,之间是矩阵关系。
本发明提供的标定方法,包含以下步骤:
步骤1、驱动高精度运动平台,使得标定板进入第一个CCD摄像机的视场,并在专用监视器上能清晰观察,且CCD摄像机视场中布满标定点;
步骤2、保存这个时候的图像,通过标定点提取算法获取图像中所有标定点的亚像素坐标,并保存结果;
步骤3、将所有标定点的标定板坐标和对应的图像坐标作为已知数输入控制计算机,通过标定算法1,建立超定方程(1.1),求取最小二乘解,将求解的结果,也就是图像坐标系与标定板坐标系的关系g1,作为机器常数保存;
步骤4、驱动运动平台,记录移动的x、y向距离,直到在第一个CCD摄像机视场中找到清晰的基准标记图像,通过模板匹配算法保存此时的运动台移动的x、y向距离作为外部坐标系上的坐标和标记图像在图像坐标系中的坐标;
步骤5、多次执行步骤4;
步骤6、对步骤4和步骤5所取得的标记在图像坐标系中的坐标,应用步骤3中标定算法1的结果,即g1参数,转化为标记在标定板上的坐标并保存;
步骤7、将步骤6保存的标定在标定板上的坐标,及步骤4和步骤5获取的外部坐标系中的坐标,作为已知数输入控制计算机,通过标定算法2,建立转化方程(1.2),求最小二乘解,结果即为标定板坐标系与外部坐标系的关系g2,保存为机器常数;
步骤8、将步骤3和步骤7获取的g1和g2进行综合,即可得到图像坐标系与外部坐标系的关系g,保存为机器常数;
步骤9、将第一个CCD摄像机换成第二个CCD摄像机,重复以上步骤1~步骤8,将第二个CCD摄像机对应的参数也进行标定,标定结果作为机器常数保存,直到所有的CCD摄像机都标定结束;
步骤10、机器视觉系统通过取得的常数g,获取对准标记在外部坐标系下的具体坐标后,实现具体的对准流程。
本发明采用了高精度的运动定位平台,高分辨的CCD摄像机,高精度的特制标定板,高精度的标定算法,亚像素模板匹配算法,使得整个机器视觉系统的精度大大提高,满足光刻机对准系统的高精度对准定位要求。
附图说明
图1是本发明提供的一种用于步进光刻机对准系统的机器视觉系统的结构示意图;
图2是本发明提供的一种用于步进光刻机对准系统的机器视觉系统的坐标系模型示意图;
图3是本发明提供的一种用于步进光刻机对准系统的机器视觉系统的标定板示意图;
图4是本发明提供的一种用于步进光刻机对准系统的机器视觉系统的标定方法流程图。
具体实施方式
以下根据图1~图4,具体说明本发明的较佳实施方式:
如图1所示,本发明提供一种用于步进光刻机对准系统的机器视觉系统,包含:
高精度运动平台1;
成像镜头2,位于高精度运动平台1上方;
两组(若干)高分辨CCD摄像机3和摄像机4,设置在成像镜头2上方;
图像采集卡5(图像采集模块5),电路连接所述的高分辨CCD摄像机3和摄像机4;
控制计算机6,电路连接所述的图像采集模块5;
专用监视器7,电路连接所述的控制计算机6;
运动控制卡8,(运动控制模块8)电路连接所述的控制计算机6和高精度运动平台1;
高精度标定板9,设置在所述的高精度运动平台1上;
CCD摄像机3或CCD摄像机4获取高分辨率的图像,控制计算机6通过高精度标定板9及高精度的运动平台1完成机器视觉系统的高精度标定,再通过亚像素模板匹配定位,实现对被测物的高精度定位。专用监视器7主要用于帮助操作者观察CCD摄像机所拍摄的图像,更方便地选取模板匹配时需要用到的模板图像,监视器7可以单独显示CCD摄像机3或CCD摄像机4所拍的图像,也可以同时在屏幕上显示两个CCD摄像机所拍的图像。
图2是步进光刻机对准系统机器视觉系统的坐标系模型示意图,图中模型共定义了3个坐标系,分别为:
1、图像坐标系(U V),以像素为单位,以图像左上角为原点的坐标系,图像坐标表征了标志在图像中的位置;
2、标定板坐标系(Xw Yw),以标定板上标定点排列为坐标轴,人为定义坐标系;
3、外部坐标系(X Y),外部坐标表征了标志在外部坐标系(X Y)中的位置,在光刻机自动对准系统和运动平台坐标相互转换中,外部坐标系(X Y)即运动平台的坐标系;
上述三个坐标系的关系如下:
1、图像坐标系(U V)和标定板坐标系(Xw Yw)的关系:
对准成像系统将实际物体转化成为数字图像的过程包含了光学放大,镜头畸变和CCD数字化等步骤,图像坐标系(U V)和标定板坐标系(Xw Yw)之间的关系反映了这一成像过程,这一关系表示为式(1.1):
X w Y w = g 1 ( K 1 , U V ) - - - ( 1.1 )
其中K1代表这一转换中的参数组,例如光学放大倍率,畸变参数,像元大小等。
2、标定板坐标系(Xw Yw)和外部坐标系(X Y)的关系:
X Y = g 2 ( K 2 , X w Y w ) - - - ( 1.2 )
其中K2代表这一转换中的参数组,例如坐标系转换中的平移矩阵,旋转矩阵等。
3、图像坐标系(U V)和外部坐标系(X Y)的关系:
将式(1.2)代入式(1.1),即可以建立图像坐标系(U V)和外部坐标系(X Y)的关系如式(1.3):
X Y = g 2 ( K 2 , g 1 ( K 1 , U V ) ) - - - ( 1.3 )
式(1.3)可另外表示为式(1.4):
X Y = g ( K , U V ) - - - ( 1.4 )
其中,g、K为将式(1.3)中的g1、g2、K1、K2重新整理后抽取出来的参数,是矩阵换算之后的结果。
对准系统中的控制计算机6,最终的目的就是要获取图像坐标系(U V)和外部坐标系(X Y)的关系,即式(1.3)。对应的,机器视觉系统的标定精度受这个几个关系式影响。机器视觉系统的标定精度和标定板的精度有关,与标定板获取的图像精度有关,与外部运动平台的定位精度有关。选用高精度的特制标定板,采用插值算法加强的标定板标定图像提取技术,选用高精度的外部运动定位平台,这些措施提高了本机器视觉系统的标定精度。
图3是本发明步进光刻机对准系统机器视觉系统的标定板9的示意图,采用了特制的高精度标定板。标定板上的标定点的精度为几十个纳米级别,满足机器视觉系统对高精度标定的要求。
如图4所示,本发明还提供一种标定方法,包含以下步骤:
步骤1、驱动高精度运动平台1,使得标定板9进入CCD摄像机3的视场,并在专用监视器7上能清晰观察,且CCD摄像机视场中布满标定点;
步骤2、保存这个时候的图像,通过标定点提取算法获取图像中所有标定点的亚像素坐标(Ui Vi),并保存结果;该标定点提取算法采用了软件插值算法,使提取标定点的精度达到1/40亚像素级别;
步骤3、标定点在标定板9上的坐标在标定板加工制造完后就已经知道,将所有标定点的标定板坐标(Xwi Ywi)和对应的图像坐标(Ui Vi)作为已知数输入控制计算机6,通过标定算法1,建立超定方程,求取最小二乘解,将求解的结果,也就是图像坐标系(U V)与标定板坐标系(Xw Yw)的关系g1,作为机器常数保存;所述的标定算法1用于标定图像坐标系(U V)与标定板坐标系(Xw Yw)的关系,即对应的式(1.1)
步骤4、驱动运动平台1,记录移动的x、y向距离,直到在CCD摄像机3视场中找到清晰的基准标记图像,通过模板匹配算法保存此时的运动台1移动的x、y向距离作为外部坐标系(X Y)上的坐标(Xj Yj)和标记图像在图像坐标系(UV)中的坐标(Uj Vj);
步骤5、多次执行步骤4;
步骤6、对步骤4和步骤5所取得的标记在图像坐标系(U V)中的坐标(Uj Vj),应用步骤3中标定算法1的结果,即g1参数,转化为标记在标定板上的坐标(XwjYwj)并保存;
步骤7、将步骤6保存的标定在标定板上的坐标(Xwj Ywj),及步骤4和步骤5获取的外部坐标系(X Y)上的坐标(Xj Yj),作为已知数输入控制计算机6,通过标定算法2,建立转化方程,求最小二乘解,结果即为标定板坐标系(Xw Yw)与外部坐标系(X Y)的关系g2,保存为机器常数;所述的标定算法2用于标定标定板坐标系(Xw Yw)与外部坐标系(X Y)的坐标关系,即对应的式(1.2);
步骤8、将步骤3和步骤7获取的g1和g2进行综合,即可得到图像坐标系(U V)与外部坐标系(X Y)的关系g,保存为机器常数;
步骤9、将CCD摄像机3换成CCD摄像机4,重复以上步骤1~步骤8,将CCD摄像机4对应的参数也进行标定,标定结果作为机器常数保存;
步骤10、机器视觉系统通过取得的常数g,获取对准标记在外部坐标系(X Y)下的具体坐标后,实现具体的对准流程。
本发明采用了高精度的运动定位平台,两套高分辨的CCD摄像机,高精度的特制标定板,高精度的标定算法,亚像素模板匹配算法,使得整个机器视觉系统的精度大大提高,满足光刻机对准系统的高精度对准定位要求。

Claims (5)

1.一种用于步进光刻机对准系统的机器视觉系统,其特征在于,包含:
高精度运动平台(1);
成像镜头(2),位于高精度运动平台(1)上方;
若干高分辨CCD摄像机(3,4),设置在成像镜头(2)上方;
图像采集模块(5),电路连接所述的高分辨CCD摄像机(3,4);
控制计算机(6),电路连接所述的图像采集模块(5);
专用监视器(7),电路连接所述的控制计算机(6);
运动控制模块(8),电路连接所述的控制计算机(6)和高精度运动平台(1);
高精度标定板(9),设置在所述的高精度运动平台(1)上。
2.如权利要求1所述的机器视觉系统,其特征在于,所述的高精度标定板(9)上的标定点的精度为几十个纳米级别,满足机器视觉系统对高精度标定的要求。
3.一种标定方法,其特征在于,包含以下步骤:
步骤1、驱动高精度运动平台(1),使得标定板(9)进入第一个CCD摄像机(3)的视场,并在专用监视器(7)上能清晰观察,且CCD摄像机视场中布满标定点;
步骤2、保存这个时候的图像,通过标定点提取算法获取图像中所有标定点的亚像素坐标(Ui Vi),并保存结果;
步骤3、将所有标定点的标定板坐标(Xwi Ywi)和对应的图像坐标(Ui Vi)作为已知数输入控制计算机(6),通过标定算法1,建立超定方程(1.1),求取最小二乘解,将求解的结果,也就是图像坐标系(U V)与标定板坐标系(XwYw)的关系g1,作为机器常数保存;
X w Y w = g 1 ( K 1 , U V ) - - - ( 1.1 )
其中K1代表这一转换中的参数组,例如光学放大倍率,畸变参数,像元大小;
步骤4、驱动运动平台(1),记录移动的x、y向距离,直到在第一个CCD摄像机(3)视场中找到清晰的基准标记图像,通过模板匹配算法保存此时的运动台(1)移动的x、y向距离作为外部坐标系(X Y)上的坐标(Xj Yj)和标记图像在图像坐标系(U V)中的坐标(Uj Vj);
步骤5、多次执行步骤4;
步骤6、对步骤4和步骤5所取得的标记在图像坐标系(U V)中的坐标(UjVj),应用步骤3中标定算法1的结果,即g1参数,转化为标记在标定板上的坐标(Xwj Ywj)并保存;
步骤7、将步骤6保存的标定在标定板上的坐标(Xwj Ywj),及步骤4和步骤5获取的外部坐标系(X Y)上的坐标(Xj Yj),作为已知数输入控制计算机(6),通过标定算法2,,建立转化方程(1.2),求最小二乘解,结果即为标定板坐标系(Xw Yw)与外部坐标系(X Y)的关系g2,保存为机器常数;
X Y = g 2 ( K 2 , X w Y w ) - - - ( 1.2 )
其中K2代表这一转换中的参数组,例如坐标系转换中的平移矩阵,旋转矩阵;
步骤8、将步骤3和步骤7获取的g1和g2进行综合,根据式(1.3)和(1.4)即可得到图像坐标系(U V)与外部坐标系(X Y)的关系g,保存为机器常数;
X Y = g 2 ( K 2 , g 1 ( K 1 , U v ) ) = g ( K , U V ) - - - ( 1.3 ) ( 1.4 )
其中,g、K为将式(1.3)中的g1、g2、K1、K2重新整理后抽取出来的参数,之间是矩阵关系;
步骤9、利用第二个CCD摄像机(4),重复以上步骤1~步骤8,将第二个CCD摄像机(4)对应的参数也进行标定,标定结果作为机器常数保存,直到所有的CCD摄像机都标定结束;
步骤10、机器视觉系统通过取得的常数g,获取对准标记在外部坐标系(XY)下的具体坐标后,实现具体的对准流程。
4.如权利要求3所述的标定方法,其特征在于,所述的标定算法定义了如下3个坐标系:
图像坐标系(U V),以像素为单位,以图像左上角为原点的坐标系,图像坐标表征了标志在图像中的位置;
标定板坐标系(Xw Yw),以标定板上标定点排列为坐标轴,人为定义坐标系;
外部坐标系(X Y),外部坐标表征了标志在外部坐标系(X Y)中的位置,在光刻机自动对准系统和运动平台坐标相互转换中,外部坐标系(X Y)即运动平台的坐标系。
5.如权利要求3所述的标定方法,其特征在于,所述的标定点提取算法采用软件插值算法,使提取标定点的精度达到1/40亚像素级别。
CNA2008100331193A 2008-01-25 2008-01-25 用于步进光刻机对准系统的机器视觉系统及其标定方法 Pending CN101221375A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100331193A CN101221375A (zh) 2008-01-25 2008-01-25 用于步进光刻机对准系统的机器视觉系统及其标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100331193A CN101221375A (zh) 2008-01-25 2008-01-25 用于步进光刻机对准系统的机器视觉系统及其标定方法

Publications (1)

Publication Number Publication Date
CN101221375A true CN101221375A (zh) 2008-07-16

Family

ID=39631288

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100331193A Pending CN101221375A (zh) 2008-01-25 2008-01-25 用于步进光刻机对准系统的机器视觉系统及其标定方法

Country Status (1)

Country Link
CN (1) CN101221375A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738882A (zh) * 2008-11-14 2010-06-16 优志旺电机株式会社 对准标记的检测方法以及装置
CN101807014A (zh) * 2010-03-23 2010-08-18 上海微电子装备有限公司 一种测量机器视觉系统对准精度的方法
CN102338995A (zh) * 2011-10-27 2012-02-01 东莞市润华光电有限公司 一种ito膜片光刻自动识别定位方法
CN102354086A (zh) * 2011-09-29 2012-02-15 合肥芯硕半导体有限公司 一种精密移动平台的正交性实时标定方法
CN102566335A (zh) * 2010-12-30 2012-07-11 上海微电子装备有限公司 一种模板图像获取方法
CN102778199A (zh) * 2012-08-08 2012-11-14 苏州逸美德自动化科技有限公司 工业相机九点校正坐标变换方法
CN104006825A (zh) * 2013-02-25 2014-08-27 康耐视公司 沿至少三个不连续平面对机器视觉摄像机进行校准的系统和方法
CN104503210A (zh) * 2014-10-27 2015-04-08 江苏影速光电技术有限公司 一种激光直接成像设备及其生产方法
CN105278260A (zh) * 2015-11-20 2016-01-27 合肥芯碁微电子装备有限公司 一种pcb曝光图形正确性验证方法
WO2016176833A1 (zh) * 2015-05-06 2016-11-10 东莞市神州视觉科技有限公司 一种提高xy运动平台系统精度的方法、装置及系统
CN106408612A (zh) * 2015-07-31 2017-02-15 康耐视公司 机器视觉系统校准
CN106547170A (zh) * 2015-09-17 2017-03-29 上海微电子装备有限公司 一种标记对准装置及对准方法
CN107289868A (zh) * 2016-03-31 2017-10-24 上海微电子装备(集团)股份有限公司 运动台位移测量装置及方法
CN109375476A (zh) * 2018-11-26 2019-02-22 合肥芯碁微电子装备有限公司 一种光刻设备曝光一致性的标定补偿方法及系统
CN111380509A (zh) * 2018-12-28 2020-07-07 上海微电子装备(集团)股份有限公司 一种掩模版姿态监测方法、装置及掩模版颗粒度检测设备
CN111531547A (zh) * 2020-05-26 2020-08-14 华中科技大学 一种基于视觉测量的机器人标定及检测方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738882B (zh) * 2008-11-14 2013-10-30 优志旺电机株式会社 对准标记的检测方法
CN101738882A (zh) * 2008-11-14 2010-06-16 优志旺电机株式会社 对准标记的检测方法以及装置
CN101807014A (zh) * 2010-03-23 2010-08-18 上海微电子装备有限公司 一种测量机器视觉系统对准精度的方法
CN102566335B (zh) * 2010-12-30 2014-03-26 上海微电子装备有限公司 一种模板图像获取方法
CN102566335A (zh) * 2010-12-30 2012-07-11 上海微电子装备有限公司 一种模板图像获取方法
CN102354086B (zh) * 2011-09-29 2013-03-27 合肥芯硕半导体有限公司 一种精密移动平台的正交性实时标定方法
CN102354086A (zh) * 2011-09-29 2012-02-15 合肥芯硕半导体有限公司 一种精密移动平台的正交性实时标定方法
CN102338995A (zh) * 2011-10-27 2012-02-01 东莞市润华光电有限公司 一种ito膜片光刻自动识别定位方法
CN102778199B (zh) * 2012-08-08 2014-11-26 苏州逸美德自动化科技有限公司 工业相机九点校正坐标变换方法
CN102778199A (zh) * 2012-08-08 2012-11-14 苏州逸美德自动化科技有限公司 工业相机九点校正坐标变换方法
CN104006825A (zh) * 2013-02-25 2014-08-27 康耐视公司 沿至少三个不连续平面对机器视觉摄像机进行校准的系统和方法
US11544874B2 (en) 2013-02-25 2023-01-03 Cognex Corporation System and method for calibration of machine vision cameras along at least three discrete planes
US10664994B2 (en) 2013-02-25 2020-05-26 Cognex Corporation System and method for calibration of machine vision cameras along at least three discrete planes
CN104503210A (zh) * 2014-10-27 2015-04-08 江苏影速光电技术有限公司 一种激光直接成像设备及其生产方法
US9964941B2 (en) 2015-05-06 2018-05-08 Aleader Vision Technology Co., Ltd. Method, device and system for improving system accuracy of X-Y motion platform
WO2016176833A1 (zh) * 2015-05-06 2016-11-10 东莞市神州视觉科技有限公司 一种提高xy运动平台系统精度的方法、装置及系统
CN106537269A (zh) * 2015-05-06 2017-03-22 东莞市神州视觉科技有限公司 一种提高xy运动平台系统精度的方法、装置及系统
CN106408612A (zh) * 2015-07-31 2017-02-15 康耐视公司 机器视觉系统校准
US11070793B2 (en) 2015-07-31 2021-07-20 Cognex Corporation Machine vision system calibration
CN106408612B (zh) * 2015-07-31 2021-10-15 康耐视公司 机器视觉系统校准
CN106547170B (zh) * 2015-09-17 2019-09-17 上海微电子装备(集团)股份有限公司 一种标记对准装置及对准方法
CN106547170A (zh) * 2015-09-17 2017-03-29 上海微电子装备有限公司 一种标记对准装置及对准方法
CN105278260B (zh) * 2015-11-20 2018-07-24 合肥芯碁微电子装备有限公司 一种pcb曝光图形正确性验证方法
CN105278260A (zh) * 2015-11-20 2016-01-27 合肥芯碁微电子装备有限公司 一种pcb曝光图形正确性验证方法
CN107289868B (zh) * 2016-03-31 2019-08-23 上海微电子装备(集团)股份有限公司 运动台位移测量装置及方法
CN107289868A (zh) * 2016-03-31 2017-10-24 上海微电子装备(集团)股份有限公司 运动台位移测量装置及方法
CN109375476A (zh) * 2018-11-26 2019-02-22 合肥芯碁微电子装备有限公司 一种光刻设备曝光一致性的标定补偿方法及系统
CN111380509A (zh) * 2018-12-28 2020-07-07 上海微电子装备(集团)股份有限公司 一种掩模版姿态监测方法、装置及掩模版颗粒度检测设备
CN111380509B (zh) * 2018-12-28 2022-04-01 上海微电子装备(集团)股份有限公司 一种掩模版姿态监测方法、装置及掩模版颗粒度检测设备
CN111531547A (zh) * 2020-05-26 2020-08-14 华中科技大学 一种基于视觉测量的机器人标定及检测方法
CN111531547B (zh) * 2020-05-26 2021-10-26 华中科技大学 一种基于视觉测量的机器人标定及检测方法

Similar Documents

Publication Publication Date Title
CN101221375A (zh) 用于步进光刻机对准系统的机器视觉系统及其标定方法
CN106780623B (zh) 一种机器人视觉系统快速标定方法
CN104881874B (zh) 基于二元四次多项式畸变误差补偿的双远心镜头标定方法
CN110246124B (zh) 基于深度学习的目标尺寸测量方法及系统
CN101814185B (zh) 用于微小尺寸测量的线结构光视觉传感器标定方法
CN100458359C (zh) 远距离面内小位移测量系统
CN102761708B (zh) 一种线阵ccd图像扫描方法
CN101458072A (zh) 一种基于多传感器的三维轮廓测量装置及其测量方法
CN111351431B (zh) 一种pcb板上多孔位的检测系统的校正方法
CN111383194A (zh) 一种基于极坐标的相机畸变图像校正方法
CN104167001A (zh) 基于正交补偿的大视场摄像机标定方法
CN104123726B (zh) 基于消隐点的大锻件测量系统标定方法
CN102780860A (zh) 一种线阵ccd图像扫描方法
CN111710002B (zh) 一种基于Optitrack系统的相机外参标定方法
CN108983702B (zh) 基于计算机显微视觉切片扫描技术的显微视觉系统的显微视场数字化扩展方法及系统
CN112381888A (zh) 一种h型钢切割路径的动态补偿方法
CN115641326A (zh) 用于陶瓷天线pin针图像的亚像素尺寸检测方法及系统
CN114998269A (zh) 一种钢筋绑扎控制系统和绑扎定位识别方法
CN111080530B (zh) 一种基于光栅尺位置实现高精度坐标拼图的方法
CN108627094A (zh) 一种零部件高度尺寸的3d激光测量方法
CN101794373B (zh) 带旋转的亚像素匹配算法在机器视觉系统中的应用方法
CN114910076B (zh) 一种基于gps和imu信息的户外摄像机定位方法及装置
CN102494606B (zh) 一种十纳米量级尺寸及误差光学检测方法
CN118135033A (zh) Rgbd传感器辅助的激光雷达与摄像机联合标定方法
Hou et al. Automatic calibration method based on traditional camera calibration approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716